Extensions and presentations of transversal matroids
A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections...
Uloženo v:
| Vydáno v: | European journal of combinatorics Ročník 50; s. 18 - 29 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Publikace |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2015
|
| Témata: | |
| ISSN: | 0195-6698, 1095-9971 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of M and extensions of presentations of M. We show that a presentation of M is minimal if and only if different extensions of it give different extensions of M; also, all transversal extensions of M can be obtained by extending the minimal presentations of M. We also begin to explore the partial order that the weak order gives on the transversal extensions of M. |
|---|---|
| ISSN: | 0195-6698 1095-9971 |
| DOI: | 10.1016/j.ejc.2015.03.011 |