Extensions and presentations of transversal matroids

A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of combinatorics Ročník 50; s. 18 - 29
Hlavní autori: Bonin, Joseph E., de Mier, Anna
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2015
Predmet:
ISSN:0195-6698, 1095-9971
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of M and extensions of presentations of M. We show that a presentation of M is minimal if and only if different extensions of it give different extensions of M; also, all transversal extensions of M can be obtained by extending the minimal presentations of M. We also begin to explore the partial order that the weak order gives on the transversal extensions of M.
AbstractList A transversal matroid MM can be represented by a collection of sets, called a presentation of MM, whose partial transversals are the independent sets of MM. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of MM and extensions of presentations of MM. We show that a presentation of MM is minimal if and only if different extensions of it give different extensions of MM; also, all transversal extensions of MM can be obtained by extending the minimal presentations of MM. We also begin to explore the partial order that the weak order gives on the transversal extensions of MM. A transversal matroid MM can be represented by a collection of sets, called a presentation of MM, whose partial transversals are the independent sets of MM. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of MM and extensions of presentations of MM. We show that a presentation of MM is minimal if and only if different extensions of it give different extensions of MM; also, all transversal extensions of MM can be obtained by extending the minimal presentations of MM. We also begin to explore the partial order that the weak order gives on the transversal extensions of MM. Peer Reviewed
A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M. Minimal presentations are those for which removing any element from any set gives a presentation of a different matroid. We study the connections between (single-element) transversal extensions of M and extensions of presentations of M. We show that a presentation of M is minimal if and only if different extensions of it give different extensions of M; also, all transversal extensions of M can be obtained by extending the minimal presentations of M. We also begin to explore the partial order that the weak order gives on the transversal extensions of M.
Author de Mier, Anna
Bonin, Joseph E.
Author_xml – sequence: 1
  givenname: Joseph E.
  surname: Bonin
  fullname: Bonin, Joseph E.
  email: jbonin@gwu.edu
  organization: Department of Mathematics, The George Washington University, Washington, DC 20052, USA
– sequence: 2
  givenname: Anna
  surname: de Mier
  fullname: de Mier, Anna
  email: anna.de.mier@upc.edu
  organization: Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034, Barcelona, Spain
BookMark eNp9kM1KAzEQgINUsK0-gLd9ga4z2WS3wZOU-gMFL3oO2WQWsrS7JYmib29qBcVDD2Eyw3zDzDdjk2EciLFrhBIB65u-pN6WHFCWUJWAeMamCEoulGpwwqaA-V_XannBZjH2kDtkVU2ZWH8kGqIfh1iYwRX7QJGGZNJ3ZeyKFMwQ3ylEsy12JoXRu3jJzjuzjXT1E-fs9X79snpcbJ4fnlZ3m4UVoNKikY2yyokOW6cckZSC0CgAQQbASFBtw7tGtcIq4EvjqOambaVExK5zrpozPM618c3qQJaCNUmPxv8mh8eh4ZorgYL_YcIYY6BO74PfmfCpEfRBle51VqUPqjRUOovITPOPsf6oIF_vtyfJ2yNJWcO7p6Cj9TRYcj5vmLQb_Qn6C3I_hgc
CitedBy_id crossref_primary_10_1016_j_disc_2022_113131
crossref_primary_10_1016_j_ejc_2025_104153
Cites_doi 10.1112/jlms/s2-5.2.289
10.1093/qmath/22.3.435
10.6028/jres.069B.003
10.1016/0095-8956(72)90041-X
10.6028/jres.069B.016
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
Copyright 2015 Elsevier Ltd
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID 6I.
AAFTH
AAYXX
CITATION
XX2
DOI 10.1016/j.ejc.2015.03.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Recercat
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-9971
EndPage 29
ExternalDocumentID oai_recercat_cat_2072_294142
10_1016_j_ejc_2015_03_011
S0195669815000724
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
UPT
~HD
XX2
ID FETCH-LOGICAL-c409t-7579c9d4f1bd9dee554e1a9004ea00a509b72f79b4c9028ade62abb55111ffdd3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000357835900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0195-6698
IngestDate Fri Nov 07 13:48:59 EST 2025
Sat Nov 29 02:54:34 EST 2025
Tue Nov 18 22:10:08 EST 2025
Fri Feb 23 02:17:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-7579c9d4f1bd9dee554e1a9004ea00a509b72f79b4c9028ade62abb55111ffdd3
OpenAccessLink https://recercat.cat/handle/2072/294142
PageCount 12
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_294142
crossref_primary_10_1016_j_ejc_2015_03_011
crossref_citationtrail_10_1016_j_ejc_2015_03_011
elsevier_sciencedirect_doi_10_1016_j_ejc_2015_03_011
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle European journal of combinatorics
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mason (br000040) 1969
Brualdi (br000015) 1987; vol. 29
Oxley (br000045) 2011
Bondy, Welsh (br000010) 1971; 22
Brualdi, Dinolt (br000020) 1972; 12
Crapo (br000025) 1965; 69
Bondy (br000005) 1972; 5
Las Vergnas (br000035) 1970; 270
Edmonds, Fulkerson (br000030) 1965; 69B
Las Vergnas (10.1016/j.ejc.2015.03.011_br000035) 1970; 270
Bondy (10.1016/j.ejc.2015.03.011_br000010) 1971; 22
Brualdi (10.1016/j.ejc.2015.03.011_br000020) 1972; 12
Mason (10.1016/j.ejc.2015.03.011_br000040) 1969
Oxley (10.1016/j.ejc.2015.03.011_br000045) 2011
Brualdi (10.1016/j.ejc.2015.03.011_br000015) 1987; vol. 29
Edmonds (10.1016/j.ejc.2015.03.011_br000030) 1965; 69B
Bondy (10.1016/j.ejc.2015.03.011_br000005) 1972; 5
Crapo (10.1016/j.ejc.2015.03.011_br000025) 1965; 69
References_xml – volume: 22
  start-page: 435
  year: 1971
  end-page: 451
  ident: br000010
  article-title: Some results on transversal matroids and constructions for identically self-dual matroids
  publication-title: Quart. J. Math. Oxford Ser.
– year: 2011
  ident: br000045
  article-title: Matroid Theory
– volume: 12
  start-page: 268
  year: 1972
  end-page: 286
  ident: br000020
  article-title: Characterizations of transversal matroids and their presentations
  publication-title: J. Combin. Theory Ser. B
– volume: 69
  start-page: 55
  year: 1965
  end-page: 65
  ident: br000025
  article-title: Single-element extensions of matroids
  publication-title: J. Res. Natl. Bur. Stand. Sect. B
– volume: 270
  start-page: A501
  year: 1970
  end-page: A503
  ident: br000035
  article-title: Sur les systèmes de représentants distincts d’une famille d’ensembles
  publication-title: C. R. Acad. Sci., Paris Sér. A–B
– volume: 5
  start-page: 289
  year: 1972
  end-page: 292
  ident: br000005
  article-title: Presentations of transversal matroids
  publication-title: J. Lond. Math. Soc. (2)
– year: 1969
  ident: br000040
  article-title: Representations of independence spaces
– volume: 69B
  start-page: 147
  year: 1965
  end-page: 153
  ident: br000030
  article-title: Transversals and matroid partition
  publication-title: J. Res. Natl. Bur. Stand. Sect. B
– volume: vol. 29
  start-page: 72
  year: 1987
  end-page: 97
  ident: br000015
  article-title: Transversal matroids
  publication-title: Combinatorial Geometries
– volume: 5
  start-page: 289
  year: 1972
  ident: 10.1016/j.ejc.2015.03.011_br000005
  article-title: Presentations of transversal matroids
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/s2-5.2.289
– year: 2011
  ident: 10.1016/j.ejc.2015.03.011_br000045
– volume: 22
  start-page: 435
  year: 1971
  ident: 10.1016/j.ejc.2015.03.011_br000010
  article-title: Some results on transversal matroids and constructions for identically self-dual matroids
  publication-title: Quart. J. Math. Oxford Ser.
  doi: 10.1093/qmath/22.3.435
– volume: 270
  start-page: A501
  year: 1970
  ident: 10.1016/j.ejc.2015.03.011_br000035
  article-title: Sur les systèmes de représentants distincts d’une famille d’ensembles
  publication-title: C. R. Acad. Sci., Paris Sér. A–B
– volume: 69
  start-page: 55
  year: 1965
  ident: 10.1016/j.ejc.2015.03.011_br000025
  article-title: Single-element extensions of matroids
  publication-title: J. Res. Natl. Bur. Stand. Sect. B
  doi: 10.6028/jres.069B.003
– volume: 12
  start-page: 268
  year: 1972
  ident: 10.1016/j.ejc.2015.03.011_br000020
  article-title: Characterizations of transversal matroids and their presentations
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(72)90041-X
– volume: 69B
  start-page: 147
  year: 1965
  ident: 10.1016/j.ejc.2015.03.011_br000030
  article-title: Transversals and matroid partition
  publication-title: J. Res. Natl. Bur. Stand. Sect. B
  doi: 10.6028/jres.069B.016
– volume: vol. 29
  start-page: 72
  year: 1987
  ident: 10.1016/j.ejc.2015.03.011_br000015
  article-title: Transversal matroids
– year: 1969
  ident: 10.1016/j.ejc.2015.03.011_br000040
SSID ssj0011533
Score 2.0489776
Snippet A transversal matroid M can be represented by a collection of sets, called a presentation of M, whose partial transversals are the independent sets of M....
A transversal matroid MM can be represented by a collection of sets, called a presentation of MM, whose partial transversals are the independent sets of MM....
SourceID csuc
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms 60 Probability theory and stochastic processes
60D05 Geometric probability, stochastic geometry, random sets
Classificació AMS
Combinatòria
Geometric probabilities
Matemàtica discreta
Matemàtiques i estadística
Probabilitats
Àrees temàtiques de la UPC
Title Extensions and presentations of transversal matroids
URI https://dx.doi.org/10.1016/j.ejc.2015.03.011
https://recercat.cat/handle/2072/294142
Volume 50
WOSCitedRecordID wos000357835900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9971
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011533
  issn: 0195-6698
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBYj3WE9lK0_WNZu-NBTh4OkSFF0LMVjG1vpIYXchGzJkDDckDglf_6eLMlx2nW0hx5iYidWhD_l6dPTe99D6NwSXRJubcqFpSkTnKUaj2yKObXCYAL3NUj_EtfX4-lU3oRq9qumnICoqvFmIxevCjVcA7Bd6uwL4G4bhQvwHkCHI8AOx2cBn22aoHQXAhNEAGJ-kY94q93s5IIxXN6I84TPfK7vP_3zgatCP2EFrRtBka1f3Xlyt7sIX7NB_MSArZiFMtmVL88dPQuEhxS7jrNR8nQ08lWio7X0MrHB3AXT6SdO77l4ZJK9d2A-sHOnGEl4oykbDOyO_PWDaakNFoxxaHMFTSjXhMJDhV1C9x4VXII53rv8kU1_trtHjsPGOpSu_3E3u4nre9CPHT7SK1brokNLOlRj8h4dhDVCcumx_YDe2OoQ7f9uBXZXR4htUU4A5WQH5eSuTDooJxHlY3T7LZtcfU9DAYy0gGV3nQouZCENK0lupLEWqB_8tyQMdqsx1sD1ckFLIXNWOBEebeyI6jwHEkxIWRozPEG96q6yH1FCJTUc1gIlHmrGtJB4rAVwTyko1qUWfYTjY1BFUId3RUr-qCcffx9dtLcsvDTK_78Mz1bBNG6Xha6VkzVvT9yLYkEVlYww2kcsIqACEfQET8Ggevo3Pr2kQ6fo3XbMn6FevVzbz-htcV_PVssvYUT9BVoTfRM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensions+and+presentations+of+transversal+matroids&rft.jtitle=European+journal+of+combinatorics&rft.au=Bonin%2C+Joseph+E.&rft.au=de+Mier%2C+Anna&rft.date=2015-11-01&rft.issn=0195-6698&rft.volume=50&rft.spage=18&rft.epage=29&rft_id=info:doi/10.1016%2Fj.ejc.2015.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejc_2015_03_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon