L2-SSA-LSTM prediction model of steering drilling wellbore trajectory
The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 1 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult modeling, which cannot meet the accuracy and stability requirements of wellbore trajectory prediction. The long short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but there are problems such as difficulty in adjusting the hyperparameters of the LSTM model, slow convergence speed, and easy overfitting. This paper absorbs the advantages of the LSTM algorithm, ridge regression (L2 regularization), and sparrow optimization algorithm (SSA) in machine learning and proposes a well trajectory prediction model of steerable drilling based on L2 regularization and SSA optimized LSTM (L2-SSA-LSTM). The model takes the LSTM hyperparameter as the parameter optimization goal of SSA and adds L2 regularization to the model to prevent model overfitting to complete modeling and prediction. The experiment was conducted using measured data sets from directional drilling in two different oilfields. The results show that compared with the back propagation algorithm (BP), consolidated memory gated recurrent unit (CMGRU), dual-thread gated recurrent unit (DTGRU), Attention-based Spatiotemporal Graph Recurrent Neural Network (ASTG-RNN), LSTM, and the L2-SSA-LSTM prediction model has significantly higher accuracy in predicting directional drilling trajectories than other models and has the better predictive ability. |
|---|---|
| AbstractList | The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult modeling, which cannot meet the accuracy and stability requirements of wellbore trajectory prediction. The long short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but there are problems such as difficulty in adjusting the hyperparameters of the LSTM model, slow convergence speed, and easy overfitting. This paper absorbs the advantages of the LSTM algorithm, ridge regression (L2 regularization), and sparrow optimization algorithm (SSA) in machine learning and proposes a well trajectory prediction model of steerable drilling based on L2 regularization and SSA optimized LSTM (L2-SSA-LSTM). The model takes the LSTM hyperparameter as the parameter optimization goal of SSA and adds L2 regularization to the model to prevent model overfitting to complete modeling and prediction. The experiment was conducted using measured data sets from directional drilling in two different oilfields. The results show that compared with the back propagation algorithm (BP), consolidated memory gated recurrent unit (CMGRU), dual-thread gated recurrent unit (DTGRU), Attention-based Spatiotemporal Graph Recurrent Neural Network (ASTG-RNN), LSTM, and the L2-SSA-LSTM prediction model has significantly higher accuracy in predicting directional drilling trajectories than other models and has the better predictive ability. |
| Author | Gao, Yi Wang, Na Ma, Yihao |
| Author_xml | – sequence: 1 givenname: Yi orcidid: 0000-0001-5560-7836 surname: Gao fullname: Gao, Yi organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China – sequence: 2 givenname: Na surname: Wang fullname: Wang, Na organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China – sequence: 3 givenname: Yihao surname: Ma fullname: Ma, Yihao organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China |
| BookMark | eNp9kU9r3DAQxUXYQjZpPkF6MPTsrf5Z8hyXZdsENuTg5CxkabRocayt7FD229dbJxB6yFxmeMzvMdK7Ios-9UjILaMrxij8WG8226ZZccrFSgipFWMXZMmZglJUQi0-zJfkZhgOdKp6kiq9JNsdL5tmXe6ap4fimNFHN8bUFy_JY1ekUAwjYo79vvA5dt15-INd16aMxZjtAd2Y8ukr-RJsN-DNW78mzz-3T5u7cvf4636z3pVOUhjLGlzVhqrVjksulfQSqILgoK2Ca1WwjFlBPQStPZeVZhJQIdoWONa15uKa3M--PtmDOeb4YvPJJBvNPyHlvbF5jK5DA5YHLTky65UMwtdWsUkDprwKQOvJ6_vsdczp9ysOozmk19xP5xsOFLgWiotpC-Ytl9MwZAzGxdGev2h6fewMo-YcgplDMOcQzFsIEyv-Y98v_pz6NlMRET8QQldcgfgLU3qTWA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1002_ese3_70292 crossref_primary_10_1016_j_optcom_2025_132045 crossref_primary_10_3390_app15137258 |
| Cites_doi | 10.1016/j.apor.2023.103592 10.1109/tii.2022.3217758 10.1109/ACCESS.2022.3182241 10.3390/jmse11071268 10.1631/fitee.2200237 10.2118/213634-ms 10.3390/math11061297 10.1016/j.ijrmms.2012.07.018 10.1109/access.2022.3195519 10.3390/s23010530 10.1016/j.knosys.2021.106924 10.1080/10916466.2023.2193608 10.1109/TII.2022.3218665 10.1109/TVT.2023.3287227 10.1504/ijogct.2023.129577 10.1007/s12206-020-0601-x 10.1007/s00500-022-06899-y 10.3390/en16062934 10.1016/j.cjche.2022.08.024 10.2118/113893-ms 10.3390/app13137751 10.2118/214630-ms 10.20431/2454-7980.0503004 10.1016/j.measurement.2023.113888 10.1016/j.cie.2023.109677 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3347611 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908 10_1109_ACCESS_2023_3347611 10375269 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51604226 funderid: 10.13039/501100001809 – fundername: Natural Science Basic Research Program of Shaanxi Province grantid: 2023-JC-YB-453 funderid: 10.13039/501100017596 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-89c5bf5b7c242464d49069fc9b5fcb6fa11a30d9f77d2457149e6eeab92e88723 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135210400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:13 EDT 2025 Sun Nov 30 04:45:59 EST 2025 Tue Nov 18 21:48:10 EST 2025 Sat Nov 29 06:25:21 EST 2025 Wed Aug 27 02:37:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-89c5bf5b7c242464d49069fc9b5fcb6fa11a30d9f77d2457149e6eeab92e88723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5560-7836 0009-0003-0792-6682 |
| OpenAccessLink | https://doaj.org/article/9a2f742e1ad64f3d8a619a2916d6f908 |
| PQID | 2909273623 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3347611 doaj_primary_oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908 crossref_citationtrail_10_1109_ACCESS_2023_3347611 proquest_journals_2909273623 ieee_primary_10375269 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Xie (ref9) 2022; 36 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref21 ref27 ref8 ref7 ref4 ref3 ref6 ref5 Redhu (ref22) 2023; 625 |
| References_xml | – ident: ref12 doi: 10.1016/j.apor.2023.103592 – volume: 36 start-page: 62 issue: 4 year: 2022 ident: ref9 article-title: Prediction method for wellbore trajectory in horizontal drilling sections publication-title: J. China Univ. Petroleum Ed. Natural Sci. – ident: ref17 doi: 10.1109/tii.2022.3217758 – ident: ref25 doi: 10.1109/ACCESS.2022.3182241 – ident: ref15 doi: 10.3390/jmse11071268 – ident: ref27 doi: 10.1631/fitee.2200237 – volume: 625 year: 2023 ident: ref22 article-title: Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM publication-title: Phys. A, Stat. Mech. Appl. – ident: ref6 doi: 10.2118/213634-ms – ident: ref11 doi: 10.3390/math11061297 – ident: ref1 doi: 10.1016/j.ijrmms.2012.07.018 – ident: ref3 doi: 10.1109/access.2022.3195519 – ident: ref13 doi: 10.3390/s23010530 – ident: ref24 doi: 10.1016/j.knosys.2021.106924 – ident: ref19 doi: 10.1080/10916466.2023.2193608 – ident: ref18 doi: 10.1109/TII.2022.3218665 – ident: ref14 doi: 10.1109/TVT.2023.3287227 – ident: ref5 doi: 10.1504/ijogct.2023.129577 – ident: ref8 doi: 10.1007/s12206-020-0601-x – ident: ref23 doi: 10.1007/s00500-022-06899-y – ident: ref26 doi: 10.3390/en16062934 – ident: ref20 doi: 10.1016/j.cjche.2022.08.024 – ident: ref2 doi: 10.2118/113893-ms – ident: ref4 doi: 10.3390/app13137751 – ident: ref10 doi: 10.2118/214630-ms – ident: ref7 doi: 10.20431/2454-7980.0503004 – ident: ref16 doi: 10.1016/j.measurement.2023.113888 – ident: ref21 doi: 10.1016/j.cie.2023.109677 |
| SSID | ssj0000816957 |
| Score | 2.3503158 |
| Snippet | The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Back propagation networks Computational modeling Data collection Data models Drill bits Drilling Drilling machines (tools) Dynamic models L2 regularization Logic gates long short-term memory neural network Machine learning Modelling Neural networks Oil fields Optimization Optimization methods Prediction models Predictions Predictive models Recurrent neural networks Regularization sparrow optimization algorithm Steering Steering drilling system Training Trajectory wellbore trajectory prediction |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEG5M8KAHn5GsRumDR3sz08-p47okeIhB2Ai5Nf2ohojshslG8N_b3dNZIqLgbRiqmZ75-lFVPfV9hLxPA_SY3VamNAomg-DMB6WYdAMm1Qsj_VDFJsz5-XB5CV9asXqthUHE-vMZzstlPcuPm3BbUmXHpaatKGLvkT1j9FSstUuoFAUJUKYxC_UdHC-Wy_wS8yIQPhdC5oC9_233qST9TVXlj6W47i-nT_-zZ8_Ik-ZI0sWE_HPyANcvyON79IIvyckZZ6vVgp2tLj7T67EcyRQYaFW_oZtEM8LVlMbxqnJz05LKy6MC6XZ032pC_-cB-Xp6crH8xJpsAgs5WNuyAYLySXkTSumHllFCpyEF8CoFr5Preye6CMmYyKUyOUZCjeg8cMxLDhevyP56s8ZDQrUDEwcRAdBJ77GYeCUzuIl3AcWM8LvPaUPjFC_SFt9tjS06sBMGtmBgGwYz8mHX6Hqi1Pi3-ceC08608GHXGxkA26aXBcdTDvKxd1HLJOLgcmDoePZ9o07QDTNyUEC797wJrxk5uoPdtsl7Yzl0kL267Bi-_kuzN-RR7qKcUjFHZH873uJb8jD82F7djO_quPwFKBLfEQ priority: 102 providerName: IEEE |
| Title | L2-SSA-LSTM prediction model of steering drilling wellbore trajectory |
| URI | https://ieeexplore.ieee.org/document/10375269 https://www.proquest.com/docview/2909273623 https://doaj.org/article/9a2f742e1ad64f3d8a619a2916d6f908 |
| Volume | 12 |
| WOSCitedRecordID | wos001135210400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA5FPNSDVGtxW5UcPDY6k5_zjuu64kFFWEu9hSSTgLKssm4FL_7tvmRGWSm0Fy9zGN6QyffeJO8lk-8jZD81UEdMW5nSUTAZBGc-KMWka2JStTDSN0VswlxcNNfXcLkk9ZX_CevogTvgDsHxhOVbrF2rZRJt4zDldxyzmlYn6I75VgaWiqkyBje1BmV6mqG6gsPhaIQ9Oshq4QdCSKze63dTUWHs7yVW_hqXy2Rz8oWs91kiHXZvt0E-xdkmWVviDvxKxmecTSZDdja5OqeX87zfkjGmWdxsSu8SnSw6U3o8vynE2_R3nE7R5ZHiBHVbVuuftsivk_HV6JT1mggsYCW2YA0E5ZPyJuRzHVq2EioNKYBXKXidXF07UbWQjGm5VAYLoKhjdB54xPGEi29kZXY3i9uEagembUQLEJ30PmYTryR6LvEqRDEg_BUeG3rC8KxbMbWlcKjAdpjajKntMR2Qn28P3Xd8Gf82P8q4v5lmsutyA0PA9iFg_xcCA7KVvbbUnjBZOH1Adl7daPsv88FyqABTNsz6vn9E2z_IZ-yP7BZldsjKYv4n7pLV8Li4eZjvlaDE6_nzeK8cLXwBkv7iqQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oFdQH66Xiaqt58NFsZ3KZmTyuS0vF7SLsCn0LuZxAi-yW6Vbw35tk0qUiFvo2DCdMZr5czjmZ830An0KnaoxuK5UNciocZ9Q6KakwHQZZ81bYLotNtPN5d3amvpdi9VwLg4j55zMcp8t8lu_X7jqlyg5TTVtSxH4Ij6QQrBrKtbYplaQhoWRbuIXqSh1OptP4GuMkET7mXMSQvf5r_8k0_UVX5Z_FOO8wx7v37NsLeF5cSTIZsH8JD3D1Cp7dIhh8DUczRheLCZ0tlqfksk-HMgkIkvVvyDqQiHE2Jb4_z-zcJCXz4rhAsunNRU7p_96DH8dHy-kJLcIJ1MVwbUM75aQN0rYuFX80wgtVNSo4ZWVwtgmmrg2vvApt65mQbYySsEE0VjGMiw7jb2BntV7hWyCNUa3vuFcKjbAWk4mVIsIbWOWQj4DdfE7tCqt4Erf4qXN0USk9YKATBrpgMILP20aXA6nG3eZfEk5b08SInW9EAHSZYFoZFmKYj7XxjQjcdyaGhoZF79c3QVXdCPYSaLeeN-A1gv0b2HWZvleaqUpFvy66hu_-0-wjPDlZns707Ov823t4GrsrhsTMPuxs-ms8gMfu1-b8qv-Qx-gf6OPiWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L2-SSA-LSTM+Prediction+Model+of+Steering+Drilling+Wellbore+Trajectory&rft.jtitle=IEEE+access&rft.au=Yi+Gao&rft.au=Na+Wang&rft.au=Yihao+Ma&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=450&rft.epage=461&rft_id=info:doi/10.1109%2FACCESS.2023.3347611&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |