SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing
In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing network...
Uložené v:
| Vydané v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 17; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in HSI data. To this end, an AE hyperspectral un-mixing network with the name of SSF-Net is proposed for fusing the spatial-spectral features. The network first extracts pseudo-endmember information from the HSI using a regional VCA algorithm. Then, a dual-branch feature fusion module incorporating a spatial-spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby im-proving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. Experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net out-performs state-of-the-art unmixing algorithms. |
|---|---|
| AbstractList | In recent years, deep learning has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on an autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in hyperspectral image (HSI) data. To this end, an AE HU network with the name of SSF-Net is proposed for fusing the spatial–spectral features. The network first extracts pseudoendmember information from the HSI using a regional vertex component analysis algorithm. Then, a dual-branch feature fusion module incorporating a spatial–spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby improving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial–spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. The experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net outperforms state-of-the-art unmixing algorithms. In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities. Particularly, the unsupervised unmixing method based on autoencoder (AE) has become a research hotspot. Most of the current AE unmixing networks mainly focus on information about pixels and their neighborhoods in images. However, they make insufficient use of information about spatial heterogeneity and spectral differences of endmembers in HSI data. To this end, an AE hyperspectral un-mixing network with the name of SSF-Net is proposed for fusing the spatial-spectral features. The network first extracts pseudo-endmember information from the HSI using a regional VCA algorithm. Then, a dual-branch feature fusion module incorporating a spatial-spectral attention mechanism is constructed to make full use of the information in the HSI data, thereby im-proving the network's unmixing performance. It is worth stating that SSF-Net can fuse spatial spectral information and utilize different attention maps to obtain more significant spectral difference information and more discriminative spatial difference information about the scene. Experimental results on synthetic and real datasets demonstrate that the proposed SSF-Net out-performs state-of-the-art unmixing algorithms. |
| Author | Song, Dongmei Yao, Huizheng Gao, Han Zhang, Jie Wang, Bin |
| Author_xml | – sequence: 1 givenname: Bin surname: Wang fullname: Wang, Bin organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China – sequence: 2 givenname: Huizheng surname: Yao fullname: Yao, Huizheng organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China – sequence: 3 givenname: Dongmei surname: Song fullname: Song, Dongmei organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China – sequence: 4 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China – sequence: 5 givenname: Han surname: Gao fullname: Gao, Han organization: College of Oceanography and Space Informatics, China University of Petrole -um (East China), Qingdao, China |
| BookMark | eNqFkU9P3DAQxS1EJRbKJ4BDJM5Z_H9tbivULYtQKxG4Yjn2ZOVtiFPHq5Zv3yyhFeLS00ij-b2Zee8YHXaxA4TOCJ4TgvXlbfWwvK_mFFM2Z4wuBNcHaEaJICURTByiGdFMl4RjfoSOh2GLsaQLzWboqapW5TfIV8WyqHqbg23LqgeXk22LFdi8SzAU6y7DJtkMvljucoTORQ-pGLlfMf0ompiKm5ce0vCXfOyew-_QbT6jT41tBzh9qyfocfXl4fqmvPv-dX29vCsdxzqXSlFaeyUtBcIbVnPKrdJSCA9uAVhLhXmtayLG1yw4byUH5TRxvPFCgmQnaD3p-mi3pk_h2aYXE20wr42YNsamHFwLBrzGnFHrpRhxsEo6UYOSUhPSOMCj1sWk1af4cwdDNtu4S914vqEaS6GJ5vspNk25FIchQfNvK8FmH4qZQjH7UMxbKCOlP1Au5NH12I22hfY_7PnEBgB4t41qIaRifwB71p05 |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs17172968 crossref_primary_10_1109_JSTARS_2025_3542228 crossref_primary_10_1109_TIP_2025_3577394 crossref_primary_10_1007_s12145_025_01779_z crossref_primary_10_1109_TGRS_2025_3544037 crossref_primary_10_54392_irjmt2416 crossref_primary_10_1109_TGRS_2025_3608084 crossref_primary_10_3390_rs17010094 crossref_primary_10_1016_j_cosrev_2025_100788 |
| Cites_doi | 10.1109/tgrs.2016.2633279 10.1109/tgrs.2011.2163941 10.1109/tgrs.2022.3155794 10.1109/mgrs.2019.2890997 10.1109/tgrs.2018.2890633 10.1109/tnnls.2021.3082289 10.1109/tgrs.2017.2724944 10.1109/tgrs.2008.2002882 10.1109/tgrs.2016.2551327 10.1109/tgrs.2015.2441954 10.1109/tgrs.2006.888466 10.1109/jstars.2014.2320576 10.1109/igarss.2016.7730834 10.1109/igarss.2019.8898410 10.1117/12.366289 10.1109/tip.2014.2363423 10.1109/tsp.2009.2025797 10.1109/79.974727 10.1109/tgrs.2011.2140119 10.1109/mgrs.2021.3071158 10.1109/rast.2013.6581194 10.1109/tip.2010.2042993 10.1109/tgrs.2018.2868690 10.1109/icassp39728.2021.9414084 10.1109/tgrs.2005.844293 10.1109/tgrs.2021.3081177 10.1109/tgrs.2023.3236677 10.1109/36.934072 10.1109/tgrs.2018.2861992 10.1109/tgrs.2020.2992743 10.1109/jstars.2011.2181340 10.1109/tgrs.2022.3196057 10.1109/jstars.2012.2194696 10.1016/s0034-4257(98)00037-6 10.1109/jproc.2012.2196249 10.1109/tgrs.2018.2872888 10.1109/tgrs.2018.2856929 10.1109/access.2018.2818280 10.1002/9781119687788.ch13 10.1109/tgrs.2020.2982490 10.1109/tgrs.2021.3064958 10.1109/tgrs.2019.2919166 10.1109/lgrs.2014.2325874 10.1109/tcyb.2020.3028931 10.1109/36.911111 10.1109/tgrs.2022.3150970 10.1016/j.neucom.2017.11.052 10.1109/tgrs.2021.3094884 10.1109/whispers.2010.5594898 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2023.3327549 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_ed90432ad65c4fea86c5be866911fce0 10_1109_JSTARS_2023_3327549 10295568 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province grantid: U1906217; U22A20586 – fundername: Key Research and Development Program of Shandong Province grantid: 2019GGX10133 – fundername: National Natural Science Foundation of China grantid: 41701513; 61371189; 41772350 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2022MD015 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-8822bd86a2e14f3b424a89655dec7e096804b9b15275aecda64e8c91c4fd56e63 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001133505400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:46:32 EDT 2025 Fri Jul 25 10:41:07 EDT 2025 Sat Nov 29 04:51:19 EST 2025 Tue Nov 18 22:25:26 EST 2025 Wed Aug 27 02:37:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-8822bd86a2e14f3b424a89655dec7e096804b9b15275aecda64e8c91c4fd56e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2420-8012 0000-0003-2565-1013 0000-0002-0745-2056 0009-0007-9885-2672 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10295568 |
| PQID | 2906591940 |
| PQPubID | 75722 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ed90432ad65c4fea86c5be866911fce0 crossref_primary_10_1109_JSTARS_2023_3327549 ieee_primary_10295568 proquest_journals_2906591940 crossref_citationtrail_10_1109_JSTARS_2023_3327549 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 Xu (ref41) 2015 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref24 doi: 10.1109/tgrs.2016.2633279 – ident: ref20 doi: 10.1109/tgrs.2011.2163941 – ident: ref33 doi: 10.1109/tgrs.2022.3155794 – ident: ref44 doi: 10.1109/mgrs.2019.2890997 – ident: ref32 doi: 10.1109/tgrs.2018.2890633 – ident: ref35 doi: 10.1109/tnnls.2021.3082289 – ident: ref47 doi: 10.1109/tgrs.2017.2724944 – ident: ref21 doi: 10.1109/tgrs.2008.2002882 – ident: ref43 doi: 10.1109/tgrs.2016.2551327 – ident: ref5 doi: 10.1109/tgrs.2015.2441954 – ident: ref18 doi: 10.1109/tgrs.2006.888466 – ident: ref13 doi: 10.1109/jstars.2014.2320576 – ident: ref29 doi: 10.1109/igarss.2016.7730834 – ident: ref6 doi: 10.1109/igarss.2019.8898410 – ident: ref15 doi: 10.1117/12.366289 – ident: ref22 doi: 10.1109/tip.2014.2363423 – ident: ref17 doi: 10.1109/tsp.2009.2025797 – ident: ref8 doi: 10.1109/79.974727 – ident: ref42 doi: 10.1109/tgrs.2011.2140119 – ident: ref45 doi: 10.1109/mgrs.2021.3071158 – ident: ref12 doi: 10.1109/rast.2013.6581194 – ident: ref19 doi: 10.1109/tip.2010.2042993 – ident: ref31 doi: 10.1109/tgrs.2018.2868690 – ident: ref27 doi: 10.1109/icassp39728.2021.9414084 – ident: ref16 doi: 10.1109/tgrs.2005.844293 – ident: ref48 doi: 10.1109/tgrs.2021.3081177 – ident: ref39 doi: 10.1109/tgrs.2023.3236677 – ident: ref4 doi: 10.1109/36.934072 – ident: ref3 doi: 10.1109/tgrs.2018.2861992 – ident: ref36 doi: 10.1109/tgrs.2020.2992743 – ident: ref40 doi: 10.1109/jstars.2011.2181340 – ident: ref38 doi: 10.1109/tgrs.2022.3196057 – ident: ref1 doi: 10.1109/jstars.2012.2194696 – ident: ref10 doi: 10.1016/s0034-4257(98)00037-6 – ident: ref11 doi: 10.1109/jproc.2012.2196249 – ident: ref25 doi: 10.1109/tgrs.2018.2872888 – ident: ref30 doi: 10.1109/tgrs.2018.2856929 – ident: ref49 doi: 10.1109/access.2018.2818280 – ident: ref28 doi: 10.1002/9781119687788.ch13 – year: 2015 ident: ref41 article-title: Empirical evaluation of rectified activations in convolutional network – ident: ref26 doi: 10.1109/tgrs.2020.2982490 – ident: ref34 doi: 10.1109/tgrs.2021.3064958 – ident: ref23 doi: 10.1109/tgrs.2019.2919166 – ident: ref46 doi: 10.1109/lgrs.2014.2325874 – ident: ref7 doi: 10.1109/tcyb.2020.3028931 – ident: ref14 doi: 10.1109/36.911111 – ident: ref37 doi: 10.1109/tgrs.2022.3150970 – ident: ref2 doi: 10.1016/j.neucom.2017.11.052 – ident: ref50 doi: 10.1109/tgrs.2021.3094884 – ident: ref9 doi: 10.1109/whispers.2010.5594898 |
| SSID | ssj0062793 |
| Score | 2.3851192 |
| Snippet | In recent years, deep learning (DL) has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities.... In recent years, deep learning has received tremendous attention in the field of hyperspectral unmixing (HU) due to its powerful learning capabilities.... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Attention autoencoder (AE) Data models Decoding Deep learning deep learning (DL) Electromagnetic scattering Feature extraction feature fusion Heterogeneity Hyperspectral imaging hyperspectral unmixing (HU) Information processing Machine learning Patchiness Spatial heterogeneity Task analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA5SFLxIqxXXtpKDR6edySSZPG-ruNbLIq6F3mJ-DRR0W7az0t78H_wP_Ut8L5ktC4JevA4Jybx8Sd4Xku9j7CVCyEeRXCXBiUrGFipwymMip3A2AYgO-mw20c3n5vwcPm5ZfdGdsCIPXAJ3kiKQapyLWgXZJ2d0UD4ZrXGW9iFltl53sCFTZQ3W2EQ7agw1NZwgyKefFsdkFX7ctqJTJJ25tQ9luf7RX-WPRTnvNLNd9mhMEfm0dG2P3UvLx-zB-2zBe_uEfVksZtU8Da_5lJOhMALo14-f5CNPhxaccro1cmj-YSMEEfl0PVySYGVMKz4v9745Jqv8FEloeWtJNc-W3y5ucCfbZ2ezd5_fnlajT0IVkJ0NFSbJwkejnUiN7FsvhXQGtFIxhS4hRzG19ODJwFa5FKLTMpkADcYzKp10-5TtLC-X6Rnj3mHKZzDYTX5xGr0yundIOiA2yQc_YWITNRtGEXHysvhqM5mowZZQWwq1HUM9Ya_uKl0VDY2_F39Dw3FXlASw8weEhR1hYf8Fiwnbp8Hcak8Aia1N2OFmdO04W68tSd4raEDWz_9H2wfsIf6PLAc1h2xnWK3TEbsfvg8X16sXGai_AbJ67F8 priority: 102 providerName: Directory of Open Access Journals |
| Title | SSF-Net: A Spatial-Spectral Features Integrated Autoencoder Network for Hyperspectral Unmixing |
| URI | https://ieeexplore.ieee.org/document/10295568 https://www.proquest.com/docview/2906591940 https://doaj.org/article/ed90432ad65c4fea86c5be866911fce0 |
| Volume | 17 |
| WOSCitedRecordID | wos001133505400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoBRIXnkUslMoHjmTJw3Y8vW0rlnJZIZZKPWH5MZEqlV20zSL4951xslUlBBK3KLITJzPjmbE93yfEW1KhkGr0hQJfFyo1UIDXgQI5TdYEULfQZbKJdrGwFxfweSxWz7UwiJgPn-GUL_NeflrHLS-VkYXXwIhZe2Kvbc1QrLWbdg09tRm2kKFgzJgRYqgq4T3p-OzLcspM4dOmqVvNyJl33FBG6x_pVf6Yk7OjmT_-zyE-EY_GiFLOBhV4Ku7h6pl48DEz9v5-Lr4tl_Nigf2xnEnmHyZ9K5h0nlc4JAeAW0q45acdakSSs22_ZnTLhBu5GA6JS4ps5RllrENhJvc8X32__EVu70Cczz98PT0rRlKFIlIq1xcUUdchWeNrrFTXBFUrb8FonTC2SAmNLVWAwGy32mNM3ii0EaqouqQNmuaF2F-tV_hSyOApPrQ-kYfn8tQUtDWdpwwFUoUhhomod__YxRFxnIkvrlzOPEpwg2AcC8aNgpmId7edfgyAG_9ufsLCu23KaNn5BknFjcbnMAEjD9JINX0GemuiDmiNoZm-i1hOxAFL8s77BiFOxOFOF9xo2teO8fE1VKDKV3_p9lo8pCGqYaHmUOz3my2-Effjz_7yenOUs_6jrLs3KafqNA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdggOBlfA1RNsAPPJKSOLYb89YhSidGhOgm7QnLHxdpErSoS9H477mz02kSAom3KLITJ3fnu7N9vx9jr1CFfBTgCmmcKGSsTWGc8hjIKbQmY8TEdIlsYtK2zdmZ-TwUq6daGABIh89gTJdpLz-uwoaWytDChSHErJvslpJSlLlcazvxanxunTeRTUGoMQPIUFWaN6jl0y-LMXGFj-taTBRhZ15zRAmvfyBY-WNWTq5mdv8_B_mA7Q4xJZ9mJXjIbsDyEbvzIXH2_nrMvi4Ws6KF_i2fcmIgRo0riHae1jg4hYAbTLn50RY3IvLppl8RvmWENW_zMXGOsS2fY86aSzOp5-ny-_klOr49djp7f_JuXgy0CkXAZK4vMKYWPjbaCahkV3sppGuMVipCmACmNE0pvfHEd6schOi0hCaYKsguKg26fsJ2lqslPGXcO4wQGxfRx1OBavSq0Z3DHMXECnzwIya2_9iGAXOcqC--2ZR7lMZmwVgSjB0EM2Kvrzr9yJAb_25-SMK7akp42ekGSsUO5mchGsIexJEq_AxwjQ7KQ6M1zvVdgHLE9kiS196XhThiB1tdsINxX1hCyFemMrJ89pduL9nd-cmnY3t81H7cZ_dwuDIv2xywnX69gefsdvjZn1-sXyQN_g32ZOyG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSF-Net%3A+A+Spatial%E2%80%93Spectral+Features+Integrated+Autoencoder+Network+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Bin&rft.au=Yao%2C+Huizheng&rft.au=Song%2C+Dongmei&rft.au=Zhang%2C+Jie&rft.date=2024-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=1781&rft.epage=1794&rft_id=info:doi/10.1109%2FJSTARS.2023.3327549&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3327549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |