L2-SSA-LSTM prediction model of steering drilling wellbore trajectory

The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 12; s. 1
Hlavní autoři: Gao, Yi, Wang, Na, Ma, Yihao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult modeling, which cannot meet the accuracy and stability requirements of wellbore trajectory prediction. The long short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but there are problems such as difficulty in adjusting the hyperparameters of the LSTM model, slow convergence speed, and easy overfitting. This paper absorbs the advantages of the LSTM algorithm, ridge regression (L2 regularization), and sparrow optimization algorithm (SSA) in machine learning and proposes a well trajectory prediction model of steerable drilling based on L2 regularization and SSA optimized LSTM (L2-SSA-LSTM). The model takes the LSTM hyperparameter as the parameter optimization goal of SSA and adds L2 regularization to the model to prevent model overfitting to complete modeling and prediction. The experiment was conducted using measured data sets from directional drilling in two different oilfields. The results show that compared with the back propagation algorithm (BP), consolidated memory gated recurrent unit (CMGRU), dual-thread gated recurrent unit (DTGRU), Attention-based Spatiotemporal Graph Recurrent Neural Network (ASTG-RNN), LSTM, and the L2-SSA-LSTM prediction model has significantly higher accuracy in predicting directional drilling trajectories than other models and has the better predictive ability.
AbstractList The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data collection. Traditional prediction methods such as dynamic modeling and geological modeling have problems such as incomplete data and difficult modeling, which cannot meet the accuracy and stability requirements of wellbore trajectory prediction. The long short-term memory neural network (LSTM) for predicting time series can achieve accurate prediction, but there are problems such as difficulty in adjusting the hyperparameters of the LSTM model, slow convergence speed, and easy overfitting. This paper absorbs the advantages of the LSTM algorithm, ridge regression (L2 regularization), and sparrow optimization algorithm (SSA) in machine learning and proposes a well trajectory prediction model of steerable drilling based on L2 regularization and SSA optimized LSTM (L2-SSA-LSTM). The model takes the LSTM hyperparameter as the parameter optimization goal of SSA and adds L2 regularization to the model to prevent model overfitting to complete modeling and prediction. The experiment was conducted using measured data sets from directional drilling in two different oilfields. The results show that compared with the back propagation algorithm (BP), consolidated memory gated recurrent unit (CMGRU), dual-thread gated recurrent unit (DTGRU), Attention-based Spatiotemporal Graph Recurrent Neural Network (ASTG-RNN), LSTM, and the L2-SSA-LSTM prediction model has significantly higher accuracy in predicting directional drilling trajectories than other models and has the better predictive ability.
Author Gao, Yi
Wang, Na
Ma, Yihao
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0001-5560-7836
  surname: Gao
  fullname: Gao, Yi
  organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Na
  surname: Wang
  fullname: Wang, Na
  organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Yihao
  surname: Ma
  fullname: Ma, Yihao
  organization: School of Electronic Engineering, Xi'an Shiyou University, Xi'an, Shaanxi, China
BookMark eNp9kU9r3DAQxUXYQjZpPkF6MPTsrf5Z8hyXZdsENuTg5CxkabRocayt7FD229dbJxB6yFxmeMzvMdK7Ios-9UjILaMrxij8WG8226ZZccrFSgipFWMXZMmZglJUQi0-zJfkZhgOdKp6kiq9JNsdL5tmXe6ap4fimNFHN8bUFy_JY1ekUAwjYo79vvA5dt15-INd16aMxZjtAd2Y8ukr-RJsN-DNW78mzz-3T5u7cvf4636z3pVOUhjLGlzVhqrVjksulfQSqILgoK2Ca1WwjFlBPQStPZeVZhJQIdoWONa15uKa3M--PtmDOeb4YvPJJBvNPyHlvbF5jK5DA5YHLTky65UMwtdWsUkDprwKQOvJ6_vsdczp9ysOozmk19xP5xsOFLgWiotpC-Ytl9MwZAzGxdGev2h6fewMo-YcgplDMOcQzFsIEyv-Y98v_pz6NlMRET8QQldcgfgLU3qTWA
CODEN IAECCG
CitedBy_id crossref_primary_10_1002_ese3_70292
crossref_primary_10_1016_j_optcom_2025_132045
crossref_primary_10_3390_app15137258
Cites_doi 10.1016/j.apor.2023.103592
10.1109/tii.2022.3217758
10.1109/ACCESS.2022.3182241
10.3390/jmse11071268
10.1631/fitee.2200237
10.2118/213634-ms
10.3390/math11061297
10.1016/j.ijrmms.2012.07.018
10.1109/access.2022.3195519
10.3390/s23010530
10.1016/j.knosys.2021.106924
10.1080/10916466.2023.2193608
10.1109/TII.2022.3218665
10.1109/TVT.2023.3287227
10.1504/ijogct.2023.129577
10.1007/s12206-020-0601-x
10.1007/s00500-022-06899-y
10.3390/en16062934
10.1016/j.cjche.2022.08.024
10.2118/113893-ms
10.3390/app13137751
10.2118/214630-ms
10.20431/2454-7980.0503004
10.1016/j.measurement.2023.113888
10.1016/j.cie.2023.109677
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3347611
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908
10_1109_ACCESS_2023_3347611
10375269
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51604226
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Program of Shaanxi Province
  grantid: 2023-JC-YB-453
  funderid: 10.13039/501100017596
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-89c5bf5b7c242464d49069fc9b5fcb6fa11a30d9f77d2457149e6eeab92e88723
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001135210400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:13 EDT 2025
Sun Nov 30 04:45:59 EST 2025
Tue Nov 18 21:48:10 EST 2025
Sat Nov 29 06:25:21 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-89c5bf5b7c242464d49069fc9b5fcb6fa11a30d9f77d2457149e6eeab92e88723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5560-7836
0009-0003-0792-6682
OpenAccessLink https://doaj.org/article/9a2f742e1ad64f3d8a619a2916d6f908
PQID 2909273623
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3347611
doaj_primary_oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908
crossref_citationtrail_10_1109_ACCESS_2023_3347611
proquest_journals_2909273623
ieee_primary_10375269
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Xie (ref9) 2022; 36
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref21
ref27
ref8
ref7
ref4
ref3
ref6
ref5
Redhu (ref22) 2023; 625
References_xml – ident: ref12
  doi: 10.1016/j.apor.2023.103592
– volume: 36
  start-page: 62
  issue: 4
  year: 2022
  ident: ref9
  article-title: Prediction method for wellbore trajectory in horizontal drilling sections
  publication-title: J. China Univ. Petroleum Ed. Natural Sci.
– ident: ref17
  doi: 10.1109/tii.2022.3217758
– ident: ref25
  doi: 10.1109/ACCESS.2022.3182241
– ident: ref15
  doi: 10.3390/jmse11071268
– ident: ref27
  doi: 10.1631/fitee.2200237
– volume: 625
  year: 2023
  ident: ref22
  article-title: Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM
  publication-title: Phys. A, Stat. Mech. Appl.
– ident: ref6
  doi: 10.2118/213634-ms
– ident: ref11
  doi: 10.3390/math11061297
– ident: ref1
  doi: 10.1016/j.ijrmms.2012.07.018
– ident: ref3
  doi: 10.1109/access.2022.3195519
– ident: ref13
  doi: 10.3390/s23010530
– ident: ref24
  doi: 10.1016/j.knosys.2021.106924
– ident: ref19
  doi: 10.1080/10916466.2023.2193608
– ident: ref18
  doi: 10.1109/TII.2022.3218665
– ident: ref14
  doi: 10.1109/TVT.2023.3287227
– ident: ref5
  doi: 10.1504/ijogct.2023.129577
– ident: ref8
  doi: 10.1007/s12206-020-0601-x
– ident: ref23
  doi: 10.1007/s00500-022-06899-y
– ident: ref26
  doi: 10.3390/en16062934
– ident: ref20
  doi: 10.1016/j.cjche.2022.08.024
– ident: ref2
  doi: 10.2118/113893-ms
– ident: ref4
  doi: 10.3390/app13137751
– ident: ref10
  doi: 10.2118/214630-ms
– ident: ref7
  doi: 10.20431/2454-7980.0503004
– ident: ref16
  doi: 10.1016/j.measurement.2023.113888
– ident: ref21
  doi: 10.1016/j.cie.2023.109677
SSID ssj0000816957
Score 2.3503158
Snippet The high-speed vibration rotation of the drill bit during drilling causes the logging tool to be damaged or distorted, resulting in inaccurate or lost data...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Back propagation networks
Computational modeling
Data collection
Data models
Drill bits
Drilling
Drilling machines (tools)
Dynamic models
L2 regularization
Logic gates
long short-term memory neural network
Machine learning
Modelling
Neural networks
Oil fields
Optimization
Optimization methods
Prediction models
Predictions
Predictive models
Recurrent neural networks
Regularization
sparrow optimization algorithm
Steering
Steering drilling system
Training
Trajectory
wellbore trajectory prediction
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1EM5UNqCWArIhx6bJXacOD5uVyAOC6q0tOJmOfZYoqp2UViQ-PeMHbOiqlqJW5TYSpznj5mx5z2AL2RzBC8DFg09L6Qld6frBBbeKmcVd7xMp3x_ztTlZXt9rb_nZPWUC4OI6fAZjuNl2sv3S3cfQ2UnMactKmJvwIZSzZCstQ6oRAUJXavMLMRLfTKZTqkR4ygQPq4qSQ47_2P1SST9WVXlr6k4rS9n71_5ZTuwnQ1JNhmQ_wBvcPERtl7QC36C05ko5vNJMZtfXbDbPm7JRBhYUr9hy8AI4VSU-f4mcXOzGMqjXoFs1dtfKaD_uAs_zk6vpudFlk0oHDlrq6LVru5C3SkXUz8a6aUuGx2c7urguiZYzm1Veh2U8kLWinwkbBBtpwXSlCOqPdhcLBe4DywyMnHlsUVnpVPYSs4DmQy-tqKtOz8C8fw7jcuc4lHa4rdJvkWpzYCBiRiYjMEIvq4r3Q6UGv8v_i3itC4a-bDTDQLA5OFltBWBnHzk1jcyVL615BhaQbavb4Iu2xHsRtBevG_AawSHz7CbPHjvjNDUbEUre3Xwj2qf4R19ohxCMYewuerv8QjeuofVzV1_nPrlE3UG33I
  priority: 102
  providerName: IEEE
Title L2-SSA-LSTM prediction model of steering drilling wellbore trajectory
URI https://ieeexplore.ieee.org/document/10375269
https://www.proquest.com/docview/2909273623
https://doaj.org/article/9a2f742e1ad64f3d8a619a2916d6f908
Volume 12
WOSCitedRecordID wos001135210400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RSFUnlgJCV2nDgeS2nFUKpK5bVZjh8SqGpRWpBY-O2cnVAVIcHCkiFx5PjzxXfnx_chdAYxhzPM2SiD5xFTkO4UBbWRUVwrTjSJwy7f-wEfDvPHRzFakfrye8IqeuAKuAuhqIP0zRJlMuYSkysI-RWFqMZkTlTHfGMuVpKpMAbnJBMpr2mGSCwuOt0utKjt1cLbScIgeyffXFFg7K8lVn6My8HZ9HfQdh0l4k71dbtozU730NYKd-A-6g1oNB53osH49gaPSr_e4jHGXtxsgmcOjxdVUXxVPgXibfxgJxPocovBQT2H2fr3A3TX7912r6NaEyHSkIktolzotHBpwbU_15Exw0ScCadFkTpdZE4RopLYCMe5oSzlkADZzFpVCGphPKHJIVqfzqb2CGFPt0S4sbnVimluc0aIg3jApIrmaWEaiH7BI3VNGO51KyYyJA6xkBWm0mMqa0wb6Hz50kvFl_F78UuP-7KoJ7sON8AEZG0C8i8TaKAD32sr9SXcC6c3UPOrG2X9Z84lFdBsDm47Of6Puk_QJrSHVZMyTbS-KF_tKdrQb4unedkKRgnXm49eKxwt_ATRUOMK
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHjmQbO04cH5dVqyLSFdIuqDfLscdSEdqt0i0S_56x466KEEjcosRW4jx_zIw97wG8I5sjeBmwaOh5IS25O30vsPBWOau442U65fu1U4tFe3amP-dk9ZQLg4jp8BlO42Xay_cbdxVDZYcxpy0qYt-GO7WUohzTtXYhlaghoWuVuYV4qQ9n8zk1YxolwqdVJcll57-tP4mmP-uq_DEZpxXm-NF_fttjeJhNSTYbsX8Ct3D9FB7cIBh8BkedKJbLWdEtV6fsYoibMhEIlvRv2CYwwjgVZX44T-zcLAbzqF8g2w72Wwrp_9yHL8dHq_lJkYUTCkfu2rZotav7UPfKxeSPRnqpy0YHp_s6uL4JlnNblV4HpbyQtSIvCRtE22uBNOmI6jnsrTdrfAEscjJx5bFFZ6VT2ErOAxkNvrairXs_AXH9O43LrOJR3OK7Sd5Fqc2IgYkYmIzBBN7vKl2MpBr_Lv4h4rQrGhmx0w0CwOQBZrQVgdx85NY3MlS-teQaWkHWr2-CLtsJ7EfQbrxvxGsCB9ewmzx8L43Q1GxFa3v18i_V3sK9k9VpZ7qPi0-v4D59rhwDMwewtx2u8DXcdT-255fDm9RHfwE8hOK5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L2-SSA-LSTM+Prediction+Model+of+Steering+Drilling+Wellbore+Trajectory&rft.jtitle=IEEE+access&rft.au=Yi+Gao&rft.au=Na+Wang&rft.au=Yihao+Ma&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=450&rft.epage=461&rft_id=info:doi/10.1109%2FACCESS.2023.3347611&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9a2f742e1ad64f3d8a619a2916d6f908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon