Research on A Global Path-Planning Algorithm for Unmanned Arial Vehicle Swarm in Three-Dimensional Space Based on Theta–Artificial Potential Field Method
The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimension...
Gespeichert in:
| Veröffentlicht in: | Drones (Basel) Jg. 8; H. 4; S. 125 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.04.2024
|
| Schlagworte: | |
| ISSN: | 2504-446X, 2504-446X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimensional environments. Additionally, the robustness of drone formations under the leader–follower mode is low, and effectively handling obstacles within the environment is challenging. To address these issues, this study proposes a virtual leader mode for drone formation flight and introduces a new Theta*–APF method for three-dimensional space drone swarm path planning. This algorithm optimizes the A* algorithm by transforming it into an omnidirectional forward Theta* algorithm. It also enhances the heuristic function by incorporating artificial potential field methods in a three-dimensional environment. Formation organization and control of UAVs is achieved using speed-control modes. Compared to the conventional A* algorithm, the Theta*–APF algorithm reduces the search time by about 60% and the trip length by 10%, in addition to the safer flight of the UAV formation, which is subject to artificial potential field repulsion by about 42%. |
|---|---|
| AbstractList | The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has limitations, such as low efficiency, difficulty in handling obstacles, and numerous turning points, which make it unsuitable for complex three-dimensional environments. Additionally, the robustness of drone formations under the leader–follower mode is low, and effectively handling obstacles within the environment is challenging. To address these issues, this study proposes a virtual leader mode for drone formation flight and introduces a new Theta*–APF method for three-dimensional space drone swarm path planning. This algorithm optimizes the A* algorithm by transforming it into an omnidirectional forward Theta* algorithm. It also enhances the heuristic function by incorporating artificial potential field methods in a three-dimensional environment. Formation organization and control of UAVs is achieved using speed-control modes. Compared to the conventional A* algorithm, the Theta*–APF algorithm reduces the search time by about 60% and the trip length by 10%, in addition to the safer flight of the UAV formation, which is subject to artificial potential field repulsion by about 42%. |
| Audience | Academic |
| Author | Zhan, Hanwen Song, Yunfei Li, Liqiao Zhao, Wen Wang, Yingqi Fu, Yiqi |
| Author_xml | – sequence: 1 givenname: Wen surname: Zhao fullname: Zhao, Wen – sequence: 2 givenname: Liqiao surname: Li fullname: Li, Liqiao – sequence: 3 givenname: Yingqi surname: Wang fullname: Wang, Yingqi – sequence: 4 givenname: Hanwen surname: Zhan fullname: Zhan, Hanwen – sequence: 5 givenname: Yiqi surname: Fu fullname: Fu, Yiqi – sequence: 6 givenname: Yunfei surname: Song fullname: Song, Yunfei |
| BookMark | eNptksFu1DAQhiNUJErpkbslzil27GTjYyi0VCpiRVvEzZrY441Xib3YrhA33oEjb8eT4GVBAoR88PjX9__yjP24OvLBY1U9ZfSMc0mfm1jOqaeCsqZ9UB03LRW1EN2Hoz_qR9VpSltKadOItpPsuPr2DhNC1BMJngzkcg4jzGQNearXM3jv_IYM8yZEl6eF2BDJnV-KjoYM0RX0PU5Oz0huPkFciPPkdoqI9Uu3oE8u-ILc7EAjeQGpmMIewAzfv3wdYnbW6X3IOmT0eV9dOJwNeYN5CuZJ9dDCnPD0135S3V28uj1_XV-_vbw6H65rLajM9cr2LVAuLKKRpqErSyWlQmu50j1lWoIdecewReTAkVrBiiSMbEY56n7kJ9XVIdcE2KpddAvEzyqAUz-FEDcKyl1Ll0ryjsveMgFjI8begrDawNh22hrk1pasZ4esXQwf7zFltQ33sUwhKU5F13PGKSvU2YHaQAl13oYcQZdlcHG6PKR1RR9WktN-JdjewA8GHUNKEa3SLkMu8y1GNytG1f4XqL9-QXHV_7h-N_d__geNU7oo |
| CitedBy_id | crossref_primary_10_1002_rob_70000 crossref_primary_10_3390_drones9040263 crossref_primary_10_1002_cpe_70095 crossref_primary_10_3390_electronics13234598 crossref_primary_10_1145_3737280 crossref_primary_10_3390_app14156516 crossref_primary_10_3390_drones8120728 crossref_primary_10_1109_ACCESS_2025_3579863 crossref_primary_10_3390_drones9040306 crossref_primary_10_3390_aerospace11040312 crossref_primary_10_3390_app14083303 |
| Cites_doi | 10.1007/s11771-018-3944-z 10.1007/s10514-020-09947-4 10.1109/ITNG.2010.53 10.1142/S2301385023500140 10.1177/0278364914547786 10.1109/DASA51403.2020.9317271 10.1109/TVT.2020.2964847 10.1016/j.isatra.2019.08.018 10.1109/LRA.2021.3068679 10.3390/s21237898 10.1109/LARS.2006.334327 10.1080/02564602.2021.1894250 10.1016/j.ijleo.2017.12.169 10.1613/jair.2994 10.1109/LRA.2018.2890572 10.1023/A:1008814708459 10.3390/s21155250 10.1109/ROBOT.1998.680621 10.1109/CAC48633.2019.8996741 10.1109/ITNEC48623.2020.9084806 10.1109/ACCESS.2021.3064831 10.1109/IROS.2018.8593930 10.1109/ACCESS.2018.2817648 10.1145/2903150.2911712 10.1109/FSKD.2010.5569452 10.1007/s10846-012-9776-4 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/drones8040125 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection (via ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-446X |
| ExternalDocumentID | oai_doaj_org_article_936398f14ab24b8fa4fcdab56cfde3ff A793087411 10_3390_drones8040125 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c409t-7f85a034feed9d207f09004cc97c801c9afb361e5ee3a3e0f419af4d92b9bc8b3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220327900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2504-446X |
| IngestDate | Mon Nov 10 04:31:12 EST 2025 Sat Jul 26 00:13:04 EDT 2025 Sat Nov 29 10:43:03 EST 2025 Sat Nov 29 07:11:33 EST 2025 Tue Nov 18 20:58:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-7f85a034feed9d207f09004cc97c801c9afb361e5ee3a3e0f419af4d92b9bc8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3046831301?pq-origsite=%requestingapplication% |
| PQID | 3046831301 |
| PQPubID | 5046906 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_936398f14ab24b8fa4fcdab56cfde3ff proquest_journals_3046831301 gale_infotracacademiconefile_A793087411 crossref_citationtrail_10_3390_drones8040125 crossref_primary_10_3390_drones8040125 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Drones (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhang (ref_1) 2020; 69 Kothari (ref_7) 2013; 71 Chang (ref_4) 2021; 45 Luis (ref_18) 2019; 4 Shao (ref_2) 2020; 97 ref_14 Chen (ref_16) 2018; 25 ref_10 Mai (ref_23) 2021; 1884 ref_31 Lewis (ref_29) 1997; 4 Pan (ref_12) 2021; 69 Sharma (ref_11) 2022; 39 (ref_8) 2021; 6 ref_19 Chen (ref_15) 2020; 32 Jin (ref_6) 2021; 10 Daniel (ref_32) 2010; 39 Zhou (ref_22) 2018; 158 Desai (ref_27) 1998; Volume 4 ref_21 ref_20 ref_3 Fan (ref_24) 2010; Volume 4 Chen (ref_25) 2020; Volume 1 ref_28 ref_26 ref_9 Persson (ref_30) 2014; 33 Wu (ref_17) 2018; 6 ref_5 Liu (ref_13) 2023; 11 |
| References_xml | – volume: 25 start-page: 2664 year: 2018 ident: ref_16 article-title: Path Planning for UAVs Formation Reconfiguration Based on Dubins Trajectory publication-title: J. Cent. South Univ. doi: 10.1007/s11771-018-3944-z – volume: 32 start-page: 414 year: 2020 ident: ref_15 article-title: Multi-UAV 3D Formation Path Planning Based on Improved Artificial Potential Field publication-title: J. Syst. Simul. – ident: ref_9 – volume: 1884 start-page: 012003 year: 2021 ident: ref_23 article-title: An Improved Dynamic Window Approach for Local Trajectory Planning in the Environment with Dense Objects publication-title: Journal of Physics: Conference Series – volume: 45 start-page: 51 year: 2021 ident: ref_4 article-title: Reinforcement Based Mobile Robot Path Planning with Improved Dynamic Window Approach in Unknown Environment publication-title: Auton. Robot. doi: 10.1007/s10514-020-09947-4 – ident: ref_20 doi: 10.1109/ITNG.2010.53 – volume: 11 start-page: 317 year: 2023 ident: ref_13 article-title: An Improved RRT* UAV Formation Path Planning Algorithm Based on Goal Bias and Node Rejection Strategy publication-title: Unmanned Syst. doi: 10.1142/S2301385023500140 – ident: ref_3 – volume: 33 start-page: 1683 year: 2014 ident: ref_30 article-title: Sampling-Based A* Algorithm for Robot Path-Planning publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914547786 – ident: ref_10 doi: 10.1109/DASA51403.2020.9317271 – volume: 69 start-page: 2437 year: 2020 ident: ref_1 article-title: Multi-UAV Formation Control Based on a Novel Back-Stepping Approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2964847 – volume: 97 start-page: 415 year: 2020 ident: ref_2 article-title: Efficient Path Planning for UAV Formation via Comprehensively Improved Particle Swarm Optimization publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.08.018 – volume: 6 start-page: 4201 year: 2021 ident: ref_8 article-title: Multi-Goal Path Planning Using Multiple Random Trees publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3068679 – ident: ref_26 doi: 10.3390/s21237898 – ident: ref_28 doi: 10.1109/LARS.2006.334327 – volume: 39 start-page: 675 year: 2022 ident: ref_11 article-title: Path Planning for Multiple Targets Interception by the Swarm of UAVs Based on Swarm Intelligence Algorithms: A Review publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2021.1894250 – volume: 158 start-page: 639 year: 2018 ident: ref_22 article-title: Tangent Navigated Robot Path Planning Strategy Using Particle Swarm Optimized Artificial Potential Field publication-title: Optik doi: 10.1016/j.ijleo.2017.12.169 – volume: 39 start-page: 533 year: 2010 ident: ref_32 article-title: Theta*: Any-Angle Path Planning on Grids publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2994 – ident: ref_31 – volume: 4 start-page: 375 year: 2019 ident: ref_18 article-title: Trajectory Generation for Multiagent Point-to-Point Transitions via Distributed Model Predictive Control publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2890572 – volume: 4 start-page: 387 year: 1997 ident: ref_29 article-title: High Precision Formation Control of Mobile Robots Using Virtual Structures publication-title: Auton. Robot. doi: 10.1023/A:1008814708459 – ident: ref_21 doi: 10.3390/s21155250 – volume: Volume 4 start-page: 2864 year: 1998 ident: ref_27 article-title: Controlling Formations of Multiple Mobile Robots publication-title: Proceedings of the 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146) doi: 10.1109/ROBOT.1998.680621 – ident: ref_5 doi: 10.1109/CAC48633.2019.8996741 – volume: 69 start-page: 1129 year: 2021 ident: ref_12 article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi-UAV Systems publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: Volume 1 start-page: 958 year: 2020 ident: ref_25 article-title: An Improved A* Algorithm for UAV Path Planning Problems publication-title: Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) doi: 10.1109/ITNEC48623.2020.9084806 – volume: 10 start-page: 28322 year: 2021 ident: ref_6 article-title: Research on Dynamic Path Planning Based on the Fusion Algorithm of Improved Ant Colony Optimization and Rolling Window Method publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064831 – ident: ref_14 doi: 10.1109/IROS.2018.8593930 – volume: 6 start-page: 34237 year: 2018 ident: ref_17 article-title: Path Planning of UAVs Based on Collision Probability and Kalman Filter publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817648 – ident: ref_19 doi: 10.1145/2903150.2911712 – volume: Volume 4 start-page: 1901 year: 2010 ident: ref_24 article-title: Improvement of Dijkstra’s Algorithm and Its Application in Route Planning publication-title: Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery doi: 10.1109/FSKD.2010.5569452 – volume: 71 start-page: 231 year: 2013 ident: ref_7 article-title: A Probabilistically Robust Path Planning Algorithm for UAVs Using Rapidly-Exploring Random Trees publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-012-9776-4 |
| SSID | ssj0002245691 |
| Score | 2.3158278 |
| Snippet | The current challenge in drone swarm technology is three-dimensional path planning and adaptive formation changes. The traditional A* algorithm has... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 125 |
| SubjectTerms | Algorithms APF Barriers Control algorithms Control systems Drone aircraft Drones Formation flying Heuristic obstacle avoidance Optimization Path planning Planning Potential fields Swarm intelligence Theta global path planning UAVs cluster Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxYELAgFioVQ-VHDBahw7G_u4ha64UK3UFvVm-W9oUTeLtgGuvAPHvh1PwkycrZZDxYVbZFnOaObz_CiTbxjbH0YXG-1F8hCFnmorfAhRSO8xGoGvppCGYRPt8bE5P7eLrVFf1BNW6IGL4g6swhhqQGofah0MeA0x-dBMI6SsAMj7Vq3dKqa-DKQumBhYWUg1Fdb1B2lN3PcGMStpLPZWEBq4-u_yyEOYmT9iD8f8kM-KXI_Zvdw9YTeb_ji-6viMF55-vsDkTWyGDvHZ1ecVFvoXS45pKD_rlp48KB6EAOOf8gUdx09--PWSX3b8FE2YxXui9i-0HPwEi-fMDzGoJXoLwqf3v3_-IkEKyQRfrHpqLcKnObW98Y_D8Omn7Gx-dPrugxinKoiItVwvWjCNr5QGjI42oe6gsnhTYrRtxHAVrYegpjI3OSuvcgVa4pJOtg42RBPUM7bToS6fMw5VbiE1ra3roG1QvgEdZZ18Ywzg4oS93ajZxZFynCZfXDksPcgq7i-rTNjr2-1fC9fGXRsPyWa3m4gie1hA4LgROO5fwJmwN2RxRxcZhYp-_B8B30OUWG6GnqsymHDJCdvdgMKNN_za0RdlozADkC_-hzQv2YMa06XSE7TLdvr1t_yK3Y_f-8vr9d4A7j--TAXA priority: 102 providerName: Directory of Open Access Journals |
| Title | Research on A Global Path-Planning Algorithm for Unmanned Arial Vehicle Swarm in Three-Dimensional Space Based on Theta–Artificial Potential Field Method |
| URI | https://www.proquest.com/docview/3046831301 https://doaj.org/article/936398f14ab24b8fa4fcdab56cfde3ff |
| Volume | 8 |
| WOSCitedRecordID | wos001220327900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: P5Z dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2504-446X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002245691 issn: 2504-446X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFhwCxUFY-ILhgNYmdjX1Cu9AVHLqKaIsKl8jPtlI3W7JpufIfOPLv-CXMJM4Ch3LhFk0sx9KM52FPvo-Q5x11sRSaOR0sExOhmDbGslRriEZBJ5PgOrKJYrGQx8eqjAdu69hWOfjEzlG7lcUz8l28wZMcPG76-uILQ9YovF2NFBo3yTaiJCB1Q5l_3pyxZHirp9IeWpNDdb_rGkTAl2C5KZJj_xGKOsT-6_xyF2zmd_93mffInZhm0mlvF_fJDV8_ID-GNju6qumU9nD_tIQckA3cRXR6fgLTtadLCtksPaqXGh0xTAR2Sj_6U5yOHnzVzZKe1fQQLMGzt8gQ0KN70AOowT2dQWx0-BWwwlb__PYdF9JjVdBy1WKHEjzNsXuO7ncc1g_J0Xzv8M07FskZmIWSsGVFkLlOuAgQZJXLkiIkCjactaqwEPWs0sHwSepz77nmPgkiBZFwKjPKWGn4I7JVgzIeExoSXwSXFyrLjFCG6zwIm2ZO51IGEI7Iq0FPlY3I5UigcV5BBYNqrf5S64i82Ay_6CE7rhs4Q6VvBiHSdidYNSdV3LiV4pDDyZAKbTJhZNAiWKdNPrHBeR7CiLxEk6nQH8CirI6_NcB3EFmrmoIDTCTkbemI7AwmU0VHsa5-28uTf79-Sm5nkE_1TUM7ZKttLv0zcstetWfrZky2Z3uL8sO4O1IYd7sAZOX7_fLTLwydFfQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLVKigQbHgJEaAEveGwYdWbsydgLhFJK1KhNFKkpKqvBz7ZSM0knAxU7_oEl_8BH8SXcO48Ai7Lrgt3IY9mWfe7D9vU9hDyrqIsFV4FV3gS8x2WgtDZBpBRYI6_CnrcV2UQ6HoujIzlZIz_atzAYVtnqxEpR27nBM_ItvMETDDRu9GZxHiBrFN6uthQaNSz23JcL2LItXw93YH2fx_Hg3fTtbtCwCgQG9jJlkHqRqJBxD9ZB2jhMfSgBKcbI1IC6NlJ5zXqRS5xjirnQ8wiKuJWxltoIzaDda2SdI9g7ZH0yHE0-rE51YrxHlFGdzJMxGW7ZAnPuC5CVCOm4_zB-FUfAZZagMm-D2__bxNwhtxpHmvZr5N8lay6_R763gYR0ntM-rQkN6AS83KBlZ6L9s2MYfnkyo-Cv08N8ptDUQEMgifS9O8Hm6MGFKmb0NKdTwLoLdpADoc5fQg8Wyji6DdbfYi8gZ6X6-fUbDqTOxkEn8xJjsOBrgPGBdFSxdN8nh1cyHw9IJ4fFf0ioD13qbZLKONZcaqYSz00UW5UI4aGwS161uMhMk5sdKULOMtijIYyyv2DUJS9W1Rd1UpLLKm4jyFaVMJd4VTAvjrNGNWWSgZcqfMSVjrkWXnFvrNJJz3jrmPdd8hIhmqHGg0EZ1TzcgH4wd1jWBxUfCvBMoy7ZbCGaNapwmf3G56N__35KbuxOR_vZ_nC8t0FuxuA91iFSm6RTFp_cY3LdfC5Pl8WTRuoo-XjVeP4FlAlyCQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgNDwFiaAEveGyIJrGdib1AaMowoiqMRmqLKjbBz7ZSJzPNBCp2_ANL_oTP4Uu4N48BFmXXBbvIsRzLOfdlX99DyOOaulgKHTkdbCQGQkXaGBslWoM1CjoeBFeTTWSTiTw4UNM18qO7C4NplZ1OrBW1m1vcI-_jCZ7koHGTfmjTIqaj8cvFaYQMUnjS2tFpNBDZ8V_OIHxbvtgewb9-wtj49d6rN1HLMBBZiGuqKAsy1TEXASyFcizOQqwANdaqzILqtkoHwweJT73nmvs4iASahFPMKGOl4TDuJXI5gxgT0wmn6YfV_g7DE0WVNGU9OVdx35VYfV-C1CRIzP2HGazZAs6zCbWhG9_4n5foJrneutd02MjDLbLmi9vke5deSOcFHdKG5oBOwfeNOs4mOjw5hOlXRzMKXjzdL2YaDRAMBPJJ3_sjHI7unulyRo8LugcS4KMRMiM0VU3o7kJbT7fAJ3D4FZC-Sv_8-g0n0tTooNN5hZlZ8DTGrEH6rubuvkP2L2Q97pL1AoBwj9AQ-yy4NFOMGaEM12kQNmFOp1IGaOyR5x1GcttWbEfikJMcIjeEVP4XpHrk6ar7oilVcl7HLQTcqhNWGK8b5uVh3iqsXHHwXWVIhDZMGBm0CNZpkw5scJ6H0CPPEK456kGYlNXtdQ74DlYUy4eg-GMJ_mrSI5sdXPNWQS7z31i9_-_Xj8hVAHH-dnuys0GuMXApm7ypTbJelZ_8A3LFfq6Ol-XDWvwo-XjRYP4F5-h5bA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+A+Global+Path-Planning+Algorithm+for+Unmanned+Arial+Vehicle+Swarm+in+Three-Dimensional+Space+Based+on+Theta%E2%80%93Artificial+Potential+Field+Method&rft.jtitle=Drones+%28Basel%29&rft.au=Zhao%2C+Wen&rft.au=Li%2C+Liqiao&rft.au=Wang%2C+Yingqi&rft.au=Zhan%2C+Hanwen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=8&rft.issue=4&rft.spage=125&rft_id=info:doi/10.3390%2Fdrones8040125&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |