Recent Advances in Deep Learning for Channel Coding: A Survey

This paper provides a comprehensive survey of recent advances in deep learning (DL) techniques for channel coding problems. Inspired by the recent successes of DL in a variety of research domains, its applications to physical layer technologies have been extensively studied in recent years, and they...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE open journal of the Communications Society Ročník 5; s. 6443 - 6481
Hlavní autoři: Matsumine, Toshiki, Ochiai, Hideki
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2644-125X, 2644-125X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper provides a comprehensive survey of recent advances in deep learning (DL) techniques for channel coding problems. Inspired by the recent successes of DL in a variety of research domains, its applications to physical layer technologies have been extensively studied in recent years, and they are expected to be a potential breakthrough in supporting the emerging use cases of the next generation wireless communication systems such as 6G. In this paper, we focus exclusively on channel coding problems and review existing approaches that incorporate advanced DL techniques into code design and channel decoding. After briefly introducing the background of recent DL techniques, we categorize and summarize a variety of approaches, including model-free and model-based DL, for the design and decoding of modern error-correcting codes, such as low-density parity check (LDPC) codes and polar codes, to highlight their potential advantages and challenges. Finally, the paper concludes with a discussion of open issues and future research directions in channel coding.
AbstractList This paper provides a comprehensive survey of recent advances in deep learning (DL) techniques for channel coding problems. Inspired by the recent successes of DL in a variety of research domains, its applications to physical layer technologies have been extensively studied in recent years, and they are expected to be a potential breakthrough in supporting the emerging use cases of the next generation wireless communication systems such as 6G. In this paper, we focus exclusively on channel coding problems and review existing approaches that incorporate advanced DL techniques into code design and channel decoding. After briefly introducing the background of recent DL techniques, we categorize and summarize a variety of approaches, including model-free and model-based DL, for the design and decoding of modern error-correcting codes, such as low-density parity check (LDPC) codes and polar codes, to highlight their potential advantages and challenges. Finally, the paper concludes with a discussion of open issues and future research directions in channel coding.
Author Ochiai, Hideki
Matsumine, Toshiki
Author_xml – sequence: 1
  givenname: Toshiki
  orcidid: 0000-0001-9583-8129
  surname: Matsumine
  fullname: Matsumine, Toshiki
  email: toshiki.matsumine.jp@ieee.org
  organization: Institute of Advanced Sciences, Yokohama National University, Yokohama, Japan
– sequence: 2
  givenname: Hideki
  orcidid: 0000-0001-9303-5250
  surname: Ochiai
  fullname: Ochiai, Hideki
  organization: Graduate School of Engineering, Osaka University, Osaka, Japan
BookMark eNp9kU1rGzEQhkVJoPnwL2gPgp7taCSttCr0YDYfTXEwxCn0JmTtKJVxJUe7DuTfZ9NNIfSQ0wzDPC_DM8fkIOWEhHwCNgNg5mz5o1nerGaccTkTUnNm5AdyxJWUU-DVr4M3_Ucy6boNY4xXACDkEfl2ix5TT-fto0seOxoTPUfc0QW6kmK6pyEX2vx2KeGWNrkdRl_pnK725RGfTslhcNsOJ6_1hPy8vLhrvk8Xy6vrZr6YeslMP60rVFqB0JLXIrRaYWsgKERwnAuPwKp2vTYghAp8DSEED8bVyhnWKq9rcUKux9w2u43dlfjHlSebXbR_B7ncW1f66LdotWJeetUGB0qCqOt15YNnMgCySppqyPoyZu1Kfthj19tN3pc0nG8FQD3Y0xqGLTNu-ZK7rmCwPvaujzn1xcWtBWZf5NtRvn2Rb1_lD6z4j_138fvU55GKiPiG0MOzWC2eASxXj-E
CODEN IOJCAZ
CitedBy_id crossref_primary_10_1016_j_comcom_2025_108287
crossref_primary_10_3390_fi17040181
crossref_primary_10_1109_JETCAS_2025_3561330
Cites_doi 10.1109/ICC.1993.397441
10.1109/TAI.2021.3108129
10.1109/MC.2022.3148714
10.1109/72.80236
10.1109/MOCAST54814.2022.9837752
10.1109/LCOMM.2009.090428
10.1109/JSAC.2021.3078488
10.1561/2200000086
10.1109/ACCESS.2020.3015289
10.1109/26.768759
10.1109/ICASSP40776.2020.9054607
10.1587/transcom.2022CEI0002
10.1016/j.neucom.2016.12.038
10.1109/VTC2023-Fall60731.2023.10333739
10.1109/TIT.1967.1054010
10.1109/TCOMM.2022.3227280
10.1109/MVT.2019.2921208
10.1109/TIT.2018.2889667
10.1109/MSP.2017.2743240
10.1109/TCCN.2018.2881442
10.1109/TCOMM.2011.060911.100065
10.1109/ISIT50566.2022.9834589
10.1109/LCOMM.2021.3114118
10.1109/NORCHIP.2019.8906946
10.1109/ICC.2018.8422289
10.1145/3079856.3080246
10.3390/e23020171
10.3390/e22050496
10.1109/ACCESS.2021.3053486
10.1109/TCCN.2017.2758370
10.3115/v1/D14-1179
10.1109/OJCAS.2024.3363043
10.1109/JSAC.2019.2933969
10.1109/JIOT.2021.3103320
10.1109/LCOMM.2022.3207506
10.1006/jcss.1997.1504
10.1109/ICC.1999.765550
10.1109/TNN.2008.2005605
10.1109/ICC.2019.8761399
10.1109/TCSI.2016.2619324
10.1109/ACCESS.2019.2937588
10.1109/TIT.2006.874390
10.1109/LCOMM.2020.2974199
10.1109/COMST.2023.3249835
10.1109/CC.2017.8233654
10.1016/j.aiopen.2021.01.001
10.1007/978-981-19-7784-8_10
10.1109/COMST.2023.3326399
10.1109/ACSSC.2018.8645128
10.1109/INFCOMW.2019.8845185
10.1109/WCSP.2018.8555891
10.1109/ISTC49272.2021.9594227
10.1109/ICC40277.2020.9148786
10.1109/TCOMM.2023.3343387
10.1109/COMST.2023.3333342
10.1109/ISIT.2019.8849215
10.1109/LCOMM.2024.3404110
10.1109/NORTHC.1995.485019
10.1038/nature14236
10.1109/LCOMM.2017.2787646
10.1109/TPAMI.2022.3152247
10.1109/LCOMM.2023.3341081
10.1109/ALLERTON.2016.7852251
10.1145/3381831
10.1109/ISIT.2019.8849710
10.1109/TSP.2020.3023582
10.1109/JPROC.2021.3061701
10.1109/TCOMM.2020.3001162
10.1103/PhysRevA.107.010101
10.1109/TCOMM.2023.3341838
10.1109/CVPR.2015.7298594
10.1007/978-3-030-32236-6_51
10.1109/26.957394
10.1109/MWC.001.1900333
10.1109/ISIT.2016.7541293
10.1103/PhysRevA.98.012324
10.1109/SPAWC.2018.8445986
10.1109/LWC.2020.2994770
10.1109/ISIT.2007.4557244
10.1109/JETCAS.2020.3000103
10.1109/LCOMM.2018.2850772
10.1109/MWC.008.2200157
10.1109/ACCESS.2020.3010896
10.1109/IEEECONF56349.2022.10051944
10.1145/3578938
10.1109/LCOMM.2019.2901469
10.1109/TIT.2013.2281372
10.1109/MNET.2019.1800418
10.1109/TVT.2020.3000345
10.1109/ITW.2018.8613331
10.1109/ITA.2018.8503199
10.1109/TSP.2017.2740204
10.1109/MNET.001.1900287
10.1109/TMAG.2010.2042041
10.1109/MCOM.001.2000208
10.1038/nature14539
10.1109/TIT.2023.3243869
10.1109/JPROC.2020.3004555
10.1109/SPAWC.2019.8815400
10.1007/BF02478259
10.1007/s11263-022-01611-x
10.1109/MWC.001.1900488
10.1109/TMAG.2020.3021405
10.1109/VTC2020-Fall49728.2020.9348707
10.3390/computers12080151
10.1016/0010-0277(93)90058-4
10.1109/TCOMM.2019.2955724
10.1109/MCOM.001.2000243
10.1162/neco.1997.9.8.1735
10.1109/TCCN.2019.2946358
10.1109/CVPR52688.2022.01210
10.1109/MWC.001.1900516
10.1109/IEEECONF44664.2019.9048899
10.1109/ISIT.2018.8437530
10.1109/OJCOMS.2024.3390000
10.1103/PhysRevLett.122.200501
10.1038/ncomms5213
10.1561/2000000039
10.1109/mcom.001.2300364
10.1109/ACCESS.2021.3124812
10.1109/ISTC.2012.6325210
10.1109/JIOT.2023.3302159
10.1109/TIT.2013.2272694
10.1109/ISTC57237.2023.10273515
10.1109/TCOMM.2023.3305523
10.1109/TWC.2024.3379244
10.1109/TCOMM.2018.2793887
10.1109/TCOMM.2023.3331532
10.1109/TCOMM.2021.3120274
10.1109/COMST.2019.2904897
10.1109/ACCESS.2020.2981745
10.1109/TSP.2020.3040897
10.1109/TWC.2023.3311204
10.1109/MBITS.2023.3322974
10.48550/ARXIV.1706.03762
10.1109/SiPS47522.2019.9020494
10.1109/ISIT57864.2024.10619122
10.22331/q-2019-12-16-215
10.1109/ISIT44484.2020.9174337
10.1109/COMST.2022.3223224
10.1137/090752286
10.1109/GLOBECOM38437.2019.9014004
10.1109/MCOM.2019.1900093
10.1109/LWC.2024.3474570
10.1007/s10462-021-10088-y
10.1109/CISS.2017.7926071
10.1109/LCOMM.2019.2898944
10.1109/JSTSP.2017.2784180
10.1587/transfun.2022TAP0002
10.1109/GCWkshps56602.2022.10008635
10.1109/26.705396
10.1109/VTC2023-Fall60731.2023.10333372
10.1109/ICCWorkshops49005.2020.9145237
10.1109/ICASSP39728.2021.9413808
10.1109/ISCAS.2006.1692544
10.1109/MWC.001.2000516
10.1103/PhysRevLett.119.030501
10.1109/LCOMM.2021.3113610
10.1109/ISIT.2018.8437581
10.1109/ICASSP40776.2020.9053222
10.1109/ICC.2016.7511111
10.1109/TCCN.2024.3382973
10.1109/TPAMI.2021.3069908
10.1109/JPROC.2020.2976703
10.1109/TCOMM.2020.2985678
10.1109/TIT.2017.2756959
10.1109/SiPS.2017.8109997
10.1109/LWC.2021.3125578
10.1109/JETCAS.2020.2995962
10.1145/3234150
10.1109/CVPR.2017.243
10.1109/MCOM.2019.1900271
10.1038/323533a0
10.1109/ITW55543.2023.10161656
10.1109/ACCESS.2023.3243065
10.1109/ICC45041.2023.10278711
10.1561/2400000003
10.1109/ISIT.2009.5205860
10.1109/TCOMM.2023.3296621
10.1109/TSP.2018.2868322
10.1609/aaai.v38i12.29230
10.1109/TCOMM.2019.2951403
10.1109/SiPS47522.2019.9020513
10.1109/COMST.2022.3205184
10.1109/COMST.2022.3221119
10.21236/ada164453
10.1109/ITW44776.2019.8989330
10.1109/sfcs.2002.1181948
10.1109/ACSSC.2018.8645388
10.1109/ACCESS.2019.2950766
10.1109/WCNC.2018.8377158
10.48550/ARXIV.1404.7828
10.1109/TCOMM.2020.3010964
10.1109/JPROC.2022.3173031
10.1109/GLOBECOM42002.2020.9348007
10.1109/ICECS.2018.8617843
10.1201/9781003162810-13
10.1109/TWC.2021.3054520
10.1109/TIT.2015.2422697
10.1109/ICCWorkshops57953.2023.10283769
10.1109/TIT.2005.858979
10.1145/3561048
10.1109/OJCOMS.2022.3210648
10.18653/v1/P19-1355
10.1109/TIT.1962.1057683
10.1162/neco_a_01199
10.1109/ALLERTON.2019.8919799
10.23919/JCC.2023.01.013
10.1109/TCCN.2023.3326330
10.1109/TNNLS.2020.2978386
10.1109/ISIT.2008.4594965
10.1109/TKDE.2009.191
10.5555/3104322.3104425
10.1109/SPAWC.2019.8815542
10.26421/QIC8.10-8
10.1109/OJCOMS.2020.3010270
10.1109/WCNCW49093.2021.9420004
10.1088/2058-9565/aab859
10.1109/COMST.2018.2882385
10.1109/TCOMM.2022.3185287
10.1109/TCCN.2024.3438379
10.1109/MCOM.001.1900411
10.1109/ACCESS.2023.3252907
10.1109/TCSI.2014.2304660
10.3390/e23010018
10.1109/TAI.2023.3315272
10.1109/ACCESS.2020.3031234
10.22331/q-2018-08-06-79
10.1049/cmu2.12669
10.1007/s10462-024-10862-8
10.1007/s10462-009-9124-7
10.1109/TC.2019.2948612
10.1109/SFCS.2002.1181950
10.1007/s11831-019-09344-w
10.3390/electronics8030292
10.1109/TCOMM.2020.3030057
10.1109/GCWkshps58843.2023.10465120
10.1088/2058-9565/aa955a
10.1109/IEEECONF51394.2020.9443504
10.1088/2058-9565/aa8072
10.1109/PIMRC.2019.8904878
10.1109/OJCOMS.2021.3057679
10.1109/18.910578
10.1109/GLOBECOM42002.2020.9348117
10.1016/j.aiopen.2022.10.001
10.1109/LCOMM.2011.101811.111480
10.1109/TVT.2024.3391836
10.1109/ISTC49272.2021.9594059
10.1109/MWC.001.1900476
10.1109/ISIT50566.2022.9834337
10.1109/TR.2021.3062045
10.6028/nist.ir.8312
10.1109/TCOMM.2009.07.070621
10.1109/ACSSC.2014.7094848
10.1109/CompComm.2018.8780605
10.1038/s43588-021-00084-1
10.1109/ACCESS.2018.2869374
10.1109/WCNC.2007.128
10.1109/COMST.2023.3243918
10.1109/ICASSP39728.2021.9414407
10.1109/MWC.2019.1800447
10.1109/ICEENG49683.2022.9781872
10.1007/s42484-020-00012-y
10.1109/ISIT.2017.8006751
10.1002/j.1538-7305.1948.tb01338.x
10.1109/JIOT.2021.3063686
10.1109/TCOMM.2023.3273413
10.1109/WCNC49053.2021.9417600
10.1109/ANTS.2018.8710159
10.1109/ACCESS.2020.2971526
10.1109/TGRS.2016.2584107
10.1109/ACCESS.2023.3269848
10.1109/CVPR.2016.90
10.1109/TCCN.2024.3384500
10.1109/SPAWC.2019.8815537
10.1109/ACSSC.2018.8645372
10.1109/JETCAS.2020.2992593
10.1109/26.486609
10.1109/JSAC.2022.3223408
10.1109/TCCN.2024.3349450
10.1109/OJCOMS.2023.3309268
10.1109/18.412683
10.48550/ARXIV.1609.02907
10.1109/TMAG.2023.3282804
10.1109/ICASSP48485.2024.10447608
10.1109/MBITS.2023.3322978
10.1109/LCOMM.2020.2997683
10.1109/COMST.2024.3363639
10.1016/j.patcog.2017.10.013
10.1109/TCCN.2022.3212438
10.1016/S0165-1684(00)00030-X
10.1109/ICCV.2015.123
10.1561/2000000118
10.1103/PhysRevLett.121.040502
10.1109/TIT.2024.3361388
10.1109/GLOBECOM38437.2019.9014156
10.1109/ACCESS.2019.2891951
10.1109/JSAC.2015.2504299
10.1109/LCOMM.2022.3197974
10.1587/transcom.E96.B.2807
10.1109/TKDE.2024.3361474
10.1109/TCOMM.2020.3017020
10.1109/TCOMM.2005.852852
10.1109/OJCOMS.2024.3386872
10.1109/ICCNC.2018.8390279
10.1145/1553374.1553380
10.1109/TVT.2023.3344127
10.1109/GLOCOM.2018.8647308
10.1162/089976600300015015
10.1137/1.9781611977653.ch106
10.1038/s41467-021-22539-9
10.1016/j.cosrev.2021.100379
10.1109/ISIT.2019.8849419
10.1007/s11265-020-01599-y
10.1109/ISIT.2006.261947
10.1109/OJCOMS.2021.3058353
10.1109/ICASSP.2019.8683778
10.21428/bf6fb269.1f033948
10.1109/MCOM.001.2000050
10.1109/ICESS.2019.8782524
10.1038/s42254-021-00348-9
10.1109/GLOCOM.2017.8254146
10.1109/GLOCOM.2017.8254811
10.1109/ACCESS.2019.2957648
10.1109/TIT.1974.1055186
10.1109/TNNLS.2021.3084827
10.1109/TIT.2009.2021379
10.1109/ALLERTON.2019.8919804
10.1186/s40537-016-0043-6
10.1109/ACCESS.2018.2870052
10.1109/ISIT57864.2024.10619466
10.1109/TPAMI.2021.3079209
10.1109/ACCESS.2024.3381967
10.1109/JSAIT.2021.3073834
10.1109/ICC42927.2021.9500904
10.1109/MWC.2019.1900027
10.1109/TCOMM.2012.081512.110872
10.1038/nature20101
10.1109/GLOBECOM46510.2021.9685277
10.1109/TKDE.2021.3070203
10.1109/ISIT.2016.7541295
10.1109/OJCOMS.2024.3425314
10.1109/TIT.2010.2080990
10.1109/TIT.2021.3129080
10.1109/JPROC.2007.895188
10.1109/ACCESS.2021.3140151
10.1109/MWC.101.2100269
10.1201/9781351251389-8
10.1109/FPL53798.2021.00053
10.1007/978-3-030-01424-7_27
10.1109/COMST.2023.3300664
10.1016/j.neucom.2022.06.111
10.1145/3301275.3308446
10.1109/MNET.012.2000770
10.1007/s10462-020-09838-1
10.1109/COMST.2022.3159185
10.1109/JPROC.2023.3247480
10.1103/RevModPhys.91.045002
10.1109/JSTSP.2017.2788405
10.1109/ICC.1999.767900
10.1109/VTC2020-Spring48590.2020.9128875
10.1103/RevModPhys.94.015004
10.1109/OJCOMS.2021.3071496
10.1109/COMST.2020.2967127
10.1109/ACCESS.2019.2909490
10.48550/arXiv.1503.02531
10.1109/SiPS.2018.8598384
10.1109/GCWkshps56602.2022.10008601
10.1109/TIT.2015.2410251
10.1109/JSAC.2020.3041392
10.1016/j.inffus.2019.12.012
10.1109/WCNC51071.2022.9771578
10.1145/3626235
10.1109/GLOBECOM38437.2019.9013364
10.48550/arXiv.1801.01078
10.1561/2000000115
10.1109/ICC45041.2023.10279074
10.1080/00107514.2014.964942
10.1145/3505244
10.1109/TGCN.2022.3222961
10.1109/TWC.2024.3374699
10.1109/TSP.2021.3071210
10.1109/ISIT44484.2020.9173971
10.1109/IEEECONF51394.2020.9443470
10.1109/ACCESS.2024.3412192
10.1038/s41928-019-0355-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOA
DOI 10.1109/OJCOMS.2024.3472094
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2644-125X
EndPage 6481
ExternalDocumentID oai_doaj_org_article_760c4c6dfa1641388b5cfc04f1e05495
10_1109_OJCOMS_2024_3472094
10702508
Genre orig-research
GrantInformation_xml – fundername: JSPS/KAKENHI
  grantid: JP21H04873
– fundername: MIC/FORWARD
  grantid: JPMI240710001
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c409t-85e6761374283fd76ed91f6ee1a223ce105dbb91336f2b1fffc19a86a90d6c783
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001339097000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2644-125X
IngestDate Fri Oct 03 12:51:47 EDT 2025
Mon Jun 30 15:15:39 EDT 2025
Sat Nov 29 05:54:17 EST 2025
Tue Nov 18 22:32:03 EST 2025
Wed Aug 27 02:18:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-85e6761374283fd76ed91f6ee1a223ce105dbb91336f2b1fffc19a86a90d6c783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9583-8129
0000-0001-9303-5250
OpenAccessLink https://doaj.org/article/760c4c6dfa1641388b5cfc04f1e05495
PQID 3118094771
PQPubID 5075783
PageCount 39
ParticipantIDs doaj_primary_oai_doaj_org_article_760c4c6dfa1641388b5cfc04f1e05495
crossref_primary_10_1109_OJCOMS_2024_3472094
proquest_journals_3118094771
crossref_citationtrail_10_1109_OJCOMS_2024_3472094
ieee_primary_10702508
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE open journal of the Communications Society
PublicationTitleAbbrev OJCOMS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref328
ref56
ref208
ref329
ref59
ref205
ref326
ref447
ref58
ref206
ref327
ref448
ref53
ref203
ref445
ref52
ref204
ref325
ref55
ref201
ref443
ref54
ref202
ref323
ref444
ref209
ref210
ref331
ref452
ref211
ref332
ref453
ref51
ref450
ref50
ref330
ref218
ref339
Bengio (ref370) 2013
ref45
ref219
ref48
ref458
ref47
ref338
ref459
ref42
ref335
ref456
ref41
ref215
ref336
ref457
ref44
ref212
ref333
ref454
ref43
ref213
Ho (ref173); 33
Maas (ref104); 30
ref49
Nachmani (ref334)
Hebbar (ref194) 2024
Hoydis (ref73) 2022
ref100
ref221
ref342
ref463
ref101
Teng (ref280) 2019
ref464
ref40
ref461
ref220
ref341
ref462
ref306
ref427
ref34
ref307
Settles (ref340) 1648
ref428
ref37
ref304
ref36
ref305
ref426
ref31
ref302
ref423
ref30
Chang (ref170) 2023
ref303
ref424
ref33
ref300
ref421
ref32
ref301
ref422
ref308
ref429
ref309
Mnih (ref222)
Gong (ref387) 2023
ref430
ref431
ref24
ref317
ref438
ref23
ref318
ref439
ref26
ref315
ref436
ref25
ref316
ref437
ref20
ref313
ref434
ref314
ref435
ref22
ref311
ref21
ref312
ref433
ref28
ref27
ref29
ref320
ref200
ref321
ref442
ref440
Qin (ref75) 2021
ref128
ref249
ref129
ref97
ref247
ref368
ref96
ref127
Krizhevsky (ref136)
ref248
ref369
ref99
ref124
ref245
ref98
ref125
ref246
ref367
Du (ref179) 2023
Nachmani (ref322) 2017
ref93
ref133
ref254
ref375
ref92
ref134
ref255
ref95
ref131
ref373
ref94
ref132
ref253
ref374
ref250
ref371
ref130
ref251
ref372
ref91
ref90
ref139
ref86
ref258
ref379
ref85
ref138
ref88
ref135
ref256
ref87
ref257
ref82
ref265
ref386
ref81
ref145
Nisioti (ref199) 2020
ref266
ref84
Dozat (ref109)
ref142
ref384
ref83
ref143
Blalock (ref362)
ref385
ref140
ref382
ref141
Satorras (ref310)
ref383
ref80
Nachmani (ref337) 2021
ref380
ref260
ref381
ref79
ref229
ref78
ref227
MacWilliams (ref264) 1977; 16
ref348
ref469
ref228
ref349
ref225
ref346
ref467
ref74
ref105
ref226
ref347
ref468
ref77
ref102
ref223
ref344
ref465
ref76
ref103
ref466
Veličković (ref157) 2017
ref71
ref232
ref353
ref70
ref233
ref354
Letafati (ref176) 2023
ref230
ref351
ref472
ref72
ref231
ref352
ref473
ref470
ref350
ref471
ref68
ref119
ref67
ref117
ref238
ref359
ref69
ref118
ref64
ref357
ref63
ref116
ref358
ref66
ref113
ref234
ref355
ref65
ref114
ref235
ref356
ref60
ref122
ref243
ref244
ref365
ref62
ref120
ref241
ref61
ref121
ref242
ref240
ref289
ref169
Wadayama (ref366) 2018
ref290
ref291
Yukiyoshi (ref455) 2022
ref298
ref178
ref299
ref296
ref297
ref294
ref174
ref295
Nagel (ref364) 2021
ref171
ref292
ref172
ref293
Radford (ref168)
Kingma (ref110) 2014
ref180
Zeiler (ref108) 2012
ref188
ref189
ref186
ref187
ref184
ref185
ref183
Li (ref115) 2017
ref148
ref269
ref149
ref146
ref267
ref388
ref147
ref389
ref390
Ruder (ref111) 2016
ref155
ref276
ref397
ref156
ref277
ref398
ref274
ref395
ref154
ref275
ref396
ref151
ref272
ref152
ref273
ref394
Hoffman (ref432) 2018
ref270
ref391
ref150
ref271
ref392
ref159
ref278
ref399
ref279
Van Huynh (ref182) 2023
ref166
ref287
ref288
ref164
ref285
ref165
ref286
Filler (ref377) 2007
ref283
ref284
ref281
ref282
Lillicrap (ref224) 2015
Dosovitskiy (ref167) 2020
Brown (ref160); 33
Park (ref261) 2023
Wu (ref446)
Zha (ref451) 2023
You (ref35) 2024
Collobert (ref39)
ref2
ref1
ref191
ref192
ref190
ref197
Kim (ref177)
ref198
ref195
ref196
ref193
Team (ref163) 2023
Zhao (ref376) 2016
Chen (ref425)
Choukroun (ref236); 35
Farhi (ref460) 2014
Letafati (ref181) 2023
Choukroun (ref237) 2022
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Han (ref360) 2015
Xu (ref153) 2018
Jarrahi (ref449) 2022
Kim (ref259)
Konda (ref214); 12
Madry (ref207) 2017
Sutton (ref112) 2018
Kwak (ref345) 2023
Touvron (ref161) 2023
Simonyan (ref137) 2014
Duchi (ref107) 2011; 12
Samad (ref46) 2020
Sutskever (ref106)
Hoefler (ref363) 2021; 22
Letafati (ref175) 2023
iOlius (ref89) 2023
Wang (ref441) 2021
Moradi (ref217) 2021
Crawshaw (ref123) 2020
Liu (ref361) 2018
Richardson (ref324) 2018; 20
Arıkan (ref216) 2019
Choukroun (ref262)
Hershey (ref319) 2014
Chowdhery (ref162) 2023; 24
Zhu (ref268) 2017
Bronstein (ref158) 2021
ref13
ref405
ref12
ref406
ref15
ref403
ref14
ref404
ref401
ref402
ref11
ref10
ref400
Rajatheva (ref16) 2020
ref17
ref409
ref19
ref407
ref18
ref408
ref416
ref417
ref414
ref415
Sutskever (ref144)
ref412
ref413
ref410
Raviv (ref343) 2023
ref411
Abadi (ref38)
ref418
ref419
ref420
Vanschoren (ref126) 2018
Kamassury (ref239) 2020
Bommasani (ref263) 2021
Raviv (ref252) 2020; 39
Mohri (ref378) 2018
Hebbar (ref393)
References_xml – ident: ref3
  doi: 10.1109/ICC.1993.397441
– ident: ref321
  doi: 10.1109/TAI.2021.3108129
– ident: ref445
  doi: 10.1109/MC.2022.3148714
– ident: ref359
  doi: 10.1109/72.80236
– ident: ref250
  doi: 10.1109/MOCAST54814.2022.9837752
– ident: ref197
  doi: 10.1109/LCOMM.2009.090428
– ident: ref304
  doi: 10.1109/JSAC.2021.3078488
– year: 2017
  ident: ref322
  article-title: RNN decoding of linear block codes
  publication-title: arXiv:1702.07560
– ident: ref117
  doi: 10.1561/2200000086
– ident: ref20
  doi: 10.1109/ACCESS.2020.3015289
– year: 2024
  ident: ref194
  article-title: DeepPolar: Inventing nonlinear large-kernel polar codes via deep learning
  publication-title: arXiv:2402.08864
– ident: ref317
  doi: 10.1109/26.768759
– ident: ref336
  doi: 10.1109/ICASSP40776.2020.9054607
– ident: ref68
  doi: 10.1587/transcom.2022CEI0002
– ident: ref95
  doi: 10.1016/j.neucom.2016.12.038
– ident: ref244
  doi: 10.1109/VTC2023-Fall60731.2023.10333739
– ident: ref421
  doi: 10.1109/TIT.1967.1054010
– ident: ref203
  doi: 10.1109/TCOMM.2022.3227280
– ident: ref7
  doi: 10.1109/MVT.2019.2921208
– ident: ref212
  doi: 10.1109/TIT.2018.2889667
– ident: ref114
  doi: 10.1109/MSP.2017.2743240
– ident: ref58
  doi: 10.1109/TCCN.2018.2881442
– ident: ref384
  doi: 10.1109/TCOMM.2011.060911.100065
– ident: ref420
  doi: 10.1109/ISIT50566.2022.9834589
– ident: ref192
  doi: 10.1109/LCOMM.2021.3114118
– ident: ref248
  doi: 10.1109/NORCHIP.2019.8906946
– ident: ref233
  doi: 10.1109/ICC.2018.8422289
– ident: ref40
  doi: 10.1145/3079856.3080246
– ident: ref398
  doi: 10.3390/e23020171
– ident: ref243
  doi: 10.3390/e22050496
– ident: ref28
  doi: 10.1109/ACCESS.2021.3053486
– ident: ref57
  doi: 10.1109/TCCN.2017.2758370
– ident: ref147
  doi: 10.3115/v1/D14-1179
– ident: ref277
  doi: 10.1109/OJCAS.2024.3363043
– ident: ref44
  doi: 10.1109/JSAC.2019.2933969
– start-page: 795
  volume-title: Proc. Mach. Learn. Syst.
  ident: ref446
  article-title: Sustainable AI: Environmental implications, challenges and opportunities
– ident: ref25
  doi: 10.1109/JIOT.2021.3103320
– ident: ref305
  doi: 10.1109/LCOMM.2022.3207506
– ident: ref346
  doi: 10.1006/jcss.1997.1504
– ident: ref55
  doi: 10.1109/ICC.1999.765550
– ident: ref152
  doi: 10.1109/TNN.2008.2005605
– year: 2018
  ident: ref432
  article-title: Metrics for explainable AI: Challenges and prospects
  publication-title: arXiv:1812.04608
– year: 2020
  ident: ref123
  article-title: Multi-task learning with deep neural networks: A survey
  publication-title: arXiv:2009.09796
– year: 2020
  ident: ref167
  article-title: An image is worth 16 × 16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– ident: ref331
  doi: 10.1109/ICC.2019.8761399
– ident: ref413
  doi: 10.1109/TCSI.2016.2619324
– ident: ref184
  doi: 10.1109/ACCESS.2019.2937588
– ident: ref219
  doi: 10.1109/TIT.2006.874390
– ident: ref285
  doi: 10.1109/LCOMM.2020.2974199
– ident: ref33
  doi: 10.1109/COMST.2023.3249835
– year: 2016
  ident: ref376
  article-title: Tensor ring decomposition
  publication-title: arXiv:1606.05535
– ident: ref42
  doi: 10.1109/CC.2017.8233654
– ident: ref154
  doi: 10.1016/j.aiopen.2021.01.001
– ident: ref116
  doi: 10.1007/978-981-19-7784-8_10
– ident: ref50
  doi: 10.1109/COMST.2023.3326399
– ident: ref338
  doi: 10.1109/ACSSC.2018.8645128
– volume: 33
  start-page: 1877
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref160
  article-title: Language models are few-shot learners
– ident: ref221
  doi: 10.1109/INFCOMW.2019.8845185
– ident: ref241
  doi: 10.1109/WCSP.2018.8555891
– ident: ref373
  doi: 10.1109/ISTC49272.2021.9594227
– year: 2018
  ident: ref361
  article-title: Rethinking the value of network pruning
  publication-title: arXiv:1810.05270
– ident: ref258
  doi: 10.1109/ICC40277.2020.9148786
– ident: ref374
  doi: 10.1109/TCOMM.2023.3343387
– ident: ref67
  doi: 10.1109/COMST.2023.3333342
– ident: ref286
  doi: 10.1109/ISIT.2019.8849215
– start-page: 129
  volume-title: Proc. Mach. Learn. Syst.
  ident: ref362
  article-title: What is the state of neural network pruning?
– ident: ref279
  doi: 10.1109/LCOMM.2024.3404110
– ident: ref266
  doi: 10.1109/NORTHC.1995.485019
– year: 2018
  ident: ref366
  article-title: Joint quantizer optimization based on neural quantizer for sum-product decoder
  publication-title: arXiv:1804.06002
– ident: ref113
  doi: 10.1038/nature14236
– ident: ref125
  doi: 10.1109/LCOMM.2017.2787646
– ident: ref166
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref299
  doi: 10.1109/LCOMM.2023.3341081
– ident: ref272
  doi: 10.1109/ALLERTON.2016.7852251
– ident: ref443
  doi: 10.1145/3381831
– ident: ref453
  doi: 10.1109/ISIT.2019.8849710
– ident: ref411
  doi: 10.1109/TSP.2020.3023582
– ident: ref24
  doi: 10.1109/JPROC.2021.3061701
– volume: 33
  start-page: 6840
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref173
  article-title: Denoising diffusion probabilistic models
– year: 2023
  ident: ref451
  article-title: Data-centric artificial intelligence: A survey
  publication-title: arXiv:2303.10158
– ident: ref284
  doi: 10.1109/TCOMM.2020.3001162
– ident: ref90
  doi: 10.1103/PhysRevA.107.010101
– ident: ref191
  doi: 10.1109/TCOMM.2023.3341838
– ident: ref138
  doi: 10.1109/CVPR.2015.7298594
– ident: ref434
  doi: 10.1007/978-3-030-32236-6_51
– ident: ref198
  doi: 10.1109/26.957394
– ident: ref17
  doi: 10.1109/MWC.001.1900333
– ident: ref209
  doi: 10.1109/ISIT.2016.7541293
– ident: ref472
  doi: 10.1103/PhysRevA.98.012324
– ident: ref391
  doi: 10.1109/SPAWC.2018.8445986
– ident: ref379
  doi: 10.1109/LWC.2020.2994770
– ident: ref348
  doi: 10.1109/ISIT.2007.4557244
– ident: ref47
  doi: 10.1109/JETCAS.2020.3000103
– ident: ref270
  doi: 10.1109/LCOMM.2018.2850772
– ident: ref169
  doi: 10.1109/MWC.008.2200157
– ident: ref19
  doi: 10.1109/ACCESS.2020.3010896
– ident: ref314
  doi: 10.1109/IEEECONF56349.2022.10051944
– start-page: 2329
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref334
  article-title: Hyper-graph-network decoders for block codes
– ident: ref448
  doi: 10.1145/3578938
– ident: ref429
  doi: 10.1109/LCOMM.2019.2901469
– ident: ref351
  doi: 10.1109/TIT.2013.2281372
– start-page: 265
  volume-title: Proc. 12th USENIX Symp. Oper. Syst. Design Implement. (OSDI)
  ident: ref38
  article-title: TensorFlow: A system for large-scale machine learning
– ident: ref6
  doi: 10.1109/MNET.2019.1800418
– ident: ref235
  doi: 10.1109/TVT.2020.3000345
– ident: ref300
  doi: 10.1109/ITW.2018.8613331
– ident: ref369
  doi: 10.1109/ITA.2018.8503199
– ident: ref414
  doi: 10.1109/TSP.2017.2740204
– ident: ref9
  doi: 10.1109/MNET.001.1900287
– ident: ref383
  doi: 10.1109/TMAG.2010.2042041
– ident: ref31
  doi: 10.1109/MCOM.001.2000208
– ident: ref94
  doi: 10.1038/nature14539
– ident: ref255
  doi: 10.1109/TIT.2023.3243869
– ident: ref121
  doi: 10.1109/JPROC.2020.3004555
– ident: ref418
  doi: 10.1109/SPAWC.2019.8815400
– ident: ref91
  doi: 10.1007/BF02478259
– year: 2021
  ident: ref337
  article-title: Autoregressive belief propagation for decoding block codes
  publication-title: arXiv:2103.11780
– volume: 35
  start-page: 38695
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref236
  article-title: Error correction code transformer
– ident: ref131
  doi: 10.1007/s11263-022-01611-x
– ident: ref23
  doi: 10.1109/MWC.001.1900488
– ident: ref256
  doi: 10.1109/TMAG.2020.3021405
– ident: ref260
  doi: 10.1109/VTC2020-Fall49728.2020.9348707
– ident: ref135
  doi: 10.3390/computers12080151
– ident: ref132
  doi: 10.1016/0010-0277(93)90058-4
– ident: ref339
  doi: 10.1109/TCOMM.2019.2955724
– ident: ref64
  doi: 10.1109/MCOM.001.2000243
– ident: ref145
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref407
  doi: 10.1109/TCCN.2019.2946358
– year: 2014
  ident: ref460
  article-title: A quantum approximate optimization algorithm
  publication-title: arXiv:1411.4028
– ident: ref371
  doi: 10.1109/CVPR52688.2022.01210
– ident: ref13
  doi: 10.1109/MWC.001.1900516
– ident: ref400
  doi: 10.1109/IEEECONF44664.2019.9048899
– ident: ref238
  doi: 10.1109/ISIT.2018.8437530
– ident: ref52
  doi: 10.1109/OJCOMS.2024.3390000
– ident: ref385
  doi: 10.1103/PhysRevLett.122.200501
– year: 2021
  ident: ref217
  article-title: A monte-carlo based construction of polarization-adjusted convolutional (PAC) codes
  publication-title: arXiv:2106.08118
– ident: ref459
  doi: 10.1038/ncomms5213
– volume: 22
  start-page: 1
  issue: 241
  year: 2021
  ident: ref363
  article-title: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
  publication-title: J. Mach. Learn. Res.
– ident: ref96
  doi: 10.1561/2000000039
– ident: ref180
  doi: 10.1109/mcom.001.2300364
– year: 2012
  ident: ref108
  article-title: ADADELTA: An adaptive learning rate method
  publication-title: arXiv:1212.5701
– ident: ref27
  doi: 10.1109/ACCESS.2021.3124812
– ident: ref423
  doi: 10.1109/ISTC.2012.6325210
– ident: ref81
  doi: 10.1109/JIOT.2023.3302159
– volume: 20
  start-page: 109
  issue: 180
  year: 2018
  ident: ref324
  article-title: Adjusted mim-sum decoder
  publication-title: Patent
– ident: ref200
  doi: 10.1109/TIT.2013.2272694
– ident: ref356
  doi: 10.1109/ISTC57237.2023.10273515
– start-page: 1771
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref425
  article-title: Cyclically equivariant neural decoders for cyclic codes
– ident: ref190
  doi: 10.1109/TCOMM.2023.3305523
– ident: ref178
  doi: 10.1109/TWC.2024.3379244
– ident: ref410
  doi: 10.1109/TCOMM.2018.2793887
– ident: ref208
  doi: 10.1109/TCOMM.2023.3331532
– ident: ref206
  doi: 10.1109/TCOMM.2021.3120274
– year: 2021
  ident: ref263
  article-title: On the opportunities and risks of foundation models
  publication-title: arXiv:2108.07258
– ident: ref43
  doi: 10.1109/COMST.2019.2904897
– ident: ref22
  doi: 10.1109/ACCESS.2020.2981745
– volume: 16
  volume-title: The Theory of Error-Correcting Codes
  year: 1977
  ident: ref264
– ident: ref281
  doi: 10.1109/TSP.2020.3040897
– ident: ref457
  doi: 10.1109/TWC.2023.3311204
– ident: ref36
  doi: 10.1109/MBITS.2023.3322974
– year: 2017
  ident: ref115
  article-title: Deep reinforcement learning: An overview
  publication-title: arXiv:1701.07274
– ident: ref159
  doi: 10.48550/ARXIV.1706.03762
– ident: ref45
  doi: 10.1109/SiPS47522.2019.9020494
– start-page: 28492
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref168
  article-title: Robust speech recognition via large-scale weak supervision
– year: 2022
  ident: ref73
  article-title: Sionna: An open-source library for next-generation physical layer research
  publication-title: arXiv:2203.11854
– ident: ref186
  doi: 10.1109/ISIT57864.2024.10619122
– year: 2023
  ident: ref261
  article-title: How to mask in error correction code Transformer: Systematic and double masking
  publication-title: arXiv:2308.08128
– ident: ref87
  doi: 10.22331/q-2019-12-16-215
– ident: ref289
  doi: 10.1109/ISIT44484.2020.9174337
– ident: ref77
  doi: 10.1109/COMST.2022.3223224
– year: 2014
  ident: ref110
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref375
  doi: 10.1137/090752286
– ident: ref205
  doi: 10.1109/GLOBECOM38437.2019.9014004
– year: 2021
  ident: ref364
  article-title: A white paper on neural network quantization
  publication-title: arXiv:2106.08295
– ident: ref62
  doi: 10.1109/MCOM.2019.1900093
– ident: ref174
  doi: 10.1109/LWC.2024.3474570
– ident: ref437
  doi: 10.1007/s10462-021-10088-y
– ident: ref229
  doi: 10.1109/CISS.2017.7926071
– year: 2023
  ident: ref170
  article-title: On the design fundamentals of diffusion models: A survey
  publication-title: arXiv:2306.04542
– ident: ref142
  doi: 10.1109/LCOMM.2019.2898944
– ident: ref59
  doi: 10.1109/JSTSP.2017.2784180
– ident: ref287
  doi: 10.1587/transfun.2022TAP0002
– year: 2020
  ident: ref199
  article-title: Design of capacity-approaching low-density parity-check codes using recurrent neural networks
  publication-title: arXiv:2001.01249
– ident: ref367
  doi: 10.1109/GCWkshps56602.2022.10008635
– ident: ref267
  doi: 10.1109/26.705396
– year: 2015
  ident: ref360
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv:1510.00149
– ident: ref276
  doi: 10.1109/VTC2023-Fall60731.2023.10333372
– ident: ref302
  doi: 10.1109/ICCWorkshops49005.2020.9145237
– ident: ref282
  doi: 10.1109/ICASSP39728.2021.9413808
– ident: ref325
  doi: 10.1109/ISCAS.2006.1692544
– ident: ref65
  doi: 10.1109/MWC.001.2000516
– ident: ref84
  doi: 10.1103/PhysRevLett.119.030501
– ident: ref323
  doi: 10.1109/LCOMM.2021.3113610
– ident: ref330
  doi: 10.1109/ISIT.2018.8437581
– ident: ref402
  doi: 10.1109/ICASSP40776.2020.9053222
– ident: ref372
  doi: 10.1109/ICC.2016.7511111
– ident: ref51
  doi: 10.1109/TCCN.2024.3382973
– ident: ref130
  doi: 10.1109/TPAMI.2021.3069908
– year: 2014
  ident: ref137
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref262
  article-title: A foundation model for error correction codes
– ident: ref21
  doi: 10.1109/JPROC.2020.2976703
– ident: ref298
  doi: 10.1109/TCOMM.2020.2985678
– ident: ref382
  doi: 10.1109/TIT.2017.2756959
– ident: ref328
  doi: 10.1109/SiPS.2017.8109997
– ident: ref315
  doi: 10.1109/LWC.2021.3125578
– ident: ref332
  doi: 10.1109/JETCAS.2020.2995962
– ident: ref97
  doi: 10.1145/3234150
– ident: ref140
  doi: 10.1109/CVPR.2017.243
– ident: ref10
  doi: 10.1109/MCOM.2019.1900271
– ident: ref92
  doi: 10.1038/323533a0
– year: 2021
  ident: ref441
  article-title: Applications of explainable AI for 6G: Technical aspects, use cases, and research challenges
  publication-title: arXiv:2112.04698
– ident: ref388
  doi: 10.1109/ITW55543.2023.10161656
– ident: ref82
  doi: 10.1109/ACCESS.2023.3243065
– year: 2020
  ident: ref239
  article-title: Iterative error decimation for syndrome-based neural network decoders
  publication-title: arXiv:2012.00089
– ident: ref311
  doi: 10.1109/ICC45041.2023.10278711
– ident: ref352
  doi: 10.1561/2400000003
– volume: 12
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref214
  article-title: Actor-critic algorithms
– ident: ref355
  doi: 10.1109/ISIT.2009.5205860
– ident: ref291
  doi: 10.1109/TCOMM.2023.3296621
– ident: ref151
  doi: 10.1109/TSP.2018.2868322
– ident: ref253
  doi: 10.1609/aaai.v38i12.29230
– ident: ref188
  doi: 10.1109/TCOMM.2019.2951403
– ident: ref396
  doi: 10.1109/SiPS47522.2019.9020513
– year: 2024
  ident: ref35
  article-title: Next generation advanced transceiver technologies for 6G
  publication-title: arXiv:2403.16458
– ident: ref428
  doi: 10.1109/COMST.2022.3205184
– ident: ref76
  doi: 10.1109/COMST.2022.3221119
– ident: ref101
  doi: 10.21236/ada164453
– ident: ref416
  doi: 10.1109/ITW44776.2019.8989330
– ident: ref349
  doi: 10.1109/sfcs.2002.1181948
– ident: ref292
  doi: 10.1109/ACSSC.2018.8645388
– ident: ref316
  doi: 10.1109/ACCESS.2019.2950766
– ident: ref353
  doi: 10.1109/WCNC.2018.8377158
– ident: ref93
  doi: 10.48550/ARXIV.1404.7828
– ident: ref419
  doi: 10.1109/TCOMM.2020.3010964
– ident: ref32
  doi: 10.1109/JPROC.2022.3173031
– ident: ref288
  doi: 10.1109/GLOBECOM42002.2020.9348007
– ident: ref247
  doi: 10.1109/ICECS.2018.8617843
– ident: ref365
  doi: 10.1201/9781003162810-13
– ident: ref143
  doi: 10.1109/TWC.2021.3054520
– ident: ref220
  doi: 10.1109/TIT.2015.2422697
– year: 2018
  ident: ref126
  article-title: Meta-learning: A survey
  publication-title: arXiv:1810.03548
– year: 2015
  ident: ref224
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv:1509.02971
– ident: ref225
  doi: 10.1109/ICCWorkshops57953.2023.10283769
– ident: ref350
  doi: 10.1109/TIT.2005.858979
– ident: ref438
  doi: 10.1145/3561048
– ident: ref66
  doi: 10.1109/OJCOMS.2022.3210648
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref107
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref444
  doi: 10.18653/v1/P19-1355
– ident: ref4
  doi: 10.1109/TIT.1962.1057683
– ident: ref148
  doi: 10.1162/neco_a_01199
– ident: ref245
  doi: 10.1109/ALLERTON.2019.8919799
– ident: ref406
  doi: 10.23919/JCC.2023.01.013
– year: 2023
  ident: ref387
  article-title: Graph neural networks for enhanced decoding of quantum LDPC codes
  publication-title: arXiv:2310.17758
– ident: ref404
  doi: 10.1109/TCCN.2023.3326330
– ident: ref155
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref327
  doi: 10.1109/ISIT.2008.4594965
– ident: ref118
  doi: 10.1109/TKDE.2009.191
– ident: ref103
  doi: 10.5555/3104322.3104425
– volume: 24
  start-page: 1
  issue: 240
  year: 2023
  ident: ref162
  article-title: PaLM: Scaling language modeling with pathways
  publication-title: J. Mach. Learn. Res.
– ident: ref392
  doi: 10.1109/SPAWC.2019.8815542
– year: 2023
  ident: ref181
  article-title: WiGenAI: The symphony of wireless and generative AI via diffusion models
  publication-title: arXiv:2310.07312
– ident: ref386
  doi: 10.26421/QIC8.10-8
– ident: ref11
  doi: 10.1109/OJCOMS.2020.3010270
– year: 2014
  ident: ref319
  article-title: Deep unfolding: Model-based inspiration of novel deep architectures
  publication-title: arXiv:1409.2574
– ident: ref246
  doi: 10.1109/WCNCW49093.2021.9420004
– ident: ref464
  doi: 10.1088/2058-9565/aab859
– ident: ref452
  doi: 10.1109/COMST.2018.2882385
– ident: ref454
  doi: 10.1109/TCOMM.2022.3185287
– ident: ref183
  doi: 10.1109/TCCN.2024.3438379
– ident: ref15
  doi: 10.1109/MCOM.001.1900411
– ident: ref306
  doi: 10.1109/ACCESS.2023.3252907
– ident: ref326
  doi: 10.1109/TCSI.2014.2304660
– ident: ref435
  doi: 10.3390/e23010018
– ident: ref447
  doi: 10.1109/TAI.2023.3315272
– ident: ref12
  doi: 10.1109/ACCESS.2020.3031234
– ident: ref458
  doi: 10.22331/q-2018-08-06-79
– year: 2016
  ident: ref111
  article-title: An overview of gradient descent optimization algorithms
  publication-title: arXiv:1609.04747
– start-page: 1097
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref136
  article-title: ImageNet classification with deep convolutional neural networks
– year: 2023
  ident: ref175
  article-title: Denoising diffusion probabilistic models for hardware-impaired communications
  publication-title: arXiv:2309.08568
– ident: ref49
  doi: 10.1049/cmu2.12669
– ident: ref335
  doi: 10.1007/s10462-024-10862-8
– year: 2017
  ident: ref268
  article-title: To prune, or not to prune: Exploring the efficacy of pruning for model compression
  publication-title: arXiv:1710.01878
– year: 2023
  ident: ref161
  article-title: LLaMA: Open and efficient foundation language models
  publication-title: arXiv:2302.13971
– year: 2022
  ident: ref237
  article-title: Denoising diffusion error correction codes
  publication-title: arXiv:2209.13533
– ident: ref342
  doi: 10.1007/s10462-009-9124-7
– ident: ref86
  doi: 10.1109/TC.2019.2948612
– ident: ref218
  doi: 10.1109/SFCS.2002.1181950
– ident: ref100
  doi: 10.1007/s11831-019-09344-w
– ident: ref98
  doi: 10.3390/electronics8030292
– ident: ref202
  doi: 10.1109/TCOMM.2020.3030057
– year: 2023
  ident: ref176
  article-title: Probabilistic constellation shaping with denoising diffusion probabilistic models: A novel approach
  publication-title: arXiv:2309.08688
– ident: ref240
  doi: 10.1109/GCWkshps58843.2023.10465120
– ident: ref85
  doi: 10.1088/2058-9565/aa955a
– ident: ref283
  doi: 10.1109/IEEECONF51394.2020.9443504
– ident: ref471
  doi: 10.1088/2058-9565/aa8072
– ident: ref394
  doi: 10.1109/PIMRC.2019.8904878
– ident: ref26
  doi: 10.1109/OJCOMS.2021.3057679
– year: 2013
  ident: ref370
  article-title: Estimating or propagating gradients through stochastic neurons for conditional computation
  publication-title: arXiv:1308.3432
– ident: ref196
  doi: 10.1109/18.910578
– ident: ref417
  doi: 10.1109/GLOBECOM42002.2020.9348117
– ident: ref164
  doi: 10.1016/j.aiopen.2022.10.001
– ident: ref412
  doi: 10.1109/LCOMM.2011.101811.111480
– ident: ref381
  doi: 10.1109/TVT.2024.3391836
– ident: ref189
  doi: 10.1109/ISTC49272.2021.9594059
– ident: ref14
  doi: 10.1109/MWC.001.1900476
– ident: ref426
  doi: 10.1109/ISIT50566.2022.9834337
– ident: ref122
  doi: 10.1109/TR.2021.3062045
– year: 2021
  ident: ref75
  article-title: Semantic communications: Principles and challenges
  publication-title: arXiv:2201.01389
– ident: ref431
  doi: 10.6028/nist.ir.8312
– ident: ref265
  doi: 10.1109/TCOMM.2009.07.070621
– ident: ref409
  doi: 10.1109/ACSSC.2014.7094848
– ident: ref390
  doi: 10.1109/CompComm.2018.8780605
– ident: ref469
  doi: 10.1038/s43588-021-00084-1
– year: 2017
  ident: ref157
  article-title: Graph attention networks
  publication-title: arXiv:1710.10903
– ident: ref278
  doi: 10.1109/ACCESS.2018.2869374
– start-page: 1928
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref222
  article-title: Asynchronous methods for deep reinforcement learning
– ident: ref380
  doi: 10.1109/WCNC.2007.128
– ident: ref34
  doi: 10.1109/COMST.2023.3243918
– year: 2020
  ident: ref16
  article-title: White paper on broadband connectivity in 6G
  publication-title: arXiv:2004.14247
– volume: 30
  start-page: 3
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref104
  article-title: Rectifier nonlinearities improve neural network acoustic models
– ident: ref309
  doi: 10.1109/ICASSP39728.2021.9414407
– ident: ref61
  doi: 10.1109/MWC.2019.1800447
– ident: ref296
  doi: 10.1109/ICEENG49683.2022.9781872
– ident: ref470
  doi: 10.1007/s42484-020-00012-y
– ident: ref274
  doi: 10.1109/ISIT.2017.8006751
– ident: ref1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref30
  doi: 10.1109/JIOT.2021.3063686
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref112
– ident: ref226
  doi: 10.1109/TCOMM.2023.3273413
– ident: ref228
  doi: 10.1109/WCNC49053.2021.9417600
– ident: ref234
  doi: 10.1109/ANTS.2018.8710159
– year: 2007
  ident: ref377
  article-title: Binary quantization using belief propagation with decimation over factor graphs of LDGM codes
  publication-title: arXiv:0710.0192
– ident: ref368
  doi: 10.1109/ACCESS.2020.2971526
– ident: ref141
  doi: 10.1109/TGRS.2016.2584107
– volume-title: White Paper on Machine Learning in 6G Wireless Communication Networks
  year: 2020
  ident: ref46
– ident: ref80
  doi: 10.1109/ACCESS.2023.3269848
– ident: ref139
  doi: 10.1109/CVPR.2016.90
– ident: ref70
  doi: 10.1109/TCCN.2024.3384500
– ident: ref242
  doi: 10.1109/SPAWC.2019.8815537
– ident: ref329
  doi: 10.1109/ACSSC.2018.8645372
– ident: ref293
  doi: 10.1109/JETCAS.2020.2992593
– year: 2023
  ident: ref89
  article-title: Decoding algorithms for surface codes
  publication-title: arXiv:2307.14989
– year: 2023
  ident: ref163
  article-title: Gemini: A family of highly capable multimodal models
  publication-title: arXiv:2312.11805
– ident: ref54
  doi: 10.1109/26.486609
– ident: ref79
  doi: 10.1109/JSAC.2022.3223408
– year: 1648
  ident: ref340
  article-title: Active learning literature survey
– ident: ref405
  doi: 10.1109/TCCN.2024.3349450
– ident: ref468
  doi: 10.1109/OJCOMS.2023.3309268
– ident: ref269
  doi: 10.1109/18.412683
– ident: ref156
  doi: 10.48550/ARXIV.1609.02907
– ident: ref257
  doi: 10.1109/TMAG.2023.3282804
– ident: ref344
  doi: 10.1109/ICASSP48485.2024.10447608
– ident: ref37
  doi: 10.1109/MBITS.2023.3322978
– ident: ref227
  doi: 10.1109/LCOMM.2020.2997683
– ident: ref72
  doi: 10.1109/COMST.2024.3363639
– ident: ref133
  doi: 10.1016/j.patcog.2017.10.013
– year: 2023
  ident: ref182
  article-title: Generative AI for physical layer communications: A survey
  publication-title: arXiv:2312.05594
– ident: ref303
  doi: 10.1109/TCCN.2022.3212438
– ident: ref56
  doi: 10.1016/S0165-1684(00)00030-X
– ident: ref105
  doi: 10.1109/ICCV.2015.123
– year: 2019
  ident: ref280
  article-title: Convolutional neural network-aided bit-flipping for belief propagation decoding of polar codes
  publication-title: arXiv:1911.01704
– ident: ref467
  doi: 10.1561/2000000118
– ident: ref473
  doi: 10.1103/PhysRevLett.121.040502
– ident: ref313
  doi: 10.1109/TIT.2024.3361388
– ident: ref231
  doi: 10.1109/GLOBECOM38437.2019.9014156
– ident: ref333
  doi: 10.1109/ACCESS.2019.2891951
– ident: ref408
  doi: 10.1109/JSAC.2015.2504299
– ident: ref294
  doi: 10.1109/LCOMM.2022.3197974
– volume-title: Foundations of Machine Learning
  year: 2018
  ident: ref378
– ident: ref223
  doi: 10.1587/transcom.E96.B.2807
– ident: ref172
  doi: 10.1109/TKDE.2024.3361474
– ident: ref63
  doi: 10.1109/TCOMM.2020.3017020
– ident: ref318
  doi: 10.1109/TCOMM.2005.852852
– ident: ref442
  doi: 10.1109/OJCOMS.2024.3386872
– ident: ref230
  doi: 10.1109/ICCNC.2018.8390279
– ident: ref129
  doi: 10.1145/1553374.1553380
– ident: ref307
  doi: 10.1109/TVT.2023.3344127
– ident: ref354
  doi: 10.1109/GLOCOM.2018.8647308
– ident: ref146
  doi: 10.1162/089976600300015015
– start-page: 685
  volume-title: Proc. Int. Conf. Artif. Intell. Statist. (AISTATS)
  ident: ref310
  article-title: Neural enhanced belief propagation on factor graphs
– ident: ref450
  doi: 10.1137/1.9781611977653.ch106
– ident: ref466
  doi: 10.1038/s41467-021-22539-9
– ident: ref99
  doi: 10.1016/j.cosrev.2021.100379
– ident: ref301
  doi: 10.1109/ISIT.2019.8849419
– ident: ref397
  doi: 10.1007/s11265-020-01599-y
– year: 2018
  ident: ref153
  article-title: How powerful are graph neural networks?
  publication-title: arXiv:1810.00826
– ident: ref347
  doi: 10.1109/ISIT.2006.261947
– ident: ref48
  doi: 10.1109/OJCOMS.2021.3058353
– ident: ref295
  doi: 10.1109/ICASSP.2019.8683778
– ident: ref358
  doi: 10.21428/bf6fb269.1f033948
– ident: ref440
  doi: 10.1109/MCOM.001.2000050
– ident: ref41
  doi: 10.1109/ICESS.2019.8782524
– start-page: 12823
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref393
  article-title: CRISP: Curriculum based sequential neural decoders for polar code family
– ident: ref462
  doi: 10.1038/s42254-021-00348-9
– ident: ref211
  doi: 10.1109/GLOCOM.2017.8254146
– ident: ref389
  doi: 10.1109/GLOCOM.2017.8254811
– year: 2022
  ident: ref455
  article-title: Quantum search algorithm for binary constant weight codes
  publication-title: arXiv:2211.04637
– ident: ref8
  doi: 10.1109/ACCESS.2019.2957648
– ident: ref424
  doi: 10.1109/TIT.1974.1055186
– ident: ref134
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref5
  doi: 10.1109/TIT.2009.2021379
– ident: ref187
  doi: 10.1109/ALLERTON.2019.8919804
– ident: ref119
  doi: 10.1186/s40537-016-0043-6
– ident: ref433
  doi: 10.1109/ACCESS.2018.2870052
– ident: ref193
  doi: 10.1109/ISIT57864.2024.10619466
– ident: ref127
  doi: 10.1109/TPAMI.2021.3079209
– ident: ref83
  doi: 10.1109/ACCESS.2024.3381967
– ident: ref290
  doi: 10.1109/JSAIT.2021.3073834
– ident: ref399
  doi: 10.1109/ICC42927.2021.9500904
– ident: ref60
  doi: 10.1109/MWC.2019.1900027
– ident: ref201
  doi: 10.1109/TCOMM.2012.081512.110872
– start-page: 2013
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref109
  article-title: Incorporating Nesterov momentum into adam
– ident: ref415
  doi: 10.1038/nature20101
– year: 2019
  ident: ref216
  article-title: From sequential decoding to channel polarization and back again
  publication-title: arXiv:1908.09594
– ident: ref403
  doi: 10.1109/GLOBECOM46510.2021.9685277
– ident: ref124
  doi: 10.1109/TKDE.2021.3070203
– ident: ref210
  doi: 10.1109/ISIT.2016.7541295
– ident: ref71
  doi: 10.1109/OJCOMS.2024.3425314
– ident: ref215
  doi: 10.1109/TIT.2010.2080990
– ident: ref254
  doi: 10.1109/TIT.2021.3129080
– ident: ref2
  doi: 10.1109/JPROC.2007.895188
– ident: ref401
  doi: 10.1109/ACCESS.2021.3140151
– ident: ref78
  doi: 10.1109/MWC.101.2100269
– ident: ref271
  doi: 10.1201/9781351251389-8
– ident: ref249
  doi: 10.1109/FPL53798.2021.00053
– ident: ref120
  doi: 10.1007/978-3-030-01424-7_27
– ident: ref69
  doi: 10.1109/COMST.2023.3300664
– ident: ref102
  doi: 10.1016/j.neucom.2022.06.111
– ident: ref439
  doi: 10.1145/3301275.3308446
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS) Workshop Big Learn.
  ident: ref39
  article-title: Torch7: A Matlab-like environment for machine learning
– ident: ref456
  doi: 10.1109/MNET.012.2000770
– ident: ref150
  doi: 10.1007/s10462-020-09838-1
– ident: ref427
  doi: 10.1109/COMST.2022.3159185
– ident: ref320
  doi: 10.1109/JPROC.2023.3247480
– year: 2017
  ident: ref207
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: arXiv:1706.06083
– ident: ref88
  doi: 10.1103/RevModPhys.91.045002
– start-page: 1
  volume-title: Proc. 26th Int. ITG Workshop Smart Antennas 13th Conf. Sys., Commun., Coding (WSA SCC)
  ident: ref177
  article-title: Learning end-to-end channel coding with diffusion models
– volume: 39
  start-page: 79
  issue: 1
  year: 2020
  ident: ref252
  article-title: perm2vec: Graph permutation selection for decoding of error correction codes using self-attention
  publication-title: IEEE J. Sel. Areas Commun.
– ident: ref273
  doi: 10.1109/JSTSP.2017.2788405
– ident: ref422
  doi: 10.1109/ICC.1999.767900
– start-page: 1139
  volume-title: Proc. Int. Conf. Mach. Learn. (ICML)
  ident: ref106
  article-title: On the importance of initialization and momentum in deep learning
– ident: ref395
  doi: 10.1109/VTC2020-Spring48590.2020.9128875
– ident: ref461
  doi: 10.1103/RevModPhys.94.015004
– ident: ref29
  doi: 10.1109/OJCOMS.2021.3071496
– ident: ref213
  doi: 10.1109/COMST.2020.2967127
– ident: ref465
  doi: 10.1109/ACCESS.2019.2909490
– ident: ref357
  doi: 10.48550/arXiv.1503.02531
– ident: ref275
  doi: 10.1109/SiPS.2018.8598384
– ident: ref185
  doi: 10.1109/GCWkshps56602.2022.10008601
– ident: ref204
  doi: 10.1109/TIT.2015.2410251
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref259
  article-title: Communication algorithms via deep learning
– ident: ref308
  doi: 10.1109/JSAC.2020.3041392
– ident: ref436
  doi: 10.1016/j.inffus.2019.12.012
– year: 2022
  ident: ref449
  article-title: The principles of data-centric AI (DCAI)
  publication-title: arXiv:2211.14611
– year: 2023
  ident: ref179
  article-title: Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization
  publication-title: arXiv:2308.05384
– ident: ref195
  doi: 10.1109/WCNC51071.2022.9771578
– ident: ref171
  doi: 10.1145/3626235
– ident: ref297
  doi: 10.1109/GLOBECOM38437.2019.9013364
– ident: ref149
  doi: 10.48550/arXiv.1801.01078
– ident: ref128
  doi: 10.1561/2000000115
– ident: ref312
  doi: 10.1109/ICC45041.2023.10279074
– ident: ref463
  doi: 10.1080/00107514.2014.964942
– ident: ref165
  doi: 10.1145/3505244
– ident: ref232
  doi: 10.1109/TGCN.2022.3222961
– ident: ref430
  doi: 10.1109/TWC.2024.3374699
– start-page: 3104
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NeurIPS)
  ident: ref144
  article-title: Sequence to sequence learning with neural networks
– year: 2021
  ident: ref158
  article-title: Geometric deep learning: Grids, groups, graphs, geodesics, and gauges
  publication-title: arXiv:2104.13478
– ident: ref74
  doi: 10.1109/TSP.2021.3071210
– ident: ref341
  doi: 10.1109/ISIT44484.2020.9173971
– ident: ref251
  doi: 10.1109/IEEECONF51394.2020.9443470
– year: 2023
  ident: ref345
  article-title: Boosting learning for LDPC codes to improve the error-floor performance
  publication-title: arXiv:2310.07194
– ident: ref53
  doi: 10.1109/ACCESS.2024.3412192
– year: 2023
  ident: ref343
  article-title: CRC-aided learned ensembles of belief-propagation polar decoders
  publication-title: arXiv:2301.06060
– ident: ref18
  doi: 10.1038/s41928-019-0355-6
SSID ssj0002511134
Score 2.3128269
Snippet This paper provides a comprehensive survey of recent advances in deep learning (DL) techniques for channel coding problems. Inspired by the recent successes of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6443
SubjectTerms Channel coding
Codes
Coding
Communication systems
Decoding
Deep learning
deep learning (DL)
Error correcting codes
Error correction
Graphics processing units
low-density parity check (LDPC) codes
Machine learning
machine learning (ML)
neural network
Neural networks
Physical layer
polar codes
Reviews
Surveys
turbo codes
Wireless communication systems
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9s8aAHtVrxaSs5eHRrspuXD8HD82kppbaFVugtbGYnpVD2lfdR8L83yaaPSlHwtiwZNszs7Pwms_MbgA--pUBGyApTD5oUQVSmpZis-MaTaTqikHlmj_Txsbm4sKelWT33whBR_vmM9tJlruV3M1ylo7Lo4TqFbLMBG1qroVlrfaCSsLJoZGEWEtx-Ojmcnvw4izlgLfcaqWtu5R_RJ5P0l6kqDz7FOb7sP__Pnb2AZwVIsslg-S14RP1LeHqPXvAVfImYMIqxyVDnX7Crnn0jumGFVPWSRcTKUn9BT9dsOkth7DObsLPV_JZ-bcPP_e_n04OqjEuoMCZpy8qMSekYnXXiUAudVtRZERSRaCMGQIpIqvPexqRUhdqLEAIK2xrVWt4p1KZ5DZv9rKc3wFTwuh2jD6rzqTLrax4tiIjCY-CKj6C-U6PDwiWeRlpcu5xTcOsG3buke1d0P4KPa6GbgUrj38u_JvuslyYe7HwjKt4Vt3JacZSoutDGtE80xvgxBuQyCIpY1I5HsJ2Mde95g51GsHNnblecduGaRIdnpdbi7V_E3sGTtMXhCGYHNpfzFe3CY7xdXi3m7_P7-BtINdyY
  priority: 102
  providerName: IEEE
Title Recent Advances in Deep Learning for Channel Coding: A Survey
URI https://ieeexplore.ieee.org/document/10702508
https://www.proquest.com/docview/3118094771
https://doaj.org/article/760c4c6dfa1641388b5cfc04f1e05495
Volume 5
WOSCitedRecordID wos001339097000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2644-125X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511134
  issn: 2644-125X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2644-125X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511134
  issn: 2644-125X
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iLnQhPkYcHYcsXFpN2kwegotxVETUEVRwF5r0RgaGKvMCN367SRtlRNCNmy5KStp72txzkuZchPZNDg4kZYkNe9AYdTSROXixYjIDMisAXOUzey1ub-XTk7qbK_UV_gmr7YHrwB0JTiyzvHC5J_Y0k9J0rLOEOQqebajKvZQINSemwhgciDPNWLQZokQd9a96_Zt7LwhTdpgxkRLFvqWiyrE_llj5MS5XyeZiDa1Gloi79d2towUoN9DKnHfgJjrxhM8nDNytF_HHeFDiM4BXHB1Tn7GnozhsHihhiHsvIUcd4y6-n45m8NZAjxfnD73LJNZCSKxXYJNEdoALn3pFMEhzheBQKOo4AM19grfgaVJhjPKKk7vUUOecpSqXPFek4FbIbAstli8lbCPMnRF5xxrHCxOWXU1KPDzWWmqsI5w0UfoZFm2jUXioVzHUlWAgStex1CGWOsayiQ6-LnqtfTJ-b34a4v3VNJhcVyc89DpCr_-CvokaAa25_kRgdLKJWp_w6fhFjnUWvO4UE4Lu_Effu2g5PE89GdNCi5PRFPbQkp1NBuNRu3oZ_fHm_bxdbSn8APEs4PQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_aKlQf_Kx4tWoefHRrspvNR8GH82yper0KrdC3sMlOSqHslfso-N-bZNOjIhb6tiwZNszs7Pwms_MbgA-2QY-K8cLFHjTOPCtUgyFZsZVFVbWIPvHMjuVkos7O9M_crJ56YRAx_XyGu_Ey1fLbqVvGo7Lg4TKGbLUOD2rOS9q3a62OVCJaZhXP3EKM6k_H30fHRychCyz5bsVlSTX_K_4kmv48V-Wfj3GKMAdP77m3Z_AkQ0ky7G3_HNawewGPbxEMvoTPARUGMTLsK_1zctGRr4hXJNOqnpOAWUnsMOjwkoymMZDtkSE5Wc6u8fcW_DrYPx0dFnlgQuFCmrYoVI1ChvgsI4uab6XAVjMvEFkTUIDDgKVaa3VIS4UvLfPeO6YbJRpNW-Gkql7BRjft8DUQ4a1same9aG2szdqSBhs655h1ngo6gPJGjcZlNvE41OLSpKyCatPr3kTdm6z7AXxcCV31ZBp3L_8S7bNaGpmw042geJMdy0hBHXei9U1I_FillK2dd5R7hgGN6noAW9FYt57X22kAOzfmNtlt56aKhHiaS8m2_yP2HjYPT4_GZvxt8uMNPIrb7Q9kdmBjMVviW3jorhcX89m79G7-AeqA398
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Deep+Learning+for+Channel+Coding%3A+A+Survey&rft.jtitle=IEEE+open+journal+of+the+Communications+Society&rft.au=Matsumine%2C+Toshiki&rft.au=Ochiai%2C+Hideki&rft.date=2024&rft.issn=2644-125X&rft.eissn=2644-125X&rft.volume=5&rft.spage=6443&rft.epage=6481&rft_id=info:doi/10.1109%2FOJCOMS.2024.3472094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJCOMS_2024_3472094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-125X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-125X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-125X&client=summon