Machine learning-aided peak and residual displacement-based design method for enhancing seismic performance of steel moment-resisting frames by installing self-centering braces

•Prediction models of Cμ and Cr were developed for the RSMRF.•A peak and residual displacement-based design method was developed for retrofitting SMRFs.•The designed RSMRFs can achieve the desired peak and residual inter-story drift responses.•The designed RSMRFs have no repair requirements for afte...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures Vol. 271; p. 114935
Main Authors: Hu, Shuling, Zhu, Songye, Shahria Alam, M., Wang, Wei
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 15.11.2022
Elsevier BV
Subjects:
ISSN:0141-0296, 1873-7323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Prediction models of Cμ and Cr were developed for the RSMRF.•A peak and residual displacement-based design method was developed for retrofitting SMRFs.•The designed RSMRFs can achieve the desired peak and residual inter-story drift responses.•The designed RSMRFs have no repair requirements for after MCE excitations. Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding behavior, leading to significant residual displacement. Although steel yielding behavior can ensure the seismic safety of SMRFs under strong earthquakes, excessive residual displacement may lead to post-earthquake demolition decisions, causing a large amount of economic loss. This paper aims to develop a peak and residual displacement-based design (PRDBD) method for controlling the peak and residual inter-story drift responses of SMRFs by installing self-centering braces. The peak and residual displacements are both set as the design targets in the proposed PRDBD method. To this end, the machine learning prediction models of inelastic and residual displacement ratios were first developed based on the median responses of single-degree-of-freedom systems under earthquakes. The detailed design steps of the proposed PRDBD method were subsequently introduced. The three- and nine-story demonstration buildings were retrofitted by using the PRDBD method with two different design targets. Static and dynamic analyses were conducted to validate the effectiveness of the proposed PRDBD method. The static analysis results indicated that the self-centering braces could efficiently enhance the SMRF’s stiffness and strength. The retrofitted SMRFs showed no strength deterioration, whereas the original SMRFs showed obvious strength deterioration at the roof drifts of 3.2% and 2.5% in the three- and nine-story buildings, respectively. The dynamic analysis results confirm that the self-centering braces can efficiently reduce the peak and residual inter-story drift responses of the existing SMRFs and the retrofitted SMRFs can achieve the peak and residual inter-story performance objectives under the considered seismic intensity. Moreover, the retrofitted SMRFs can be fully recoverable after maximum considered earthquakes by controlling the maximum residual inter-story drift lower than 0.2%.
AbstractList •Prediction models of Cμ and Cr were developed for the RSMRF.•A peak and residual displacement-based design method was developed for retrofitting SMRFs.•The designed RSMRFs can achieve the desired peak and residual inter-story drift responses.•The designed RSMRFs have no repair requirements for after MCE excitations. Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding behavior, leading to significant residual displacement. Although steel yielding behavior can ensure the seismic safety of SMRFs under strong earthquakes, excessive residual displacement may lead to post-earthquake demolition decisions, causing a large amount of economic loss. This paper aims to develop a peak and residual displacement-based design (PRDBD) method for controlling the peak and residual inter-story drift responses of SMRFs by installing self-centering braces. The peak and residual displacements are both set as the design targets in the proposed PRDBD method. To this end, the machine learning prediction models of inelastic and residual displacement ratios were first developed based on the median responses of single-degree-of-freedom systems under earthquakes. The detailed design steps of the proposed PRDBD method were subsequently introduced. The three- and nine-story demonstration buildings were retrofitted by using the PRDBD method with two different design targets. Static and dynamic analyses were conducted to validate the effectiveness of the proposed PRDBD method. The static analysis results indicated that the self-centering braces could efficiently enhance the SMRF’s stiffness and strength. The retrofitted SMRFs showed no strength deterioration, whereas the original SMRFs showed obvious strength deterioration at the roof drifts of 3.2% and 2.5% in the three- and nine-story buildings, respectively. The dynamic analysis results confirm that the self-centering braces can efficiently reduce the peak and residual inter-story drift responses of the existing SMRFs and the retrofitted SMRFs can achieve the peak and residual inter-story performance objectives under the considered seismic intensity. Moreover, the retrofitted SMRFs can be fully recoverable after maximum considered earthquakes by controlling the maximum residual inter-story drift lower than 0.2%.
Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding behavior, leading to significant residual displacement. Although steel yielding behavior can ensure the seismic safety of SMRFs under strong earthquakes, excessive residual displacement may lead to post-earthquake demolition decisions, causing a large amount of economic loss. This paper aims to develop a peak and residual displacement-based design (PRDBD) method for controlling the peak and residual inter-story drift responses of SMRFs by installing self-centering braces. The peak and residual displacements are both set as the design targets in the proposed PRDBD method. To this end, the machine learning prediction models of inelastic and residual displacement ratios were first developed based on the median responses of single-degree-of-freedom systems under earthquakes. The detailed design steps of the proposed PRDBD method were subsequently introduced. The three- and nine-story demonstration buildings were retrofitted by using the PRDBD method with two different design targets. Static and dynamic analyses were conducted to validate the effectiveness of the proposed PRDBD method. The static analysis results indicated that the self-centering braces could efficiently enhance the SMRF's stiffness and strength. The retrofitted SMRFs showed no strength deterioration, whereas the original SMRFs showed obvious strength deterioration at the roof drifts of 3.2% and 2.5% in the three- and nine-story buildings, respectively. The dynamic analysis results confirm that the self-centering braces can efficiently reduce the peak and residual inter-story drift responses of the existing SMRFs and the retrofitted SMRFs can achieve the peak and residual inter-story performance objectives under the considered seismic intensity. Moreover, the retrofitted SMRFs can be fully recoverable after maximum considered earthquakes by controlling the maximum residual inter-story drift lower than 0.2%.
ArticleNumber 114935
Author Hu, Shuling
Shahria Alam, M.
Wang, Wei
Zhu, Songye
Author_xml – sequence: 1
  givenname: Shuling
  orcidid: 0000-0003-3031-4337
  surname: Hu
  fullname: Hu, Shuling
  organization: Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 2
  givenname: Songye
  orcidid: 0000-0002-2617-3378
  surname: Zhu
  fullname: Zhu, Songye
  email: songye.zhu@polyu.edu.hk
  organization: Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 3
  givenname: M.
  surname: Shahria Alam
  fullname: Shahria Alam, M.
  organization: School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: State Key Laboratory of Disaster Reduction in Civil Engineering & Department of Structural Engineering, Tongji University, Shanghai 200092, China
BookMark eNqNkc1u1DAUhS3USp22PEMtsc7gnyTOLFhUFRSkIjawtm7smxkPjj3YHqS-FY-IQxALNrCxZd9zviPdc00uQgxIyB1nW854__q4xbDPJZ1N2QomxJbzdie7F2TDByUbJYW8IBvGW94wseuvyHXOR8aYGAa2IT8-gjm4gNQjpODCvgFn0dITwlcKwdKE2dkzeGpdPnkwOGMozQi5imyd7QOdsRyipVNMFMMBgqkYmtHl2ZkKSnUw11-kcaK5IHo6x1-UhZ3Lop4SzJjp-ExdyAW8XxF-akwVYlqeY6rp-ZZcTuAzvvx935Av795-fnjfPH16_PBw_9SYlu1KowZmxpGLqevUaPoOJxBStINUvEcl69GPaHtuJYAdWhx7AGH7Xio12WEAeUNerdxTit_OmIs-xnMKNVIL1bVM8RpRVW9WlUkx54STNq5AcTGUBM5rzvRSkj7qPyXppSS9llT96i__KbkZ0vN_OO9XJ9YlfHeYdDYO65atS1i1Nrp_Mn4CprC5Zw
CitedBy_id crossref_primary_10_1007_s42107_024_01187_6
crossref_primary_10_1016_j_engstruct_2025_120346
crossref_primary_10_1007_s11709_024_1045_7
crossref_primary_10_1016_j_jobe_2023_106075
crossref_primary_10_1016_j_engstruct_2024_118981
crossref_primary_10_1016_j_jcsr_2025_109749
crossref_primary_10_1016_j_engstruct_2024_117731
crossref_primary_10_1016_j_istruc_2023_04_091
crossref_primary_10_1016_j_istruc_2025_108311
crossref_primary_10_1016_j_rineng_2025_105810
crossref_primary_10_1016_j_engstruct_2024_117898
crossref_primary_10_1016_j_istruc_2023_105831
crossref_primary_10_1016_j_jcsr_2024_109065
crossref_primary_10_3390_civileng4010003
crossref_primary_10_1016_j_jobe_2023_106429
crossref_primary_10_1016_j_jobe_2024_108723
crossref_primary_10_1016_j_jobe_2023_107671
crossref_primary_10_1016_j_engstruct_2024_118474
crossref_primary_10_1016_j_istruc_2025_109791
crossref_primary_10_1007_s42107_023_00855_3
crossref_primary_10_1016_j_jobe_2023_108325
crossref_primary_10_1007_s11709_025_1200_9
crossref_primary_10_1016_j_engstruct_2024_119603
crossref_primary_10_1002_eqe_3807
crossref_primary_10_1016_j_soildyn_2024_108636
crossref_primary_10_3390_met15040408
crossref_primary_10_3390_geosciences14090244
crossref_primary_10_1016_j_engstruct_2023_115982
crossref_primary_10_1016_j_engstruct_2023_116235
crossref_primary_10_1016_j_engstruct_2023_116796
crossref_primary_10_1016_j_compstruc_2025_107918
crossref_primary_10_3390_math11061294
crossref_primary_10_1016_j_jcsr_2023_108267
crossref_primary_10_1016_j_rineng_2025_105190
crossref_primary_10_1016_j_engstruct_2025_120205
crossref_primary_10_1016_j_engstruct_2025_120721
crossref_primary_10_1016_j_jcsr_2022_107631
crossref_primary_10_1016_j_jcsr_2024_108638
crossref_primary_10_1016_j_jobe_2024_109201
crossref_primary_10_1016_j_istruc_2025_108455
crossref_primary_10_1016_j_rineng_2025_105714
crossref_primary_10_1016_j_compstruc_2023_107181
crossref_primary_10_1016_j_compstruct_2023_117308
crossref_primary_10_1016_j_tws_2024_111605
crossref_primary_10_1016_j_tws_2024_112586
crossref_primary_10_1016_j_istruc_2023_105254
crossref_primary_10_1080_30656680_2025_2559071
crossref_primary_10_1007_s11831_025_10288_7
crossref_primary_10_1016_j_jobe_2023_106407
crossref_primary_10_1016_j_engstruct_2024_118085
crossref_primary_10_1016_j_tws_2025_113394
crossref_primary_10_3390_buildings15050681
crossref_primary_10_1016_j_jcsr_2023_107837
crossref_primary_10_1016_j_engstruct_2023_117264
crossref_primary_10_1016_j_jobe_2024_109893
crossref_primary_10_1016_j_jobe_2023_107334
crossref_primary_10_1016_j_jcsr_2024_108505
crossref_primary_10_1016_j_istruc_2025_108367
crossref_primary_10_1177_13694332241289175
crossref_primary_10_1016_j_engstruct_2023_116808
crossref_primary_10_1016_j_engstruct_2024_117723
crossref_primary_10_1016_j_rineng_2025_104717
crossref_primary_10_1016_j_istruc_2023_02_026
crossref_primary_10_1016_j_istruc_2024_107547
crossref_primary_10_1002_eqe_4273
crossref_primary_10_1016_j_istruc_2025_108807
crossref_primary_10_1061_JSENDH_STENG_13667
crossref_primary_10_1016_j_jcsr_2023_108401
crossref_primary_10_1016_j_soildyn_2025_109490
Cites_doi 10.1002/stc.2462
10.1002/eqe.2777
10.1016/j.jcsr.2021.107121
10.1061/(ASCE)ST.1943-541X.0000376
10.1016/j.engstruct.2018.10.013
10.1680/cien.12.00019
10.1016/j.jcsr.2017.09.021
10.1061/(ASCE)ST.1943-541X.0003024
10.1002/eqe.2844
10.1016/j.engstruct.2019.110038
10.1061/(ASCE)0733-9445(2008)134:1(108)
10.15554/pcij.11011999.42.67
10.1061/(ASCE)ST.1943-541X.0001005
10.1016/j.engstruct.2019.110021
10.1016/j.engstruct.2021.113404
10.1016/j.jcsr.2014.04.035
10.1016/j.engstruct.2020.110424
10.1193/1.3604815
10.1002/eqe.3174
10.1061/(ASCE)0733-9445(2008)134:1(121)
10.1080/13632469.2020.1856233
10.1016/j.jcsr.2021.106986
10.1002/stc.2596
10.1016/j.engstruct.2022.114102
10.1016/j.tws.2019.106598
10.1016/j.engstruct.2007.05.026
10.1193/1.4000032
10.1016/j.engstruct.2021.112369
10.1061/(ASCE)ST.1943-541X.0001047
10.1007/s13296-016-6023-z
10.1016/j.engstruct.2020.111338
10.1193/1.2894831
10.1061/(ASCE)0733-9445(2001)127:2(113)
10.1016/j.jcsr.2020.106473
10.1002/eqe.1164
10.1016/j.engstruct.2022.114603
10.1016/j.jcsr.2011.04.006
10.1016/j.tws.2019.03.024
10.1061/(ASCE)0733-9445(2005)131:3(438)
10.1016/j.engstruct.2021.112191
10.1016/j.engstruct.2021.112527
10.1016/j.engstruct.2005.06.021
10.1016/j.engstruct.2020.111671
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Nov 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 15, 2022
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2022.114935
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2022_114935
S0141029622010112
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
7SR
7ST
8BQ
8FD
AGCQF
C1K
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c409t-780cbb12f557bc65efa232483716e7316e6bed61d3aad84eb6aa2d66377fd88a3
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000858719000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-0296
IngestDate Wed Aug 13 09:17:34 EDT 2025
Sat Nov 29 07:23:52 EST 2025
Tue Nov 18 22:10:46 EST 2025
Sun Apr 06 06:54:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Peak and residual displacement
Moment-resisting frames
Self-centering brace
Residual displacement-based design method
Post-earthquake repairability
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-780cbb12f557bc65efa232483716e7316e6bed61d3aad84eb6aa2d66377fd88a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3031-4337
0000-0002-2617-3378
PQID 2754071780
PQPubID 2045481
ParticipantIDs proquest_journals_2754071780
crossref_citationtrail_10_1016_j_engstruct_2022_114935
crossref_primary_10_1016_j_engstruct_2022_114935
elsevier_sciencedirect_doi_10_1016_j_engstruct_2022_114935
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ozbulut, Michael, Silwal (b0170) 2015; 2
Lignos, Krawinkler (b0240) 2007
Ohtori, Christenson, Spencer, Dyke (b0225) 2004; 130
Shi, Ozbulut, Zhou (b0165) 2020; 27
Xu, Fan, Li (b0135) 2017; 46
FEMA. FEMA P695. Quantification of building seismic performance factors. Washington, DC: Federal Emergency Management Agency; 2009.
Lignos, Krawinkler (b0245) 2011; 137
Xu, Fan, Li (b0185) 2017; 139
Karavasilis, Bazeos, Beskos (b0220) 2006; 28
Ricles, Sause, Garlock, Zhao (b0055) 2001; 127
Hu, Wang, Alam (b0040) 2022; 257
Hu, Wang, Qu (b0100) 2020; 204
Zhu, Guo, Mwangilwa, Han (b0160) 2021; 239
Friedman, Hastie, Tibshirani (b0215) 2001
Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center.2006.
Wang, Fang, Zhao, Sause, Hu, Ricles (b0140) 2019; 48
Chou, Chung (b0150) 2014; 101
Gupta (b0250) 1999
Chou, Chen (b0070) 2011; 67
Tremblay, Lacerte, Christopoulos (b0195) 2008; 134
Eatherton, Ma, Krawinkler, Deierlein, Hajjar (b0090) 2014; 140
Qu, Sanchez, Hou, Pollino (b0265) 2016; 16
Priestley, Sritharan, Conley, Pampanin (b0050) 1999; 44
Zhang, Xu, Li (b0120) 2021; 229
FEMA. FEMA P58. Seismic performance assessment of buildings. Federal Emergency Management Agency; 2012.
Xu, Lin, Xie (b0130) 2022; 190
McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible residual deformation levels for building structures considering both safety and human elements. In: Proceedings of the 14th world conference on earthquake engineering 2008. p. 12-7.
Xu, Xiao, Li (b0085) 2021; 147
Hu, Wang, Qu, Shahria Alam (b0115) 2020; 225
Cole, Dhakal, Turner (b0005) 2012; 41
Xu, Chen, Li (b0125) 2021; 177
Zhang, Xu (b0075) 2022; 250
Hu, Wang, Alam (b0210) 2021; 1–32
Fang, Zhong, Wang, Hu, Qiu (b0230) 2018; 177
Qiu, Zhu (b0190) 2017; 46
Chiou, Darragh, Gregor, Silva (b0255) 2008; 24
Hu, Wang, Alam (b0020) 2022; 188
Howes, Cheesebrough (b0010) 2013; 166
Hu, Zhu, Wang (b0045) 2022; 266
Fang, Ping, Chen, Yam, Chen, Wang (b0180) 2022; 26
Chou, Hsiao, Chen, Chung, Pham (b0155) 2019; 140
Miranda, Mosqueda, Retamales, Pekcan (b0035) 2012; 28
Garlock, Ricles, Sause (b0060) 2005; 131
Liu, Xu, Li (b0080) 2020; 148
Garlock, Ricles, Sause (b0065) 2008; 30
Eatherton, Ma, Krawinkler, Mar, Billington, Hajjar (b0095) 2014; 140
Wang, Fang, Shen, Zhang, Ding, Wu (b0200) 2021; 242
ASCE. ASCE/SEI 7-16. Minimum design loads for buildings and other structures. Reston VA: American Society of Civil Engineers; 2016.
Zhu, Zhang (b0145) 2008; 134
Achour, Miyajima, Kitaura, Price (b0030) 2011; 27
Qiu, Zhao, Zhu (b0175) 2020; 27
Hu, Wang (b0105) 2021; 238
Hu, Wang, Qu (b0025) 2020; 204
Hu, Wang, Qu, Alam (b0110) 2020; 211
Priestley (10.1016/j.engstruct.2022.114935_b0050) 1999; 44
Eatherton (10.1016/j.engstruct.2022.114935_b0090) 2014; 140
Qiu (10.1016/j.engstruct.2022.114935_b0190) 2017; 46
Ozbulut (10.1016/j.engstruct.2022.114935_b0170) 2015; 2
Chou (10.1016/j.engstruct.2022.114935_b0070) 2011; 67
Chou (10.1016/j.engstruct.2022.114935_b0155) 2019; 140
Qiu (10.1016/j.engstruct.2022.114935_b0175) 2020; 27
Fang (10.1016/j.engstruct.2022.114935_b0180) 2022; 26
Xu (10.1016/j.engstruct.2022.114935_b0185) 2017; 139
Achour (10.1016/j.engstruct.2022.114935_b0030) 2011; 27
Hu (10.1016/j.engstruct.2022.114935_b0020) 2022; 188
Zhang (10.1016/j.engstruct.2022.114935_b0075) 2022; 250
10.1016/j.engstruct.2022.114935_b0205
Hu (10.1016/j.engstruct.2022.114935_b0210) 2021; 1–32
Friedman (10.1016/j.engstruct.2022.114935_b0215) 2001
10.1016/j.engstruct.2022.114935_b0260
Cole (10.1016/j.engstruct.2022.114935_b0005) 2012; 41
Gupta (10.1016/j.engstruct.2022.114935_b0250) 1999
Qu (10.1016/j.engstruct.2022.114935_b0265) 2016; 16
Lignos (10.1016/j.engstruct.2022.114935_b0240) 2007
Fang (10.1016/j.engstruct.2022.114935_b0230) 2018; 177
Zhu (10.1016/j.engstruct.2022.114935_b0160) 2021; 239
Hu (10.1016/j.engstruct.2022.114935_b0045) 2022; 266
Liu (10.1016/j.engstruct.2022.114935_b0080) 2020; 148
Xu (10.1016/j.engstruct.2022.114935_b0125) 2021; 177
10.1016/j.engstruct.2022.114935_b0015
Zhu (10.1016/j.engstruct.2022.114935_b0145) 2008; 134
Garlock (10.1016/j.engstruct.2022.114935_b0065) 2008; 30
10.1016/j.engstruct.2022.114935_b0270
Chiou (10.1016/j.engstruct.2022.114935_b0255) 2008; 24
Miranda (10.1016/j.engstruct.2022.114935_b0035) 2012; 28
Hu (10.1016/j.engstruct.2022.114935_b0115) 2020; 225
Lignos (10.1016/j.engstruct.2022.114935_b0245) 2011; 137
Hu (10.1016/j.engstruct.2022.114935_b0040) 2022; 257
Shi (10.1016/j.engstruct.2022.114935_b0165) 2020; 27
Howes (10.1016/j.engstruct.2022.114935_b0010) 2013; 166
Hu (10.1016/j.engstruct.2022.114935_b0025) 2020; 204
Hu (10.1016/j.engstruct.2022.114935_b0110) 2020; 211
Karavasilis (10.1016/j.engstruct.2022.114935_b0220) 2006; 28
Wang (10.1016/j.engstruct.2022.114935_b0200) 2021; 242
Ohtori (10.1016/j.engstruct.2022.114935_b0225) 2004; 130
Chou (10.1016/j.engstruct.2022.114935_b0150) 2014; 101
Ricles (10.1016/j.engstruct.2022.114935_b0055) 2001; 127
Garlock (10.1016/j.engstruct.2022.114935_b0060) 2005; 131
Eatherton (10.1016/j.engstruct.2022.114935_b0095) 2014; 140
Xu (10.1016/j.engstruct.2022.114935_b0135) 2017; 46
Tremblay (10.1016/j.engstruct.2022.114935_b0195) 2008; 134
Zhang (10.1016/j.engstruct.2022.114935_b0120) 2021; 229
Xu (10.1016/j.engstruct.2022.114935_b0130) 2022; 190
Wang (10.1016/j.engstruct.2022.114935_b0140) 2019; 48
Hu (10.1016/j.engstruct.2022.114935_b0105) 2021; 238
Hu (10.1016/j.engstruct.2022.114935_b0100) 2020; 204
Xu (10.1016/j.engstruct.2022.114935_b0085) 2021; 147
10.1016/j.engstruct.2022.114935_b0235
References_xml – volume: 137
  start-page: 1291
  year: 2011
  end-page: 1302
  ident: b0245
  article-title: Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading
  publication-title: J Struct Eng
– volume: 140
  start-page: 168
  year: 2019
  end-page: 181
  ident: b0155
  article-title: Seismic loading tests of full-scale two-story steel building frames with self-centering braces and buckling-restrained braces
  publication-title: Thin-Walled Struct
– volume: 127
  start-page: 113
  year: 2001
  end-page: 121
  ident: b0055
  article-title: Posttensioned seismic-resistant connections for steel frames
  publication-title: J Struct Eng
– volume: 148
  start-page: 106598
  year: 2020
  ident: b0080
  article-title: Development and experimental validation of a steel plate shear wall with self-centering energy dissipation braces
  publication-title: Thin-Walled Struct
– volume: 266
  start-page: 114603
  year: 2022
  ident: b0045
  article-title: Hybrid self-centering companion spines for structural and nonstructural damage control
  publication-title: Eng Struct
– volume: 134
  start-page: 121
  year: 2008
  end-page: 131
  ident: b0145
  article-title: Seismic analysis of concentrically braced frame systems with self-centering friction damping braces
  publication-title: J Struct Eng
– volume: 140
  year: 2014
  ident: b0095
  article-title: Design concepts for controlled rocking of self-centering steel-braced frames
  publication-title: J Struct Eng
– volume: 24
  start-page: 23
  year: 2008
  end-page: 44
  ident: b0255
  article-title: NGA project strong-motion database
  publication-title: Earthquake Spectra
– volume: 1–32
  year: 2021
  ident: b0210
  article-title: Probabilistic Nonlinear Displacement Ratio Prediction of Self-centering Energy-absorbing Dual Rocking Core System under Near-fault Ground Motions Using Machine Learning
  publication-title: J Earthquake Eng
– start-page: 1
  year: 2007
  end-page: 12
  ident: b0240
  article-title: A database in support of modeling of component deterioration for collapse prediction of steel frame structures. Structural Engineering Research
  publication-title: Frontiers
– volume: 188
  start-page: 106986
  year: 2022
  ident: b0020
  article-title: Performance-based seismic design method for retrofitting steel moment-resisting frames with self-centering energy-absorbing dual rocking core system
  publication-title: J Construct Steel Res
– volume: 28
  start-page: 453
  year: 2012
  end-page: 471
  ident: b0035
  article-title: Performance of nonstructural components during the 27 February 2010 Chile earthquake
  publication-title: Earthquake Spectra
– volume: 229
  start-page: 111671
  year: 2021
  ident: b0120
  article-title: Development and seismic retrofit of an innovative modular steel structure connection using symmetrical self-centering haunch braces
  publication-title: Eng Struct
– volume: 27
  year: 2020
  ident: b0165
  article-title: Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings
  publication-title: Struct Control Health Monitor
– volume: 177
  start-page: 106473
  year: 2021
  ident: b0125
  article-title: Development and validation of a versatile hysteretic model for pre-compressed self-centering buckling-restrained brace
  publication-title: J Construct Steel Res
– volume: 242
  start-page: 112527
  year: 2021
  ident: b0200
  article-title: Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation
  publication-title: Eng Struct
– volume: 177
  start-page: 579
  year: 2018
  end-page: 597
  ident: b0230
  article-title: Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes
  publication-title: Eng Struct
– volume: 134
  start-page: 108
  year: 2008
  end-page: 120
  ident: b0195
  article-title: Seismic response of multistory buildings with self-centering energy dissipative steel braces
  publication-title: J Struct Eng
– volume: 238
  start-page: 112191
  year: 2021
  ident: b0105
  article-title: Qu BSelf-centering companion spines with friction spring dampers: Validation test and direct displacement-based design
  publication-title: Eng Struct
– volume: 204
  start-page: 110038
  year: 2020
  ident: b0100
  article-title: Seismic evaluation of low-rise steel building frames with self-centering energy-absorbing rigid cores designed using a force-based approach
  publication-title: Eng Struct.
– volume: 257
  start-page: 114102
  year: 2022
  ident: b0040
  article-title: Hybrid self-centering rocking core system with fiction spring and viscous dampers for seismic resilience
  publication-title: Eng Struct.
– volume: 28
  start-page: 9
  year: 2006
  end-page: 22
  ident: b0220
  article-title: Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames
  publication-title: Eng Struct
– volume: 27
  start-page: 617
  year: 2011
  end-page: 634
  ident: b0030
  article-title: Earthquake-induced structural and nonstructural damage in hospitals
  publication-title: Earthquake spectra
– volume: 225
  start-page: 111338
  year: 2020
  ident: b0115
  article-title: Self-centering energy-absorbing rocking core system with friction spring damper: experiments, modeling and design
  publication-title: Eng Struct (under review)
– year: 2001
  ident: b0215
  article-title: The elements of statistical learning
– volume: 130
  start-page: 366
  year: 2004
  end-page: 385
  ident: b0225
  article-title: Benchmark control problems for seismically excited nonlinear buildings
  publication-title: J Eng Mech
– volume: 101
  start-page: 19
  year: 2014
  end-page: 32
  ident: b0150
  article-title: Development of cross-anchored dual-core self-centering braces for seismic resistance
  publication-title: J Constr Steel Res
– volume: 147
  start-page: 04021056
  year: 2021
  ident: b0085
  article-title: Experimental investigation on the seismic behavior of a new self-centering shear wall with additional friction
  publication-title: J Struct Eng
– volume: 27
  year: 2020
  ident: b0175
  article-title: Seismic upgrading of multistory steel moment-resisting frames by installing shape memory alloy braces: Design method and performance evaluation
  publication-title: Struct Control Health Monitor
– reference: FEMA. FEMA P58. Seismic performance assessment of buildings. Federal Emergency Management Agency; 2012.
– volume: 30
  start-page: 1037
  year: 2008
  end-page: 1047
  ident: b0065
  article-title: Influence of design parameters on seismic response of post-tensioned steel MRF systems
  publication-title: Eng Struct
– volume: 239
  year: 2021
  ident: b0160
  article-title: Seismic design of self-centering viscous-hysteretic devices used for steel moment-resisting frames
  publication-title: Eng Struct
– volume: 44
  start-page: 42
  year: 1999
  end-page: 67
  ident: b0050
  article-title: Preliminary results and conclusions from the PRESSS five-story precast concrete test building
  publication-title: PCI journal
– volume: 140
  start-page: 04014083
  year: 2014
  ident: b0090
  article-title: Quasi-static cyclic behavior of controlled rocking steel frames
  publication-title: J Struct Eng
– volume: 46
  start-page: 1065
  year: 2017
  end-page: 1080
  ident: b0135
  article-title: Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs
  publication-title: Earthquake Eng Struct Dyn
– volume: 41
  start-page: 893
  year: 2012
  end-page: 913
  ident: b0005
  article-title: Building pounding damage observed in the 2011 Christchurch earthquake
  publication-title: Earthquake Eng Struct Dyn
– reference: McCormick J, Aburano H, Ikenaga M, Nakashima M. Permissible residual deformation levels for building structures considering both safety and human elements. In: Proceedings of the 14th world conference on earthquake engineering 2008. p. 12-7.
– volume: 2
  start-page: 421
  year: 2015
  end-page: 432
  ident: b0170
  article-title: Seismic performance assessment of steel frames upgraded with self-centering viscous dampers
  publication-title: Dyn Civ Struct
– reference: ASCE. ASCE/SEI 7-16. Minimum design loads for buildings and other structures. Reston VA: American Society of Civil Engineers; 2016.
– volume: 211
  start-page: 110424
  year: 2020
  ident: b0110
  article-title: Development and validation test of a novel Self-centering Energy-absorbing Dual Rocking Core (SEDRC) system for seismic resilience
  publication-title: Eng Struct
– volume: 46
  start-page: 117
  year: 2017
  end-page: 137
  ident: b0190
  article-title: Shake table test and numerical study of self-centering steel frame with SMA braces
  publication-title: Earthquake Eng Struct Dyn
– reference: FEMA. FEMA P695. Quantification of building seismic performance factors. Washington, DC: Federal Emergency Management Agency; 2009.
– year: 1999
  ident: b0250
  article-title: Seismic demands for performance evaluation of steel moment resisting frame structures
– reference: Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center.2006.
– volume: 166
  start-page: 57
  year: 2013
  end-page: 64
  ident: b0010
  article-title: Infrastructure impact and recovery following the 2010–2011 earthquakes in Christchurch, New Zealand
  publication-title: Proce Institution Civ Engineers - Civil Eng
– volume: 250
  start-page: 113404
  year: 2022
  ident: b0075
  article-title: Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices
  publication-title: Eng Struct
– volume: 48
  start-page: 1045
  year: 2019
  end-page: 1065
  ident: b0140
  article-title: Self-centering friction spring dampers for seismic resilience
  publication-title: Earthquake Eng Struct Dyn
– volume: 16
  start-page: 547
  year: 2016
  end-page: 557
  ident: b0265
  article-title: Improving inter-story drift distribution of steel moment resisting frames through stiff rocking cores
  publication-title: Int J Steel Struct
– volume: 204
  start-page: 110021
  year: 2020
  ident: b0025
  article-title: Seismic economic losses in mid-rise steel buildings with conventional and emerging lateral force resisting systems
  publication-title: Eng Struct.
– volume: 131
  start-page: 438
  year: 2005
  end-page: 448
  ident: b0060
  article-title: Experimental studies of full-scale posttensioned steel connections
  publication-title: J Struct Eng
– volume: 67
  start-page: 1621
  year: 2011
  end-page: 1635
  ident: b0070
  article-title: Development of floor slab for steel post-tensioned self-centering moment frames
  publication-title: J Constr Steel Res
– volume: 190
  start-page: 107121
  year: 2022
  ident: b0130
  article-title: Assembled self-centering energy dissipation braces and a force method-based model
  publication-title: J Construct Steel Res
– volume: 26
  start-page: 5004
  year: 2022
  end-page: 5031
  ident: b0180
  article-title: Seismic performance of self-centering steel frames with SMA-viscoelastic hybrid braces
  publication-title: J Earthquake Eng
– volume: 139
  start-page: 363
  year: 2017
  end-page: 373
  ident: b0185
  article-title: Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs
  publication-title: J Constr Steel Res
– volume: 27
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0165
  article-title: Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings
  publication-title: Struct Control Health Monitor
  doi: 10.1002/stc.2462
– volume: 46
  start-page: 117
  issue: 1
  year: 2017
  ident: 10.1016/j.engstruct.2022.114935_b0190
  article-title: Shake table test and numerical study of self-centering steel frame with SMA braces
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2777
– year: 1999
  ident: 10.1016/j.engstruct.2022.114935_b0250
– volume: 190
  start-page: 107121
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0130
  article-title: Assembled self-centering energy dissipation braces and a force method-based model
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2021.107121
– volume: 137
  start-page: 1291
  issue: 11
  year: 2011
  ident: 10.1016/j.engstruct.2022.114935_b0245
  article-title: Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000376
– volume: 177
  start-page: 579
  year: 2018
  ident: 10.1016/j.engstruct.2022.114935_b0230
  article-title: Peak and residual responses of steel moment-resisting and braced frames under pulse-like near-fault earthquakes
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.10.013
– volume: 166
  start-page: 57
  issue: 5
  year: 2013
  ident: 10.1016/j.engstruct.2022.114935_b0010
  article-title: Infrastructure impact and recovery following the 2010–2011 earthquakes in Christchurch, New Zealand
  publication-title: Proce Institution Civ Engineers - Civil Eng
  doi: 10.1680/cien.12.00019
– ident: 10.1016/j.engstruct.2022.114935_b0270
– volume: 139
  start-page: 363
  year: 2017
  ident: 10.1016/j.engstruct.2022.114935_b0185
  article-title: Experimental behavior and analysis of self-centering steel brace with pre-pressed disc springs
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2017.09.021
– volume: 147
  start-page: 04021056
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0085
  article-title: Experimental investigation on the seismic behavior of a new self-centering shear wall with additional friction
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003024
– volume: 46
  start-page: 1065
  issue: 7
  year: 2017
  ident: 10.1016/j.engstruct.2022.114935_b0135
  article-title: Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.2844
– ident: 10.1016/j.engstruct.2022.114935_b0235
– ident: 10.1016/j.engstruct.2022.114935_b0260
– volume: 204
  start-page: 110038
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0100
  article-title: Seismic evaluation of low-rise steel building frames with self-centering energy-absorbing rigid cores designed using a force-based approach
  publication-title: Eng Struct.
  doi: 10.1016/j.engstruct.2019.110038
– volume: 134
  start-page: 108
  issue: 1
  year: 2008
  ident: 10.1016/j.engstruct.2022.114935_b0195
  article-title: Seismic response of multistory buildings with self-centering energy dissipative steel braces
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(108)
– volume: 130
  start-page: 366
  issue: 4
  year: 2004
  ident: 10.1016/j.engstruct.2022.114935_b0225
  article-title: Benchmark control problems for seismically excited nonlinear buildings
  publication-title: J Eng Mech
– volume: 44
  start-page: 42
  issue: 6
  year: 1999
  ident: 10.1016/j.engstruct.2022.114935_b0050
  article-title: Preliminary results and conclusions from the PRESSS five-story precast concrete test building
  publication-title: PCI journal
  doi: 10.15554/pcij.11011999.42.67
– volume: 140
  start-page: 04014083
  year: 2014
  ident: 10.1016/j.engstruct.2022.114935_b0090
  article-title: Quasi-static cyclic behavior of controlled rocking steel frames
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001005
– volume: 204
  start-page: 110021
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0025
  article-title: Seismic economic losses in mid-rise steel buildings with conventional and emerging lateral force resisting systems
  publication-title: Eng Struct.
  doi: 10.1016/j.engstruct.2019.110021
– volume: 250
  start-page: 113404
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0075
  article-title: Cyclic response of a self-centering RC wall with tension-compression-coupled disc spring devices
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113404
– volume: 101
  start-page: 19
  year: 2014
  ident: 10.1016/j.engstruct.2022.114935_b0150
  article-title: Development of cross-anchored dual-core self-centering braces for seismic resistance
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2014.04.035
– volume: 211
  start-page: 110424
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0110
  article-title: Development and validation test of a novel Self-centering Energy-absorbing Dual Rocking Core (SEDRC) system for seismic resilience
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110424
– volume: 27
  start-page: 617
  issue: 3
  year: 2011
  ident: 10.1016/j.engstruct.2022.114935_b0030
  article-title: Earthquake-induced structural and nonstructural damage in hospitals
  publication-title: Earthquake spectra
  doi: 10.1193/1.3604815
– volume: 48
  start-page: 1045
  issue: 9
  year: 2019
  ident: 10.1016/j.engstruct.2022.114935_b0140
  article-title: Self-centering friction spring dampers for seismic resilience
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.3174
– start-page: 1
  year: 2007
  ident: 10.1016/j.engstruct.2022.114935_b0240
  article-title: A database in support of modeling of component deterioration for collapse prediction of steel frame structures. Structural Engineering Research
  publication-title: Frontiers
– volume: 134
  start-page: 121
  issue: 1
  year: 2008
  ident: 10.1016/j.engstruct.2022.114935_b0145
  article-title: Seismic analysis of concentrically braced frame systems with self-centering friction damping braces
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2008)134:1(121)
– volume: 26
  start-page: 5004
  issue: 10
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0180
  article-title: Seismic performance of self-centering steel frames with SMA-viscoelastic hybrid braces
  publication-title: J Earthquake Eng
  doi: 10.1080/13632469.2020.1856233
– volume: 188
  start-page: 106986
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0020
  article-title: Performance-based seismic design method for retrofitting steel moment-resisting frames with self-centering energy-absorbing dual rocking core system
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2021.106986
– volume: 27
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0175
  article-title: Seismic upgrading of multistory steel moment-resisting frames by installing shape memory alloy braces: Design method and performance evaluation
  publication-title: Struct Control Health Monitor
  doi: 10.1002/stc.2596
– volume: 257
  start-page: 114102
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0040
  article-title: Hybrid self-centering rocking core system with fiction spring and viscous dampers for seismic resilience
  publication-title: Eng Struct.
  doi: 10.1016/j.engstruct.2022.114102
– year: 2001
  ident: 10.1016/j.engstruct.2022.114935_b0215
– volume: 148
  start-page: 106598
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0080
  article-title: Development and experimental validation of a steel plate shear wall with self-centering energy dissipation braces
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.106598
– volume: 30
  start-page: 1037
  issue: 4
  year: 2008
  ident: 10.1016/j.engstruct.2022.114935_b0065
  article-title: Influence of design parameters on seismic response of post-tensioned steel MRF systems
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2007.05.026
– volume: 28
  start-page: 453
  issue: 1_suppl1
  year: 2012
  ident: 10.1016/j.engstruct.2022.114935_b0035
  article-title: Performance of nonstructural components during the 27 February 2010 Chile earthquake
  publication-title: Earthquake Spectra
  doi: 10.1193/1.4000032
– volume: 239
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0160
  article-title: Seismic design of self-centering viscous-hysteretic devices used for steel moment-resisting frames
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112369
– volume: 140
  issue: 11
  year: 2014
  ident: 10.1016/j.engstruct.2022.114935_b0095
  article-title: Design concepts for controlled rocking of self-centering steel-braced frames
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001047
– ident: 10.1016/j.engstruct.2022.114935_b0205
– volume: 16
  start-page: 547
  issue: 2
  year: 2016
  ident: 10.1016/j.engstruct.2022.114935_b0265
  article-title: Improving inter-story drift distribution of steel moment resisting frames through stiff rocking cores
  publication-title: Int J Steel Struct
  doi: 10.1007/s13296-016-6023-z
– volume: 225
  start-page: 111338
  year: 2020
  ident: 10.1016/j.engstruct.2022.114935_b0115
  article-title: Self-centering energy-absorbing rocking core system with friction spring damper: experiments, modeling and design
  publication-title: Eng Struct (under review)
  doi: 10.1016/j.engstruct.2020.111338
– volume: 24
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.engstruct.2022.114935_b0255
  article-title: NGA project strong-motion database
  publication-title: Earthquake Spectra
  doi: 10.1193/1.2894831
– volume: 127
  start-page: 113
  issue: 2
  year: 2001
  ident: 10.1016/j.engstruct.2022.114935_b0055
  article-title: Posttensioned seismic-resistant connections for steel frames
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2001)127:2(113)
– volume: 177
  start-page: 106473
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0125
  article-title: Development and validation of a versatile hysteretic model for pre-compressed self-centering buckling-restrained brace
  publication-title: J Construct Steel Res
  doi: 10.1016/j.jcsr.2020.106473
– volume: 41
  start-page: 893
  issue: 5
  year: 2012
  ident: 10.1016/j.engstruct.2022.114935_b0005
  article-title: Building pounding damage observed in the 2011 Christchurch earthquake
  publication-title: Earthquake Eng Struct Dyn
  doi: 10.1002/eqe.1164
– ident: 10.1016/j.engstruct.2022.114935_b0015
– volume: 266
  start-page: 114603
  year: 2022
  ident: 10.1016/j.engstruct.2022.114935_b0045
  article-title: Hybrid self-centering companion spines for structural and nonstructural damage control
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114603
– volume: 67
  start-page: 1621
  issue: 10
  year: 2011
  ident: 10.1016/j.engstruct.2022.114935_b0070
  article-title: Development of floor slab for steel post-tensioned self-centering moment frames
  publication-title: J Constr Steel Res
  doi: 10.1016/j.jcsr.2011.04.006
– volume: 140
  start-page: 168
  year: 2019
  ident: 10.1016/j.engstruct.2022.114935_b0155
  article-title: Seismic loading tests of full-scale two-story steel building frames with self-centering braces and buckling-restrained braces
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2019.03.024
– volume: 1–32
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0210
  article-title: Probabilistic Nonlinear Displacement Ratio Prediction of Self-centering Energy-absorbing Dual Rocking Core System under Near-fault Ground Motions Using Machine Learning
  publication-title: J Earthquake Eng
– volume: 131
  start-page: 438
  issue: 3
  year: 2005
  ident: 10.1016/j.engstruct.2022.114935_b0060
  article-title: Experimental studies of full-scale posttensioned steel connections
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2005)131:3(438)
– volume: 238
  start-page: 112191
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0105
  article-title: Qu BSelf-centering companion spines with friction spring dampers: Validation test and direct displacement-based design
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112191
– volume: 242
  start-page: 112527
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0200
  article-title: Performance assessment of disc spring-based self-centering braces for seismic hazard mitigation
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112527
– volume: 28
  start-page: 9
  issue: 1
  year: 2006
  ident: 10.1016/j.engstruct.2022.114935_b0220
  article-title: Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2005.06.021
– volume: 229
  start-page: 111671
  year: 2021
  ident: 10.1016/j.engstruct.2022.114935_b0120
  article-title: Development and seismic retrofit of an innovative modular steel structure connection using symmetrical self-centering haunch braces
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.111671
– volume: 2
  start-page: 421
  year: 2015
  ident: 10.1016/j.engstruct.2022.114935_b0170
  article-title: Seismic performance assessment of steel frames upgraded with self-centering viscous dampers
  publication-title: Dyn Civ Struct
SSID ssj0002880
Score 2.5887077
Snippet •Prediction models of Cμ and Cr were developed for the RSMRF.•A peak and residual displacement-based design method was developed for retrofitting SMRFs.•The...
Conventional steel moment-resisting frames (SMRFs) absorb seismic energy through steel yielding behavior, leading to significant residual displacement....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114935
SubjectTerms Buildings
Control methods
Degrees of freedom
Design
Displacement
Drift
Earthquakes
Economic impact
Learning algorithms
Machine learning
Moment-resisting frames
Peak and residual displacement
Post-earthquake repairability
Prediction models
Residual displacement-based design method
Retrofitting
Seismic activity
Seismic energy
Seismic engineering
Seismic response
Self-centering brace
Steel
Steel frames
Stiffness
Structural safety
Title Machine learning-aided peak and residual displacement-based design method for enhancing seismic performance of steel moment-resisting frames by installing self-centering braces
URI https://dx.doi.org/10.1016/j.engstruct.2022.114935
https://www.proquest.com/docview/2754071780
Volume 271
WOSCitedRecordID wos000858719000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7323
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002880
  issn: 0141-0296
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3fb9MwEMetquMBHiZ-isFAfuAtStXmp7O3Cg0NxCakDehb5MSXNltJq2Wbtn8K8SdyZztJ24EGQrxElVU7be9T-3z5-o6xN3nkBYo2OV4CvhtAIFypcnClDEEGRaF8Xa3hy8f46EhMJsmnXu97cxbmah5Xlbi-Tpb_1dTYhsamo7N_Ye52UGzA12h0vKLZ8fpHhj_U8kho6kFMXUoCqZwlyDMjJofaHMBSZa0VWRQfdGk1U47Seg5bVtpkA69mlJGDgg5Q1iSkX64cNUBPEymBufNtoUehsWstpC5I9FWTc1uSA2oyf9cwL1ySg-r8hw5u1HMrYWyeDXTZER2T2fbyvBM5HlzqWO2MxPPTLuJtWhfV9KaF9HgmZ_hTO2PL--Gge3BgJrevUK4GPBAjEt2FXRSuOYnTyZ5MYHTkDj1THbeZ2T1T3eXWKmECFqcDqKbmuwzoPpQ2OTG5UzZScB9rNSwO7pF2YERFrbe8OExEn22N3-9PPrRrvyd0rb7206wpCn95u9_5QxuegXZ3Th6ybbtP4WPD1yPWg-oxe7BinyfshyWNr5PGiTSOpPGGNH6bNG5I44Y0jkDxljRuSeMrpPFFwTVpfJM0bkjj2Q3vSOPrpHFD2lP2-d3-ydsD1xYAcfNgmFy4sRjmWTbyijCMszwKoZC0ARA-bvKBSq5BlIGKRsqXUokAskhKT6EPHceFEkL6z1i_WlTwnPE8E8ovJM5KURLgOpX4RQARoPOc5B522mFRY4Y0t9nxqUjLPG1kkKdpa7-U7Jca--2wYdtxaRLE3N1lr7Fzav1c47-mCOjdnXcbMlI769QpwqgDM2L44l_Gfsnud3-4XdbHN8Ardi-_uijr89eW9Z8Nd-hx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-aided+peak+and+residual+displacement-based+design+method+for+enhancing+seismic+performance+of+steel+moment-resisting+frames+by+installing+self-centering+braces&rft.jtitle=Engineering+structures&rft.au=Hu%2C+Shuling&rft.au=Zhu%2C+Songye&rft.au=Shahria+Alam%2C+M.&rft.au=Wang%2C+Wei&rft.date=2022-11-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=271&rft_id=info:doi/10.1016%2Fj.engstruct.2022.114935&rft.externalDocID=S0141029622010112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon