Research on A Global Path-Planning Algorithm for Unmanned Arial Vehicle Swarm in Three-Dimensional Space Based on Theta–Artificial Potential Field Method

The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) Jg. 8; H. 4; S. 125
Hauptverfasser: Zhao, Wen, Li, Liqiao, Wang, Yingqi, Zhan, Hanwen, Fu, Yiqi, Song, Yunfei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.04.2024
Schlagworte:
ISSN:2504-446X, 2504-446X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimensional environments. Additionally, the robustness of drone formations under the leader–follower mode is low, and effectively handling obstacles within the environment is challenging. To address these issues, this study proposes a virtual leader mode for drone formation flight and introduces a new Theta*–APF method for three-dimensional space drone swarm path planning. This algorithm optimizes the A* algorithm by transforming it into an omnidirectional forward Theta* algorithm. It also enhances the heuristic function by incorporating artificial potential field methods in a three-dimensional environment. Formation organization and control of UAVs is achieved using speed-control modes. Compared to the conventional A* algorithm, the Theta*–APF algorithm reduces the search time by about 60% and the trip length by 10%, in addition to the safer flight of the UAV formation, which is subject to artificial potential field repulsion by about 42%.
AbstractList The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimensional environments. Additionally, the robustness of drone formations under the leader–follower mode is low, and effectively handling obstacles within the environment is challenging. To address these issues, this study proposes a virtual leader mode for drone formation flight and introduces a new Theta*–APF method for three-dimensional space drone swarm path planning. This algorithm optimizes the A* algorithm by transforming it into an omnidirectional forward Theta* algorithm. It also enhances the heuristic function by incorporating artificial potential field methods in a three-dimensional environment. Formation organization and control of UAVs is achieved using speed-control modes. Compared to the conventional A* algorithm, the Theta*–APF algorithm reduces the search time by about 60% and the trip length by 10%, in addition to the safer flight of the UAV formation, which is subject to artificial potential field repulsion by about 42%.
Audience Academic
Author Zhan, Hanwen
Song, Yunfei
Li, Liqiao
Zhao, Wen
Wang, Yingqi
Fu, Yiqi
Author_xml – sequence: 1
  givenname: Wen
  surname: Zhao
  fullname: Zhao, Wen
– sequence: 2
  givenname: Liqiao
  surname: Li
  fullname: Li, Liqiao
– sequence: 3
  givenname: Yingqi
  surname: Wang
  fullname: Wang, Yingqi
– sequence: 4
  givenname: Hanwen
  surname: Zhan
  fullname: Zhan, Hanwen
– sequence: 5
  givenname: Yiqi
  surname: Fu
  fullname: Fu, Yiqi
– sequence: 6
  givenname: Yunfei
  surname: Song
  fullname: Song, Yunfei
BookMark eNptksFu1DAQhiNUJErpkbslzil27GTjYyi0VCpiRVvEzZrY441Xib3YrhA33oEjb8eT4GVBAoR88PjX9__yjP24OvLBY1U9ZfSMc0mfm1jOqaeCsqZ9UB03LRW1EN2Hoz_qR9VpSltKadOItpPsuPr2DhNC1BMJngzkcg4jzGQNearXM3jv_IYM8yZEl6eF2BDJnV-KjoYM0RX0PU5Oz0huPkFciPPkdoqI9Uu3oE8u-ILc7EAjeQGpmMIewAzfv3wdYnbW6X3IOmT0eV9dOJwNeYN5CuZJ9dDCnPD0135S3V28uj1_XV-_vbw6H65rLajM9cr2LVAuLKKRpqErSyWlQmu50j1lWoIdecewReTAkVrBiiSMbEY56n7kJ9XVIdcE2KpddAvEzyqAUz-FEDcKyl1Ll0ryjsveMgFjI8begrDawNh22hrk1pasZ4esXQwf7zFltQ33sUwhKU5F13PGKSvU2YHaQAl13oYcQZdlcHG6PKR1RR9WktN-JdjewA8GHUNKEa3SLkMu8y1GNytG1f4XqL9-QXHV_7h-N_d__geNU7oo
CitedBy_id crossref_primary_10_1002_rob_70000
crossref_primary_10_3390_drones9040263
crossref_primary_10_1002_cpe_70095
crossref_primary_10_3390_electronics13234598
crossref_primary_10_1145_3737280
crossref_primary_10_3390_app14156516
crossref_primary_10_3390_drones8120728
crossref_primary_10_1109_ACCESS_2025_3579863
crossref_primary_10_3390_drones9040306
crossref_primary_10_3390_aerospace11040312
crossref_primary_10_3390_app14083303
Cites_doi 10.1007/s11771-018-3944-z
10.1007/s10514-020-09947-4
10.1109/ITNG.2010.53
10.1142/S2301385023500140
10.1177/0278364914547786
10.1109/DASA51403.2020.9317271
10.1109/TVT.2020.2964847
10.1016/j.isatra.2019.08.018
10.1109/LRA.2021.3068679
10.3390/s21237898
10.1109/LARS.2006.334327
10.1080/02564602.2021.1894250
10.1016/j.ijleo.2017.12.169
10.1613/jair.2994
10.1109/LRA.2018.2890572
10.1023/A:1008814708459
10.3390/s21155250
10.1109/ROBOT.1998.680621
10.1109/CAC48633.2019.8996741
10.1109/ITNEC48623.2020.9084806
10.1109/ACCESS.2021.3064831
10.1109/IROS.2018.8593930
10.1109/ACCESS.2018.2817648
10.1145/2903150.2911712
10.1109/FSKD.2010.5569452
10.1007/s10846-012-9776-4
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones8040125
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection (via ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_936398f14ab24b8fa4fcdab56cfde3ff
A793087411
10_3390_drones8040125
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c409t-7f85a034feed9d207f09004cc97c801c9afb361e5ee3a3e0f419af4d92b9bc8b3
IEDL.DBID P5Z
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220327900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2504-446X
IngestDate Mon Nov 10 04:31:12 EST 2025
Sat Jul 26 00:13:04 EDT 2025
Sat Nov 29 10:43:03 EST 2025
Sat Nov 29 07:11:33 EST 2025
Tue Nov 18 20:58:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-7f85a034feed9d207f09004cc97c801c9afb361e5ee3a3e0f419af4d92b9bc8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3046831301?pq-origsite=%requestingapplication%
PQID 3046831301
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_936398f14ab24b8fa4fcdab56cfde3ff
proquest_journals_3046831301
gale_infotracacademiconefile_A793087411
crossref_citationtrail_10_3390_drones8040125
crossref_primary_10_3390_drones8040125
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_1) 2020; 69
Kothari (ref_7) 2013; 71
Chang (ref_4) 2021; 45
Luis (ref_18) 2019; 4
Shao (ref_2) 2020; 97
ref_14
Chen (ref_16) 2018; 25
ref_10
Mai (ref_23) 2021; 1884
ref_31
Lewis (ref_29) 1997; 4
Pan (ref_12) 2021; 69
Sharma (ref_11) 2022; 39
(ref_8) 2021; 6
ref_19
Chen (ref_15) 2020; 32
Jin (ref_6) 2021; 10
Daniel (ref_32) 2010; 39
Zhou (ref_22) 2018; 158
Desai (ref_27) 1998; Volume 4
ref_21
ref_20
ref_3
Fan (ref_24) 2010; Volume 4
Chen (ref_25) 2020; Volume 1
ref_28
ref_26
ref_9
Persson (ref_30) 2014; 33
Wu (ref_17) 2018; 6
ref_5
Liu (ref_13) 2023; 11
References_xml – volume: 25
  start-page: 2664
  year: 2018
  ident: ref_16
  article-title: Path Planning for UAVs Formation Reconfiguration Based on Dubins Trajectory
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-018-3944-z
– volume: 32
  start-page: 414
  year: 2020
  ident: ref_15
  article-title: Multi-UAV 3D Formation Path Planning Based on Improved Artificial Potential Field
  publication-title: J. Syst. Simul.
– ident: ref_9
– volume: 1884
  start-page: 012003
  year: 2021
  ident: ref_23
  article-title: An Improved Dynamic Window Approach for Local Trajectory Planning in the Environment with Dense Objects
  publication-title: Journal of Physics: Conference Series
– volume: 45
  start-page: 51
  year: 2021
  ident: ref_4
  article-title: Reinforcement Based Mobile Robot Path Planning with Improved Dynamic Window Approach in Unknown Environment
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-020-09947-4
– ident: ref_20
  doi: 10.1109/ITNG.2010.53
– volume: 11
  start-page: 317
  year: 2023
  ident: ref_13
  article-title: An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy
  publication-title: Unmanned Syst.
  doi: 10.1142/S2301385023500140
– ident: ref_3
– volume: 33
  start-page: 1683
  year: 2014
  ident: ref_30
  article-title: Sampling-Based A* Algorithm for Robot Path-Planning
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914547786
– ident: ref_10
  doi: 10.1109/DASA51403.2020.9317271
– volume: 69
  start-page: 2437
  year: 2020
  ident: ref_1
  article-title: Multi-UAV Formation Control Based on a Novel Back-Stepping Approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2964847
– volume: 97
  start-page: 415
  year: 2020
  ident: ref_2
  article-title: Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm Optimization
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.08.018
– volume: 6
  start-page: 4201
  year: 2021
  ident: ref_8
  article-title: Multi-Goal Path Planning Using Multiple Random Trees
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3068679
– ident: ref_26
  doi: 10.3390/s21237898
– ident: ref_28
  doi: 10.1109/LARS.2006.334327
– volume: 39
  start-page: 675
  year: 2022
  ident: ref_11
  article-title: Path Planning for Multiple Targets Interception by the Swarm of UAVs Based on Swarm Intelligence Algorithms: A Review
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2021.1894250
– volume: 158
  start-page: 639
  year: 2018
  ident: ref_22
  article-title: Tangent Navigated Robot Path Planning Strategy Using Particle Swarm Optimized Artificial Potential Field
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.12.169
– volume: 39
  start-page: 533
  year: 2010
  ident: ref_32
  article-title: Theta*: Any-Angle Path Planning on Grids
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2994
– ident: ref_31
– volume: 4
  start-page: 375
  year: 2019
  ident: ref_18
  article-title: Trajectory Generation for Multiagent Point-to-Point Transitions via Distributed Model Predictive Control
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2890572
– volume: 4
  start-page: 387
  year: 1997
  ident: ref_29
  article-title: High Precision Formation Control of Mobile Robots Using Virtual Structures
  publication-title: Auton. Robot.
  doi: 10.1023/A:1008814708459
– ident: ref_21
  doi: 10.3390/s21155250
– volume: Volume 4
  start-page: 2864
  year: 1998
  ident: ref_27
  article-title: Controlling Formations of Multiple Mobile Robots
  publication-title: Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
  doi: 10.1109/ROBOT.1998.680621
– ident: ref_5
  doi: 10.1109/CAC48633.2019.8996741
– volume: 69
  start-page: 1129
  year: 2021
  ident: ref_12
  article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: Volume 1
  start-page: 958
  year: 2020
  ident: ref_25
  article-title: An Improved A* Algorithm for UAV Path Planning Problems
  publication-title: Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)
  doi: 10.1109/ITNEC48623.2020.9084806
– volume: 10
  start-page: 28322
  year: 2021
  ident: ref_6
  article-title: Research on Dynamic Path Planning Based on the Fusion Algorithm of Improved Ant Colony Optimization and Rolling Window Method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064831
– ident: ref_14
  doi: 10.1109/IROS.2018.8593930
– volume: 6
  start-page: 34237
  year: 2018
  ident: ref_17
  article-title: Path Planning of UAVs Based on Collision Probability and Kalman Filter
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817648
– ident: ref_19
  doi: 10.1145/2903150.2911712
– volume: Volume 4
  start-page: 1901
  year: 2010
  ident: ref_24
  article-title: Improvement of Dijkstra’s Algorithm and Its Application in Route Planning
  publication-title: Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery
  doi: 10.1109/FSKD.2010.5569452
– volume: 71
  start-page: 231
  year: 2013
  ident: ref_7
  article-title: A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-012-9776-4
SSID ssj0002245691
Score 2.3158278
Snippet The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 125
SubjectTerms Algorithms
APF
Barriers
Control algorithms
Control systems
Drone aircraft
Drones
Formation flying
Heuristic
obstacle avoidance
Optimization
Path planning
Planning
Potential fields
Swarm intelligence
Theta global path planning
UAVs cluster
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxYELAgFioVQ-VHDBahw7G_u4ha64UK3UFvVm-W9oUTeLtgGuvAPHvh1PwkycrZZDxYVbZFnOaObz_CiTbxjbH0YXG-1F8hCFnmorfAhRSO8xGoGvppCGYRPt8bE5P7eLrVFf1BNW6IGL4g6swhhqQGofah0MeA0x-dBMI6SsAMj7Vq3dKqa-DKQumBhYWUg1Fdb1B2lN3PcGMStpLPZWEBq4-u_yyEOYmT9iD8f8kM-KXI_Zvdw9YTeb_ji-6viMF55-vsDkTWyGDvHZ1ecVFvoXS45pKD_rlp48KB6EAOOf8gUdx09--PWSX3b8FE2YxXui9i-0HPwEi-fMDzGoJXoLwqf3v3_-IkEKyQRfrHpqLcKnObW98Y_D8Omn7Gx-dPrugxinKoiItVwvWjCNr5QGjI42oe6gsnhTYrRtxHAVrYegpjI3OSuvcgVa4pJOtg42RBPUM7bToS6fMw5VbiE1ra3roG1QvgEdZZ18Ywzg4oS93ajZxZFynCZfXDksPcgq7i-rTNjr2-1fC9fGXRsPyWa3m4gie1hA4LgROO5fwJmwN2RxRxcZhYp-_B8B30OUWG6GnqsymHDJCdvdgMKNN_za0RdlozADkC_-hzQv2YMa06XSE7TLdvr1t_yK3Y_f-8vr9d4A7j--TAXA
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on A Global Path-Planning Algorithm for Unmanned Arial Vehicle Swarm in Three-Dimensional Space Based on Theta–Artificial Potential Field Method
URI https://www.proquest.com/docview/3046831301
https://doaj.org/article/936398f14ab24b8fa4fcdab56cfde3ff
Volume 8
WOSCitedRecordID wos001220327900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2504-446X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002245691
  issn: 2504-446X
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFhwCxUFY-ILhgNYmdjX1Cu9AVHLqKaIsKl8jPtlI3W7JpufIfOPLv-CXMJM4Ch3LhFk0sx9KM52FPvo-Q5x11sRSaOR0sExOhmDbGslRriEZBJ5PgOrKJYrGQx8eqjAdu69hWOfjEzlG7lcUz8l28wZMcPG76-uILQ9YovF2NFBo3yTaiJCB1Q5l_3pyxZHirp9IeWpNDdb_rGkTAl2C5KZJj_xGKOsT-6_xyF2zmd_93mffInZhm0mlvF_fJDV8_ID-GNju6qumU9nD_tIQckA3cRXR6fgLTtadLCtksPaqXGh0xTAR2Sj_6U5yOHnzVzZKe1fQQLMGzt8gQ0KN70AOowT2dQWx0-BWwwlb__PYdF9JjVdBy1WKHEjzNsXuO7ncc1g_J0Xzv8M07FskZmIWSsGVFkLlOuAgQZJXLkiIkCjactaqwEPWs0sHwSepz77nmPgkiBZFwKjPKWGn4I7JVgzIeExoSXwSXFyrLjFCG6zwIm2ZO51IGEI7Iq0FPlY3I5UigcV5BBYNqrf5S64i82Ay_6CE7rhs4Q6VvBiHSdidYNSdV3LiV4pDDyZAKbTJhZNAiWKdNPrHBeR7CiLxEk6nQH8CirI6_NcB3EFmrmoIDTCTkbemI7AwmU0VHsa5-28uTf79-Sm5nkE_1TUM7ZKttLv0zcstetWfrZky2Z3uL8sO4O1IYd7sAZOX7_fLTLwydFfQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKigQbHgJEaAEveGwYdWbsydgLhFJK1KhNFKkpKqvBz7ZSM0knAxU7_oEl_8BH8SXcO48Ai7Lrgt3IY9mWfe7D9vU9hDyrqIsFV4FV3gS8x2WgtDZBpBRYI6_CnrcV2UQ6HoujIzlZIz_atzAYVtnqxEpR27nBM_ItvMETDDRu9GZxHiBrFN6uthQaNSz23JcL2LItXw93YH2fx_Hg3fTtbtCwCgQG9jJlkHqRqJBxD9ZB2jhMfSgBKcbI1IC6NlJ5zXqRS5xjirnQ8wiKuJWxltoIzaDda2SdI9g7ZH0yHE0-rE51YrxHlFGdzJMxGW7ZAnPuC5CVCOm4_zB-FUfAZZagMm-D2__bxNwhtxpHmvZr5N8lay6_R763gYR0ntM-rQkN6AS83KBlZ6L9s2MYfnkyo-Cv08N8ptDUQEMgifS9O8Hm6MGFKmb0NKdTwLoLdpADoc5fQg8Wyji6DdbfYi8gZ6X6-fUbDqTOxkEn8xJjsOBrgPGBdFSxdN8nh1cyHw9IJ4fFf0ioD13qbZLKONZcaqYSz00UW5UI4aGwS161uMhMk5sdKULOMtijIYyyv2DUJS9W1Rd1UpLLKm4jyFaVMJd4VTAvjrNGNWWSgZcqfMSVjrkWXnFvrNJJz3jrmPdd8hIhmqHGg0EZ1TzcgH4wd1jWBxUfCvBMoy7ZbCGaNapwmf3G56N__35KbuxOR_vZ_nC8t0FuxuA91iFSm6RTFp_cY3LdfC5Pl8WTRuoo-XjVeP4FlAlyCQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgNDwFiaAEveGyIJrGdib1AaMowoiqMRmqLKjbBz7ZSJzPNBCp2_ANL_oTP4Uu4N48BFmXXBbvIsRzLOfdlX99DyOOaulgKHTkdbCQGQkXaGBslWoM1CjoeBFeTTWSTiTw4UNM18qO7C4NplZ1OrBW1m1vcI-_jCZ7koHGTfmjTIqaj8cvFaYQMUnjS2tFpNBDZ8V_OIHxbvtgewb9-wtj49d6rN1HLMBBZiGuqKAsy1TEXASyFcizOQqwANdaqzILqtkoHwweJT73nmvs4iASahFPMKGOl4TDuJXI5gxgT0wmn6YfV_g7DE0WVNGU9OVdx35VYfV-C1CRIzP2HGazZAs6zCbWhG9_4n5foJrneutd02MjDLbLmi9vke5deSOcFHdKG5oBOwfeNOs4mOjw5hOlXRzMKXjzdL2YaDRAMBPJJ3_sjHI7unulyRo8LugcS4KMRMiM0VU3o7kJbT7fAJ3D4FZC-Sv_8-g0n0tTooNN5hZlZ8DTGrEH6rubuvkP2L2Q97pL1AoBwj9AQ-yy4NFOMGaEM12kQNmFOp1IGaOyR5x1GcttWbEfikJMcIjeEVP4XpHrk6ar7oilVcl7HLQTcqhNWGK8b5uVh3iqsXHHwXWVIhDZMGBm0CNZpkw5scJ6H0CPPEK456kGYlNXtdQ74DlYUy4eg-GMJ_mrSI5sdXPNWQS7z31i9_-_Xj8hVAHH-dnuys0GuMXApm7ypTbJelZ_8A3LFfq6Ol-XDWvwo-XjRYP4F5-h5bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+A+Global+Path-Planning+Algorithm+for+Unmanned+Arial+Vehicle+Swarm+in+Three-Dimensional+Space+Based+on+Theta%E2%80%93Artificial+Potential+Field+Method&rft.jtitle=Drones+%28Basel%29&rft.au=Zhao%2C+Wen&rft.au=Li%2C+Liqiao&rft.au=Wang%2C+Yingqi&rft.au=Zhan%2C+Hanwen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=8&rft.issue=4&rft.spage=125&rft_id=info:doi/10.3390%2Fdrones8040125&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon