On the complexity of computing the k-restricted edge-connectivity of a graph

The k-restricted edge-connectivity of a graph G, denoted by λk(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least k vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been exte...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 662; pp. 31 - 39
Main Authors: Montejano, Luis Pedro, Sau, Ignasi
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2017
Elsevier
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The k-restricted edge-connectivity of a graph G, denoted by λk(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least k vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G). Very recently, in the parameterized complexity community the notion of good edge separation of a graph has been defined, which happens to be essentially the same as the k-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.
AbstractList The k-restricted edge-connectivity of a graph G, denoted by λ k (G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least k vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λ k (G). Very recently, in the parameterized complexity community the notion of good edge separation of a graph has been defined, which happens to be essentially the same as the k-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.
The k-restricted edge-connectivity of a graph G, denoted by λk(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least k vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G). Very recently, in the parameterized complexity community the notion of good edge separation of a graph has been defined, which happens to be essentially the same as the k-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.
The k-restricted edge-connectivity of a graph G, denoted by , is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least k vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing . Very recently, in the parameterized complexity community the notion of good edge separation of a graph has been defined, which happens to be essentially the same as the k-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.
Author Montejano, Luis Pedro
Sau, Ignasi
Author_xml – sequence: 1
  givenname: Luis Pedro
  surname: Montejano
  fullname: Montejano, Luis Pedro
  email: lpmontejano@gmail.com
  organization: Département de Mathématiques, Université de Montpellier, Montpellier, France
– sequence: 2
  givenname: Ignasi
  surname: Sau
  fullname: Sau, Ignasi
  email: ignasi.sau@lirmm.fr
  organization: AlGCo project team, CNRS, LIRMM, Montpellier, France
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01481786$$DView record in HAL
BookMark eNp9kE1LAzEQhoNUsK3-AG97FGTXJPuRLJ5E_IKCFz2H2STbpu4mNUmL_nujLR48mEtmmOcdmGeGJtZZjdA5wQXBpLlaF1GGgqayILTAuDlCU8JZm1PaVhM0xSWu8rJl9QmahbDG6dWsmaLFs83iSmfSjZtBf5j4mbn-p9tGY5c_s7fc6xC9kVGrTKulzqWzVstodgcesqWHzeoUHfcwBH12-Ofo9f7u5fYxXzw_PN3eLHJZ4TbmrAfoZAltx-peQtW0lCnC-oo1qqE8FbTsaAuYUcWBd4qVdUlUTzoKwGlXztHlfu8KBrHxZgT_KRwY8XizEIPx4ygwqThhvNmRRF_s6Y1379t0iRhNkHoYwGq3DYJwjjGt2qpOKNmj0rsQvO5_txMsvj2LtUiexbdnQahInlOG_clIEyEaZ6MHM_ybvN4ndXK1M9qLII22Uivjk12hnPkn_QV8e5mp
CitedBy_id crossref_primary_10_1007_s11227_022_04489_1
crossref_primary_10_1109_TR_2017_2779130
crossref_primary_10_1007_s11227_024_06352_x
crossref_primary_10_1016_j_amc_2023_128343
crossref_primary_10_1007_s11227_021_04129_0
crossref_primary_10_1016_j_tcs_2025_115064
crossref_primary_10_1016_j_tcs_2020_10_036
crossref_primary_10_1093_comjnl_bxab105
crossref_primary_10_1109_TR_2021_3089466
crossref_primary_10_1007_s10878_023_01098_3
Cites_doi 10.1016/0020-0190(88)90025-7
10.1016/0196-6774(86)90002-7
10.1016/j.jcss.2006.04.007
10.1016/0304-3975(76)90059-1
10.1145/263867.263872
10.1016/S1571-0661(04)81014-4
10.1016/0166-218X(85)90008-3
10.1016/0012-365X(92)00475-7
10.1016/S0012-365X(02)00385-0
10.1016/S0012-365X(96)00218-X
10.1016/j.disc.2005.04.020
10.1016/j.tcs.2005.10.007
10.1016/j.dam.2012.01.022
10.1016/j.disc.2009.10.014
10.1137/15M1032077
10.1137/120880240
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.tcs.2016.12.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 39
ExternalDocumentID oai:HAL:lirmm-01481786v1
10_1016_j_tcs_2016_12_006
S0304397516307125
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c409t-7faabc3a9b75fca46927d17f476d6287f423b29a072d8a8bd73531df1b2aa82b3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000392786500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Oct 14 20:32:27 EDT 2025
Sun Sep 28 09:15:26 EDT 2025
Tue Nov 18 22:43:16 EST 2025
Sat Nov 29 05:15:25 EST 2025
Fri Feb 23 02:30:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Good edge separation
Graph cut
k-Restricted edge-connectivity
Polynomial kernel
Parameterized complexity
FPT-algorithm
k-restricted edge-connectivity
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-7faabc3a9b75fca46927d17f476d6287f423b29a072d8a8bd73531df1b2aa82b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3101-6518
0000-0002-8981-9287
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-01481786
PQID 1880024945
PQPubID 23500
PageCount 9
ParticipantIDs hal_primary_oai_HAL_lirmm_01481786v1
proquest_miscellaneous_1880024945
crossref_primary_10_1016_j_tcs_2016_12_006
crossref_citationtrail_10_1016_j_tcs_2016_12_006
elsevier_sciencedirect_doi_10_1016_j_tcs_2016_12_006
PublicationCentury 2000
PublicationDate 2017-02-01
2017-02-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2017
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Stoer, Wagner (br0300) 1997; 44
Cygan, Fomin, Jansen, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk (br0070) 2014
Naor, Schulman, Srinivasan (br0270) 1995
Rai, Ramanujan, Saurabh (br0290) 2016; vol. 9644
Holtkamp (br0210) 2013
van Bevern, Feldmann, Sorge, Suchý (br0310) 2013; vol. 8165
Dyer, Frieze (br0150) 1986; 7
Garey, Johnson, Stockmeyer (br0200) 1976; 1
Bonsma, Ueffing, Volkmann (br0040) 2002; 256
Cygan, Kowalik, Pilipczuk (br0090) 2013
Yuan, Liu (br0320) 2010; 310
Balbuena, Carmona, Fàbrega, Fiol (br0010) 1997; 167
Marx, Pilipczuk (br0260) 2014; vol. 25
Cygan, Lokshtanov, Pilipczuk, Pilipczuk, Saurabh (br0100) 2014
Chen, Huang, Kanj, Xia (br0050) 2006; 72
Garey, Johnson (br0190) 1979
Esfahanian, Hakimi (br0160) 1988; 27
Kawarabayashi, Thorup (br0230) 2011
Diestel (br0110) 2005
Dyer, Frieze (br0140) 1985; 10
Downey, Fellows (br0130) 1999
Niedermeier (br0280) 2006
Downey, Estivill-Castro, Fellows, Prieto, Rosamond (br0120) 2003; 78
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0080) 2015
Fàbrega, Fiol (br0170) 1994; 127
Kim, Paul, Sau, Thilikos (br0240) 2015; vol. 43
Zhang, Yuan (br0330) 2005; 304
Flum, Grohe (br0180) 2006
Marx (br0250) 2006; 351
Berman, Karpinski (br0020) 2001; 8
Holtkamp, Meierling, Montejano (br0220) 2012; 160
Chitnis, Cygan, Hajiaghayi, Pilipczuk, Pilipczuk (br0060) 2016; 45
Bodlaender, Jansen, Kratsch (br0030) 2014; 28
Holtkamp (10.1016/j.tcs.2016.12.006_br0210) 2013
Niedermeier (10.1016/j.tcs.2016.12.006_br0280) 2006
Cygan (10.1016/j.tcs.2016.12.006_br0080) 2015
Garey (10.1016/j.tcs.2016.12.006_br0200) 1976; 1
Holtkamp (10.1016/j.tcs.2016.12.006_br0220) 2012; 160
Kim (10.1016/j.tcs.2016.12.006_br0240) 2015; vol. 43
Marx (10.1016/j.tcs.2016.12.006_br0260) 2014; vol. 25
Stoer (10.1016/j.tcs.2016.12.006_br0300) 1997; 44
Dyer (10.1016/j.tcs.2016.12.006_br0140) 1985; 10
Garey (10.1016/j.tcs.2016.12.006_br0190) 1979
Rai (10.1016/j.tcs.2016.12.006_br0290) 2016; vol. 9644
Yuan (10.1016/j.tcs.2016.12.006_br0320) 2010; 310
Berman (10.1016/j.tcs.2016.12.006_br0020) 2001; 8
Fàbrega (10.1016/j.tcs.2016.12.006_br0170) 1994; 127
van Bevern (10.1016/j.tcs.2016.12.006_br0310) 2013; vol. 8165
Esfahanian (10.1016/j.tcs.2016.12.006_br0160) 1988; 27
Bodlaender (10.1016/j.tcs.2016.12.006_br0030) 2014; 28
Downey (10.1016/j.tcs.2016.12.006_br0120) 2003; 78
Bonsma (10.1016/j.tcs.2016.12.006_br0040) 2002; 256
Naor (10.1016/j.tcs.2016.12.006_br0270) 1995
Chen (10.1016/j.tcs.2016.12.006_br0050) 2006; 72
Downey (10.1016/j.tcs.2016.12.006_br0130) 1999
Chitnis (10.1016/j.tcs.2016.12.006_br0060) 2016; 45
Diestel (10.1016/j.tcs.2016.12.006_br0110) 2005
Dyer (10.1016/j.tcs.2016.12.006_br0150) 1986; 7
Cygan (10.1016/j.tcs.2016.12.006_br0070)
Cygan (10.1016/j.tcs.2016.12.006_br0090)
Cygan (10.1016/j.tcs.2016.12.006_br0100) 2014
Balbuena (10.1016/j.tcs.2016.12.006_br0010) 1997; 167
Zhang (10.1016/j.tcs.2016.12.006_br0330) 2005; 304
Kawarabayashi (10.1016/j.tcs.2016.12.006_br0230) 2011
Flum (10.1016/j.tcs.2016.12.006_br0180) 2006
Marx (10.1016/j.tcs.2016.12.006_br0250) 2006; 351
References_xml – volume: 7
  start-page: 174
  year: 1986
  end-page: 184
  ident: br0150
  article-title: Planar 3DM is NP-complete
  publication-title: J. Algorithms
– start-page: 182
  year: 1995
  end-page: 191
  ident: br0270
  article-title: Splitters and near-optimal derandomization
  publication-title: Proc. of the 36th Annual Symposium on Foundations of Computer Science
– volume: 1
  start-page: 237
  year: 1976
  end-page: 267
  ident: br0200
  article-title: Some simplified NP-complete graph problems
  publication-title: Theoret. Comput. Sci.
– volume: vol. 25
  start-page: 542
  year: 2014
  end-page: 553
  ident: br0260
  article-title: Everything you always wanted to know about the parameterized complexity of subgraph isomorphism (but were afraid to ask)
  publication-title: Proc. of the 31st International Symposium on Theoretical Aspects of Computer Science
– volume: vol. 43
  start-page: 78
  year: 2015
  end-page: 89
  ident: br0240
  article-title: Parameterized algorithms for min-max multiway cut and list digraph homomorphism
  publication-title: Proc. of the 10th International Symposium on Parameterized and Exact Computation
– volume: 351
  start-page: 394
  year: 2006
  end-page: 406
  ident: br0250
  article-title: Parameterized graph separation problems
  publication-title: Theoret. Comput. Sci.
– year: 2006
  ident: br0280
  article-title: Invitation to Fixed-Parameter Algorithms
– volume: 304
  start-page: 128
  year: 2005
  end-page: 134
  ident: br0330
  article-title: A proof of an inequality concerning
  publication-title: Discrete Math.
– year: 2015
  ident: br0080
  article-title: Parameterized Algorithms
– volume: 160
  start-page: 1345
  year: 2012
  end-page: 1355
  ident: br0220
  article-title: -restricted edge-connectivity in triangle-free graphs
  publication-title: Discrete Appl. Math.
– volume: 167
  start-page: 85
  year: 1997
  end-page: 100
  ident: br0010
  article-title: Extraconnectivity of graphs with large minimum degree and girth
  publication-title: Discrete Math.
– volume: 28
  start-page: 277
  year: 2014
  end-page: 305
  ident: br0030
  article-title: Kernelization lower bounds by cross-composition
  publication-title: SIAM J. Discrete Math.
– volume: 78
  start-page: 209
  year: 2003
  end-page: 222
  ident: br0120
  article-title: Cutting up is hard to do: the parameterized complexity of
  publication-title: Electron. Notes Theor. Comput. Sci.
– volume: 127
  start-page: 163
  year: 1994
  end-page: 170
  ident: br0170
  article-title: Extraconnectivity of graphs with large girth
  publication-title: Discrete Math.
– volume: 256
  start-page: 431
  year: 2002
  end-page: 439
  ident: br0040
  article-title: Edge-cuts leaving components of order at least three
  publication-title: Discrete Math.
– volume: vol. 9644
  start-page: 672
  year: 2016
  end-page: 685
  ident: br0290
  article-title: A parameterized algorithm for mixed-cut
  publication-title: Proc. of the 12th Latin American Symposium on Theoretical Informatics
– volume: 44
  start-page: 585
  year: 1997
  end-page: 591
  ident: br0300
  article-title: A simple min-cut algorithm
  publication-title: J. ACM
– volume: 72
  start-page: 1346
  year: 2006
  end-page: 1367
  ident: br0050
  article-title: Strong computational lower bounds via parameterized complexity
  publication-title: J. Comput. System Sci.
– year: 2006
  ident: br0180
  article-title: Parameterized Complexity Theory
– year: 1979
  ident: br0190
  article-title: Computers and Intractability. A Guide to the Theory of NP-Completeness
– volume: 8
  year: 2001
  ident: br0020
  article-title: Approximation hardness of bounded degree MIN-CSP and MIN-BISECTION
  publication-title: Electron. Colloq. Comput. Complex.
– volume: 310
  start-page: 981
  year: 2010
  end-page: 987
  ident: br0320
  article-title: Sufficient conditions for
  publication-title: Discrete Math.
– year: 2014
  ident: br0070
  article-title: Open problems from school on parameterized algorithms and complexity
– year: 2013
  ident: br0090
  article-title: Open problems from update meeting on graph separation problems
– volume: 27
  start-page: 195
  year: 1988
  end-page: 199
  ident: br0160
  article-title: On computing a conditional edge-connectivity of a graph
  publication-title: Inform. Process. Lett.
– volume: 10
  start-page: 139
  year: 1985
  end-page: 153
  ident: br0140
  article-title: On the complexity of partitioning graphs into connected subgraphs
  publication-title: Discrete Appl. Math.
– year: 2005
  ident: br0110
  article-title: Graph Theory
– year: 1999
  ident: br0130
  article-title: Parameterized Complexity
– start-page: 323
  year: 2014
  end-page: 332
  ident: br0100
  article-title: Minimum bisection is fixed parameter tractable
  publication-title: Proc. of the 46th ACM Symposium on Theory of Computing
– start-page: 160
  year: 2011
  end-page: 169
  ident: br0230
  article-title: The minimum
  publication-title: Proc. of the 52nd Annual Symposium on Foundations of Computer Science
– volume: 45
  start-page: 1171
  year: 2016
  end-page: 1229
  ident: br0060
  article-title: Designing FPT algorithms for cut problems using randomized contractions
  publication-title: SIAM J. Comput.
– year: 2013
  ident: br0210
  article-title: Connectivity in graphs and digraphs. Maximizing vertex-, edge- and arc-connectivity with an emphasis on local connectivity properties
– volume: vol. 8165
  start-page: 76
  year: 2013
  end-page: 87
  ident: br0310
  article-title: On the parameterized complexity of computing graph bisections
  publication-title: Proc. of the 39th International Workshop on Graph-Theoretic Concepts in Computer Science
– volume: 27
  start-page: 195
  issue: 4
  year: 1988
  ident: 10.1016/j.tcs.2016.12.006_br0160
  article-title: On computing a conditional edge-connectivity of a graph
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(88)90025-7
– ident: 10.1016/j.tcs.2016.12.006_br0070
– volume: 7
  start-page: 174
  issue: 2
  year: 1986
  ident: 10.1016/j.tcs.2016.12.006_br0150
  article-title: Planar 3DM is NP-complete
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(86)90002-7
– volume: vol. 43
  start-page: 78
  year: 2015
  ident: 10.1016/j.tcs.2016.12.006_br0240
  article-title: Parameterized algorithms for min-max multiway cut and list digraph homomorphism
– volume: 72
  start-page: 1346
  issue: 8
  year: 2006
  ident: 10.1016/j.tcs.2016.12.006_br0050
  article-title: Strong computational lower bounds via parameterized complexity
  publication-title: J. Comput. System Sci.
  doi: 10.1016/j.jcss.2006.04.007
– year: 2006
  ident: 10.1016/j.tcs.2016.12.006_br0280
– volume: 1
  start-page: 237
  issue: 3
  year: 1976
  ident: 10.1016/j.tcs.2016.12.006_br0200
  article-title: Some simplified NP-complete graph problems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(76)90059-1
– volume: 44
  start-page: 585
  issue: 4
  year: 1997
  ident: 10.1016/j.tcs.2016.12.006_br0300
  article-title: A simple min-cut algorithm
  publication-title: J. ACM
  doi: 10.1145/263867.263872
– ident: 10.1016/j.tcs.2016.12.006_br0090
– volume: 78
  start-page: 209
  year: 2003
  ident: 10.1016/j.tcs.2016.12.006_br0120
  article-title: Cutting up is hard to do: the parameterized complexity of k-cut and related problems
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/S1571-0661(04)81014-4
– volume: vol. 9644
  start-page: 672
  year: 2016
  ident: 10.1016/j.tcs.2016.12.006_br0290
  article-title: A parameterized algorithm for mixed-cut
– volume: vol. 8165
  start-page: 76
  year: 2013
  ident: 10.1016/j.tcs.2016.12.006_br0310
  article-title: On the parameterized complexity of computing graph bisections
– volume: 8
  issue: 26
  year: 2001
  ident: 10.1016/j.tcs.2016.12.006_br0020
  article-title: Approximation hardness of bounded degree MIN-CSP and MIN-BISECTION
  publication-title: Electron. Colloq. Comput. Complex.
– volume: 10
  start-page: 139
  year: 1985
  ident: 10.1016/j.tcs.2016.12.006_br0140
  article-title: On the complexity of partitioning graphs into connected subgraphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(85)90008-3
– volume: 127
  start-page: 163
  year: 1994
  ident: 10.1016/j.tcs.2016.12.006_br0170
  article-title: Extraconnectivity of graphs with large girth
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(92)00475-7
– start-page: 323
  year: 2014
  ident: 10.1016/j.tcs.2016.12.006_br0100
  article-title: Minimum bisection is fixed parameter tractable
– volume: 256
  start-page: 431
  issue: 1
  year: 2002
  ident: 10.1016/j.tcs.2016.12.006_br0040
  article-title: Edge-cuts leaving components of order at least three
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(02)00385-0
– year: 2006
  ident: 10.1016/j.tcs.2016.12.006_br0180
– volume: 167
  start-page: 85
  year: 1997
  ident: 10.1016/j.tcs.2016.12.006_br0010
  article-title: Extraconnectivity of graphs with large minimum degree and girth
  publication-title: Discrete Math.
  doi: 10.1016/S0012-365X(96)00218-X
– year: 2005
  ident: 10.1016/j.tcs.2016.12.006_br0110
– volume: 304
  start-page: 128
  issue: 1–3
  year: 2005
  ident: 10.1016/j.tcs.2016.12.006_br0330
  article-title: A proof of an inequality concerning k-restricted edge-connectivity
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2005.04.020
– year: 1979
  ident: 10.1016/j.tcs.2016.12.006_br0190
– volume: vol. 25
  start-page: 542
  year: 2014
  ident: 10.1016/j.tcs.2016.12.006_br0260
  article-title: Everything you always wanted to know about the parameterized complexity of subgraph isomorphism (but were afraid to ask)
– volume: 351
  start-page: 394
  issue: 3
  year: 2006
  ident: 10.1016/j.tcs.2016.12.006_br0250
  article-title: Parameterized graph separation problems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2005.10.007
– volume: 160
  start-page: 1345
  issue: 9
  year: 2012
  ident: 10.1016/j.tcs.2016.12.006_br0220
  article-title: k-restricted edge-connectivity in triangle-free graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2012.01.022
– volume: 310
  start-page: 981
  year: 2010
  ident: 10.1016/j.tcs.2016.12.006_br0320
  article-title: Sufficient conditions for λk-optimality in triangle-free graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2009.10.014
– volume: 45
  start-page: 1171
  issue: 4
  year: 2016
  ident: 10.1016/j.tcs.2016.12.006_br0060
  article-title: Designing FPT algorithms for cut problems using randomized contractions
  publication-title: SIAM J. Comput.
  doi: 10.1137/15M1032077
– start-page: 160
  year: 2011
  ident: 10.1016/j.tcs.2016.12.006_br0230
  article-title: The minimum k-way cut of bounded size is fixed-parameter tractable
– volume: 28
  start-page: 277
  issue: 1
  year: 2014
  ident: 10.1016/j.tcs.2016.12.006_br0030
  article-title: Kernelization lower bounds by cross-composition
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880240
– year: 1999
  ident: 10.1016/j.tcs.2016.12.006_br0130
– year: 2015
  ident: 10.1016/j.tcs.2016.12.006_br0080
– year: 2013
  ident: 10.1016/j.tcs.2016.12.006_br0210
– start-page: 182
  year: 1995
  ident: 10.1016/j.tcs.2016.12.006_br0270
  article-title: Splitters and near-optimal derandomization
SSID ssj0000576
Score 2.2717352
Snippet The k-restricted edge-connectivity of a graph G, denoted by λk(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected...
The k-restricted edge-connectivity of a graph G, denoted by , is defined as the minimum size of an edge set whose removal leaves exactly two connected...
The k-restricted edge-connectivity of a graph G, denoted by λ k (G), is defined as the minimum size of an edge set whose removal leaves exactly two connected...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Algorithms
Combinatorial analysis
Communities
Complexity
Computation
FPT-algorithm
Good edge separation
Graph cut
Graph theory
Graphs
Invariants
k-Restricted edge-connectivity
Mathematics
Parameterized complexity
Polynomial kernel
Title On the complexity of computing the k-restricted edge-connectivity of a graph
URI https://dx.doi.org/10.1016/j.tcs.2016.12.006
https://www.proquest.com/docview/1880024945
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01481786
Volume 662
WOSCitedRecordID wos000392786500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdYxwM88DFAdHwoSBMPVEGJk9jJY4U6DVTaPXRS3yzbcaBlS7umnfrnc_6IO20wjQdeojZ1ksq_y9357nw_hI5IrFIMdh5e8UyGqUpEKAhRIRdKlIpgVZLKkE3Q0SifTotTR3TZGDoBWtf5dlss_yvUcA7A1ltn_wFuf1M4AZ8BdDgC7HC8F_BjW7hoasXV1lVcSEPe0G6N-hVqRg7QgNrd1AG1UOp6F-mYJMyWyR0ZxdwLlN_yKB0XRM8ZUA-b7nU154bOuzfczJreqSpXCx_G4Rujk37UvJldjzeADYt87YbbZ6VzKYXlO2l1KHEq1WpBp9etPbW9im5pahs0mH9eS900PSYmKBv9oSv2aMyOz4ZDNhlMJx-Xl6EmDNOJdceesof2Mc2KvIP2-18H0287M5xRm6h2f7dNaZvivhtP_ZtTsvdTV8feMNLG85g8Q0_ckiHoW6ifoweqPkBPWzqOwGnnA_T4u2_B27xAw3EdwNdgJwfBogq8HJjfrstBcEsO9HgeGDl4ic6OB5MvJ6GjzgglLNjXIa04FzLhhaBZJXlKCkzLmFYpJSWBRXIFXrTABY8oLnOei5ImoIzLKhaY8xyL5BXq1ItavUZBpfSaUnCJuUjLCBcZLqJUpglX4FunWRdF7dwx6frKa3qTc9YWEM4ZTDfT081izGC6u-iTv2Rpm6rcNThtAWFOqK23x0CU7rrsCMDzt9dd1E_6Q3Y-W11cMB1Gj2lOruIu-tCiy0Cx6mwZr9Vi0zDdqFD300yzw3uMeYMe7V6Wt6izXm3UO_RQXq1nzeq9k83fKr6bzA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+complexity+of+computing+the+k-restricted+edge-connectivity+of+a+graph&rft.jtitle=Theoretical+computer+science&rft.au=Montejano%2C+Luis+Pedro&rft.au=Sau%2C+Ignasi&rft.date=2017-02-01&rft.issn=0304-3975&rft.volume=662&rft.spage=31&rft.epage=39&rft_id=info:doi/10.1016%2Fj.tcs.2016.12.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon