SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing

In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing network...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 17; s. 1 - 14
Hlavní autori: Wang, Bin, Yao, Huizheng, Song, Dongmei, Zhang, Jie, Gao, Han
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1404, 2151-1535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in HSI data. To this end, an AE hyperspectral un-mixing network with the name of SSF-Net is proposed for fusing the spatial-spectral features. The network first extracts pseudo-endmember information from the HSI using a regional VCA algorithm. Then, a dual-branch feature fusion module incorporating a spatial-spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby im-proving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. Experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net out-performs state-of-the-art unmixing algorithms.
AbstractList In recent years, deep learning has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on an autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in hyperspectral image (HSI) data. To this end, an AE HU network with the name of SSF-Net is proposed for fusing the spatial–spectral features. The network first extracts pseudoendmember information from the HSI using a regional vertex component analysis algorithm. Then, a dual-branch feature fusion module incorporating a spatial–spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby improving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial–spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. The experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net outperforms state-of-the-art unmixing algorithms.
In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in HSI data. To this end, an AE hyperspectral un-mixing network with the name of SSF-Net is proposed for fusing the spatial-spectral features. The network first extracts pseudo-endmember information from the HSI using a regional VCA algorithm. Then, a dual-branch feature fusion module incorporating a spatial-spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby im-proving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. Experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net out-performs state-of-the-art unmixing algorithms.
Author Song, Dongmei
Yao, Huizheng
Gao, Han
Zhang, Jie
Wang, Bin
Author_xml – sequence: 1
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China
– sequence: 2
  givenname: Huizheng
  surname: Yao
  fullname: Yao, Huizheng
  organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China
– sequence: 3
  givenname: Dongmei
  surname: Song
  fullname: Song, Dongmei
  organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China
– sequence: 4
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China
– sequence: 5
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China
BookMark eNqFkU9P3DAQxS1EJRbKJ4BDJM5Z_H9tbivULYtQKxG4Yjn2ZOVtiFPHq5Zv3yyhFeLS00ij-b2Zee8YHXaxA4TOCJ4TgvXlbfWwvK_mFFM2Z4wuBNcHaEaJICURTByiGdFMl4RjfoSOh2GLsaQLzWboqapW5TfIV8WyqHqbg23LqgeXk22LFdi8SzAU6y7DJtkMvljucoTORQ-pGLlfMf0ompiKm5ce0vCXfOyew-_QbT6jT41tBzh9qyfocfXl4fqmvPv-dX29vCsdxzqXSlFaeyUtBcIbVnPKrdJSCA9uAVhLhXmtayLG1yw4byUH5TRxvPFCgmQnaD3p-mi3pk_h2aYXE20wr42YNsamHFwLBrzGnFHrpRhxsEo6UYOSUhPSOMCj1sWk1af4cwdDNtu4S914vqEaS6GJ5vspNk25FIchQfNvK8FmH4qZQjH7UMxbKCOlP1Au5NH12I22hfY_7PnEBgB4t41qIaRifwB71p05
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs17172968
crossref_primary_10_1109_JSTARS_2025_3542228
crossref_primary_10_1109_TIP_2025_3577394
crossref_primary_10_1007_s12145_025_01779_z
crossref_primary_10_1109_TGRS_2025_3544037
crossref_primary_10_54392_irjmt2416
crossref_primary_10_1109_TGRS_2025_3608084
crossref_primary_10_3390_rs17010094
crossref_primary_10_1016_j_cosrev_2025_100788
Cites_doi 10.1109/tgrs.2016.2633279
10.1109/tgrs.2011.2163941
10.1109/tgrs.2022.3155794
10.1109/mgrs.2019.2890997
10.1109/tgrs.2018.2890633
10.1109/tnnls.2021.3082289
10.1109/tgrs.2017.2724944
10.1109/tgrs.2008.2002882
10.1109/tgrs.2016.2551327
10.1109/tgrs.2015.2441954
10.1109/tgrs.2006.888466
10.1109/jstars.2014.2320576
10.1109/igarss.2016.7730834
10.1109/igarss.2019.8898410
10.1117/12.366289
10.1109/tip.2014.2363423
10.1109/tsp.2009.2025797
10.1109/79.974727
10.1109/tgrs.2011.2140119
10.1109/mgrs.2021.3071158
10.1109/rast.2013.6581194
10.1109/tip.2010.2042993
10.1109/tgrs.2018.2868690
10.1109/icassp39728.2021.9414084
10.1109/tgrs.2005.844293
10.1109/tgrs.2021.3081177
10.1109/tgrs.2023.3236677
10.1109/36.934072
10.1109/tgrs.2018.2861992
10.1109/tgrs.2020.2992743
10.1109/jstars.2011.2181340
10.1109/tgrs.2022.3196057
10.1109/jstars.2012.2194696
10.1016/s0034-4257(98)00037-6
10.1109/jproc.2012.2196249
10.1109/tgrs.2018.2872888
10.1109/tgrs.2018.2856929
10.1109/access.2018.2818280
10.1002/9781119687788.ch13
10.1109/tgrs.2020.2982490
10.1109/tgrs.2021.3064958
10.1109/tgrs.2019.2919166
10.1109/lgrs.2014.2325874
10.1109/tcyb.2020.3028931
10.1109/36.911111
10.1109/tgrs.2022.3150970
10.1016/j.neucom.2017.11.052
10.1109/tgrs.2021.3094884
10.1109/whispers.2010.5594898
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3327549
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 14
ExternalDocumentID oai_doaj_org_article_ed90432ad65c4fea86c5be866911fce0
10_1109_JSTARS_2023_3327549
10295568
Genre orig-research
GrantInformation_xml – fundername: Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province
  grantid: U1906217; U22A20586
– fundername: Key Research and Development Program of Shandong Province
  grantid: 2019GGX10133
– fundername: National Natural Science Foundation of China
  grantid: 41701513; 61371189; 41772350
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2022MD015
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-8822bd86a2e14f3b424a89655dec7e096804b9b15275aecda64e8c91c4fd56e63
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133505400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:46:32 EDT 2025
Fri Jul 25 10:41:07 EDT 2025
Sat Nov 29 04:51:19 EST 2025
Tue Nov 18 22:25:26 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-8822bd86a2e14f3b424a89655dec7e096804b9b15275aecda64e8c91c4fd56e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2420-8012
0000-0003-2565-1013
0000-0002-0745-2056
0009-0007-9885-2672
OpenAccessLink https://ieeexplore.ieee.org/document/10295568
PQID 2906591940
PQPubID 75722
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_ed90432ad65c4fea86c5be866911fce0
crossref_primary_10_1109_JSTARS_2023_3327549
ieee_primary_10295568
proquest_journals_2906591940
crossref_citationtrail_10_1109_JSTARS_2023_3327549
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
Xu (ref41) 2015
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref24
  doi: 10.1109/tgrs.2016.2633279
– ident: ref20
  doi: 10.1109/tgrs.2011.2163941
– ident: ref33
  doi: 10.1109/tgrs.2022.3155794
– ident: ref44
  doi: 10.1109/mgrs.2019.2890997
– ident: ref32
  doi: 10.1109/tgrs.2018.2890633
– ident: ref35
  doi: 10.1109/tnnls.2021.3082289
– ident: ref47
  doi: 10.1109/tgrs.2017.2724944
– ident: ref21
  doi: 10.1109/tgrs.2008.2002882
– ident: ref43
  doi: 10.1109/tgrs.2016.2551327
– ident: ref5
  doi: 10.1109/tgrs.2015.2441954
– ident: ref18
  doi: 10.1109/tgrs.2006.888466
– ident: ref13
  doi: 10.1109/jstars.2014.2320576
– ident: ref29
  doi: 10.1109/igarss.2016.7730834
– ident: ref6
  doi: 10.1109/igarss.2019.8898410
– ident: ref15
  doi: 10.1117/12.366289
– ident: ref22
  doi: 10.1109/tip.2014.2363423
– ident: ref17
  doi: 10.1109/tsp.2009.2025797
– ident: ref8
  doi: 10.1109/79.974727
– ident: ref42
  doi: 10.1109/tgrs.2011.2140119
– ident: ref45
  doi: 10.1109/mgrs.2021.3071158
– ident: ref12
  doi: 10.1109/rast.2013.6581194
– ident: ref19
  doi: 10.1109/tip.2010.2042993
– ident: ref31
  doi: 10.1109/tgrs.2018.2868690
– ident: ref27
  doi: 10.1109/icassp39728.2021.9414084
– ident: ref16
  doi: 10.1109/tgrs.2005.844293
– ident: ref48
  doi: 10.1109/tgrs.2021.3081177
– ident: ref39
  doi: 10.1109/tgrs.2023.3236677
– ident: ref4
  doi: 10.1109/36.934072
– ident: ref3
  doi: 10.1109/tgrs.2018.2861992
– ident: ref36
  doi: 10.1109/tgrs.2020.2992743
– ident: ref40
  doi: 10.1109/jstars.2011.2181340
– ident: ref38
  doi: 10.1109/tgrs.2022.3196057
– ident: ref1
  doi: 10.1109/jstars.2012.2194696
– ident: ref10
  doi: 10.1016/s0034-4257(98)00037-6
– ident: ref11
  doi: 10.1109/jproc.2012.2196249
– ident: ref25
  doi: 10.1109/tgrs.2018.2872888
– ident: ref30
  doi: 10.1109/tgrs.2018.2856929
– ident: ref49
  doi: 10.1109/access.2018.2818280
– ident: ref28
  doi: 10.1002/9781119687788.ch13
– year: 2015
  ident: ref41
  article-title: Empirical evaluation of rectified activations in convolutional network
– ident: ref26
  doi: 10.1109/tgrs.2020.2982490
– ident: ref34
  doi: 10.1109/tgrs.2021.3064958
– ident: ref23
  doi: 10.1109/tgrs.2019.2919166
– ident: ref46
  doi: 10.1109/lgrs.2014.2325874
– ident: ref7
  doi: 10.1109/tcyb.2020.3028931
– ident: ref14
  doi: 10.1109/36.911111
– ident: ref37
  doi: 10.1109/tgrs.2022.3150970
– ident: ref2
  doi: 10.1016/j.neucom.2017.11.052
– ident: ref50
  doi: 10.1109/tgrs.2021.3094884
– ident: ref9
  doi: 10.1109/whispers.2010.5594898
SSID ssj0062793
Score 2.3851192
Snippet In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities....
In recent years, deep learning has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Attention
autoencoder (AE)
Data models
Decoding
Deep learning
deep learning (DL)
Electromagnetic scattering
Feature extraction
feature fusion
Heterogeneity
Hyperspectral imaging
hyperspectral unmixing (HU)
Information processing
Machine learning
Patchiness
Spatial heterogeneity
Task analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SFLxIqxXXtpKDR6edySSZPG-ruNbLIq6F3mJ-DRR0W7az0t78H_wP_Ut8L5ktC4JevA4Jybx8Sd4Xku9j7CVCyEeRXCXBiUrGFipwymMip3A2AYgO-mw20c3n5vwcPm5ZfdGdsCIPXAJ3kiKQapyLWgXZJ2d0UD4ZrXGW9iFltl53sCFTZQ3W2EQ7agw1NZwgyKefFsdkFX7ctqJTJJ25tQ9luf7RX-WPRTnvNLNd9mhMEfm0dG2P3UvLx-zB-2zBe_uEfVksZtU8Da_5lJOhMALo14-f5CNPhxaccro1cmj-YSMEEfl0PVySYGVMKz4v9745Jqv8FEloeWtJNc-W3y5ucCfbZ2ezd5_fnlajT0IVkJ0NFSbJwkejnUiN7FsvhXQGtFIxhS4hRzG19ODJwFa5FKLTMpkADcYzKp10-5TtLC-X6Rnj3mHKZzDYTX5xGr0yundIOiA2yQc_YWITNRtGEXHysvhqM5mowZZQWwq1HUM9Ya_uKl0VDY2_F39Dw3FXlASw8weEhR1hYf8Fiwnbp8Hcak8Aia1N2OFmdO04W68tSd4raEDWz_9H2wfsIf6PLAc1h2xnWK3TEbsfvg8X16sXGai_AbJ67F8
  priority: 102
  providerName: Directory of Open Access Journals
Title SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing
URI https://ieeexplore.ieee.org/document/10295568
https://www.proquest.com/docview/2906591940
https://doaj.org/article/ed90432ad65c4fea86c5be866911fce0
Volume 17
WOSCitedRecordID wos001133505400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoBRIXnkUslMoHjmTJw3Y8vW0rlnJZIZZKPWH5MZEqlV20zSL4951xslUlBBK3KLITJzPjmbE93yfEW1KhkGr0hQJfFyo1UIDXgQI5TdYEULfQZbKJdrGwFxfweSxWz7UwiJgPn-GUL_NeflrHLS-VkYXXwIhZe2Kvbc1QrLWbdg09tRm2kKFgzJgRYqgq4T3p-OzLcspM4dOmqVvNyJl33FBG6x_pVf6Yk7OjmT_-zyE-EY_GiFLOBhV4Ku7h6pl48DEz9v5-Lr4tl_Nigf2xnEnmHyZ9K5h0nlc4JAeAW0q45acdakSSs22_ZnTLhBu5GA6JS4ps5RllrENhJvc8X32__EVu70Cczz98PT0rRlKFIlIq1xcUUdchWeNrrFTXBFUrb8FonTC2SAmNLVWAwGy32mNM3ii0EaqouqQNmuaF2F-tV_hSyOApPrQ-kYfn8tQUtDWdpwwFUoUhhomod__YxRFxnIkvrlzOPEpwg2AcC8aNgpmId7edfgyAG_9ufsLCu23KaNn5BknFjcbnMAEjD9JINX0GemuiDmiNoZm-i1hOxAFL8s77BiFOxOFOF9xo2teO8fE1VKDKV3_p9lo8pCGqYaHmUOz3my2-Effjz_7yenOUs_6jrLs3KafqNA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdggOBlfA1RNsAPPJKSOLYb89YhSidGhOgm7QnLHxdpErSoS9H477mz02kSAom3KLITJ3fnu7N9vx9jr1CFfBTgCmmcKGSsTWGc8hjIKbQmY8TEdIlsYtK2zdmZ-TwUq6daGABIh89gTJdpLz-uwoaWytDChSHErJvslpJSlLlcazvxanxunTeRTUGoMQPIUFWaN6jl0y-LMXGFj-taTBRhZ15zRAmvfyBY-WNWTq5mdv8_B_mA7Q4xJZ9mJXjIbsDyEbvzIXH2_nrMvi4Ws6KF_i2fcmIgRo0riHae1jg4hYAbTLn50RY3IvLppl8RvmWENW_zMXGOsS2fY86aSzOp5-ny-_klOr49djp7f_JuXgy0CkXAZK4vMKYWPjbaCahkV3sppGuMVipCmACmNE0pvfHEd6schOi0hCaYKsguKg26fsJ2lqslPGXcO4wQGxfRx1OBavSq0Z3DHMXECnzwIya2_9iGAXOcqC--2ZR7lMZmwVgSjB0EM2Kvrzr9yJAb_25-SMK7akp42ekGSsUO5mchGsIexJEq_AxwjQ7KQ6M1zvVdgHLE9kiS196XhThiB1tdsINxX1hCyFemMrJ89pduL9nd-cmnY3t81H7cZ_dwuDIv2xywnX69gefsdvjZn1-sXyQN_g32ZOyG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSF-Net%3A+A+Spatial%E2%80%93Spectral+Features+Integrated+Autoencoder+Network+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Bin&rft.au=Yao%2C+Huizheng&rft.au=Song%2C+Dongmei&rft.au=Zhang%2C+Jie&rft.date=2024-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=1781&rft.epage=1794&rft_id=info:doi/10.1109%2FJSTARS.2023.3327549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3327549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon