Extensions and presentations of transversal matroids

A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of combinatorics Ročník 50; s. 18 - 29
Hlavní autoři: Bonin, Joseph E., de Mier, Anna
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2015
Témata:
ISSN:0195-6698, 1095-9971
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of M and extensions of presentations of M. We show that a presentation of M is minimal if and only if different extensions of it give different extensions of M; also, all transversal extensions of M can be obtained by extending the minimal presentations of M. We also begin to explore the partial order that the weak order gives on the transversal extensions of M.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2015.03.011