Deep Content-Dependent 3-D Convolutional Sparse Coding for Hyperspectral Image Denoising

Despite the significant successes in hyperspectral image (HSI) denoising, pure data-driven HSI denoising networks still suffer from limited understanding of inference. Deep unfolding (DU) is a feasible way to improve the interpretability of deep network. However, the specialized spatial-spectral DU...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 4125 - 4138
Main Authors: Yin, Haitao, Chen, Hao
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Despite the significant successes in hyperspectral image (HSI) denoising, pure data-driven HSI denoising networks still suffer from limited understanding of inference. Deep unfolding (DU) is a feasible way to improve the interpretability of deep network. However, the specialized spatial-spectral DU methods are seldom studied, and the simple spatial-spectral extension leads to unpleasant spectral distortion. To tackle these issues, we first propose a content-dependent 3-D convolutional sparse coding (CD-CSC) to jointly represent spatial-spectral feature. Specifically, the 3-D filters used in CD-CSC for each HSI are unique, which are determined by linear combination of base 3-D filters. Then, we develop a novel CD-CSC-inspired DU network for HSI denoising, called CD-CSCNet. Furthermore, by exploiting the lightweight of separable convolution and the adaptability of hypernetwork, we design a separable content-dependent 3D Convolution (SCD-Conv) to carry out CD-CSCNet. SCD-Conv not only reduces computational complexity, but also can be viewed as the convolutional sparse coding with spatial and spectral dictionaries. Extensive experimental results on the ICVL, Zhuhai-1 OHS-3C, and GaoFen-5 datasets demonstrate that CD-CSCNet outperforms several recent pure data-driven and DU-based networks quantitatively and visually.
AbstractList Despite the significant successes in hyperspectral image (HSI) denoising, pure data-driven HSI denoising networks still suffer from limited understanding of inference. Deep unfolding (DU) is a feasible way to improve the interpretability of deep network. However, the specialized spatial-spectral DU methods are seldom studied, and the simple spatial-spectral extension leads to unpleasant spectral distortion. To tackle these issues, we first propose a content-dependent 3-D convolutional sparse coding (CD-CSC) to jointly represent spatial-spectral feature. Specifically, the 3-D filters used in CD-CSC for each HSI are unique, which are determined by linear combination of base 3-D filters. Then, we develop a novel CD-CSC-inspired DU network for HSI denoising, called CD-CSCNet. Furthermore, by exploiting the lightweight of separable convolution and the adaptability of hypernetwork, we design a separable content-dependent 3D Convolution (SCD-Conv) to carry out CD-CSCNet. SCD-Conv not only reduces computational complexity, but also can be viewed as the convolutional sparse coding with spatial and spectral dictionaries. Extensive experimental results on the ICVL, Zhuhai-1 OHS-3C, and GaoFen-5 datasets demonstrate that CD-CSCNet outperforms several recent pure data-driven and DU-based networks quantitatively and visually.
Author Yin, Haitao
Chen, Hao
Author_xml – sequence: 1
  givenname: Haitao
  orcidid: 0000-0003-2975-2188
  surname: Yin
  fullname: Yin, Haitao
  email: haitaoyin@njupt.edu.cn
  organization: College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Hao
  orcidid: 0009-0007-0600-4351
  surname: Chen
  fullname: Chen, Hao
  email: ch1263152934@163.com
  organization: College of Automation and College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing, China
BookMark eNp9UU1rGzEUFCGFOml_QXNYyHkdPUm7Wh2DnTQOgUKdQG5C1j4Zmc1qI60D_veRuymEHnqSmDfzPmbOyGkfeiTkB9A5AFVX9-vH69_rOaNMzDmvpOTshMwYVFBCxatTMgPFVQmCiq_kLKUdpTWTis_I8xJxKBahH7EfyyUO2Lf5V_ByeUTfQrcffehNV6wHExNmsPX9tnAhFneHAWMa0I4x11cvZovFEvvgU2Z8I1-c6RJ-_3jPydPtzePirnz49XO1uH4oraBqLGuLtqLYOCskNgLkpgXVOCeZNI3KVYSNqylK1wpHkUPGrMs3tVQKtJyfk9XUtw1mp4foX0w86GC8_gOEuNUmjt52qE0tWgBpFZg8zbRNtRGsYYaK7EWzsbnX5dRriOF1j2nUu7CP-fikmWI1qxWlKrPUxLIxpBTRaetHc3Qp--A7DVQfQ9FTKPoYiv4IJWv5P9q_G_9fdTGpPCJ-UgjIS1H-Donpms4
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_infrared_2025_106139
crossref_primary_10_1109_TGRS_2025_3603390
crossref_primary_10_3389_fnins_2024_1516514
crossref_primary_10_1016_j_asr_2025_09_028
crossref_primary_10_1038_s41598_025_13857_9
Cites_doi 10.1109/JSTSP.2018.2873148
10.1109/LGRS.2016.2518218
10.1109/TIP.2015.2404782
10.1109/IGARSS.2012.6351286
10.1109/CVPR52729.2023.00562
10.1109/TGRS.2022.3202714
10.1109/LGRS.2017.2700406
10.1109/TGRS.2013.2284280
10.1109/TGRS.2021.3110769
10.1109/TGRS.2018.2859203
10.1109/LGRS.2022.3192912
10.1109/TGRS.2021.3069241
10.1109/MGRS.2013.2244672
10.1109/JSTARS.2023.3283342
10.1109/TGRS.2010.2075937
10.1109/MGRS.2021.3121761
10.1109/cvpr.2016.187
10.1109/TGRS.2021.3131878
10.1109/JSTARS.2017.2779539
10.1109/JSTARS.2023.3257051
10.1109/TGRS.2015.2452812
10.1109/JSTARS.2018.2791718
10.1109/JSTARS.2023.3312523
10.1109/TGRS.2022.3156646
10.1109/TGRS.2020.3024623
10.1109/cvpr.2014.377
10.1109/JSTARS.2020.3024903
10.1109/TIP.2012.2210725
10.1109/JSTARS.2019.2902430
10.1109/JSTARS.2023.3294619
10.1109/TGRS.2016.2547879
10.1109/TGRS.2018.2865197
10.1109/JSTARS.2023.3288521
10.1109/JSTARS.2021.3138564
10.1109/TCI.2018.2840334
10.1109/JSTARS.2022.3185657
10.1109/tgrs.2022.3177719
10.1109/JSTARS.2022.3218820
10.1109/TGRS.2019.2946050
10.1109/JSTARS.2023.3282975
10.1109/TGRS.2019.2897316
10.1109/TGRS.2022.3142988
10.1109/cvpr.2017.625
10.1109/TCYB.2021.3051656
10.1109/TCYB.2017.2677944
10.1109/TGRS.2012.2225065
10.1109/TCYB.2020.2983102
10.1109/TGRS.2017.2771155
10.1109/LGRS.2021.3112038
10.1109/TGRS.2021.3071799
10.1109/TIP.2019.2928627
10.1109/TGRS.2005.860982
10.1109/JSTARS.2017.2714338
10.1109/JSTARS.2023.3301149
10.1109/TSP.2020.2971441
10.1109/JSTARS.2023.3319587
10.1109/TNNLS.2021.3112577
10.1109/JSTARS.2018.2805290
10.1109/TGRS.2012.2185054
10.1109/TNNLS.2020.2978756
10.1109/TGRS.2022.3217097
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3357732
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 4138
ExternalDocumentID oai_doaj_org_article_a64d117c91ac47ad85b4282a042798bc
10_1109_JSTARS_2024_3357732
10412620
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Qing Lan Project
– fundername: National Natural Science Foundation of China
  grantid: 61971237
  funderid: 10.13039/501100001809
– fundername: China Computer Federation-Baidu Open Fund
  grantid: 202215
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-6cec50e8fc47e8417bd198ff727a896cee1bf60e7fd4f0e3196ccf535d074ec33
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001162787700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:40:01 EDT 2025
Sat Sep 06 06:23:52 EDT 2025
Sat Nov 29 08:11:23 EST 2025
Tue Nov 18 20:45:57 EST 2025
Wed Aug 27 01:42:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-6cec50e8fc47e8417bd198ff727a896cee1bf60e7fd4f0e3196ccf535d074ec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2975-2188
0009-0007-0600-4351
OpenAccessLink https://doaj.org/article/a64d117c91ac47ad85b4282a042798bc
PQID 2926269009
PQPubID 75722
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_a64d117c91ac47ad85b4282a042798bc
ieee_primary_10412620
crossref_primary_10_1109_JSTARS_2024_3357732
proquest_journals_2926269009
crossref_citationtrail_10_1109_JSTARS_2024_3357732
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Bodrito (ref62) 2021; 34
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
Gregor (ref57) 2010
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref32
  doi: 10.1109/JSTSP.2018.2873148
– ident: ref16
  doi: 10.1109/LGRS.2016.2518218
– ident: ref17
  doi: 10.1109/TIP.2015.2404782
– ident: ref12
  doi: 10.1109/IGARSS.2012.6351286
– ident: ref56
  doi: 10.1109/CVPR52729.2023.00562
– ident: ref40
  doi: 10.1109/TGRS.2022.3202714
– ident: ref23
  doi: 10.1109/LGRS.2017.2700406
– ident: ref20
  doi: 10.1109/TGRS.2013.2284280
– ident: ref22
  doi: 10.1109/TGRS.2021.3110769
– ident: ref45
  doi: 10.1109/TGRS.2018.2859203
– ident: ref19
  doi: 10.1109/LGRS.2022.3192912
– ident: ref47
  doi: 10.1109/TGRS.2021.3069241
– start-page: 399
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2010
  ident: ref57
  article-title: Learning fast approximations of sparse coding
– ident: ref1
  doi: 10.1109/MGRS.2013.2244672
– ident: ref5
  doi: 10.1109/JSTARS.2023.3283342
– ident: ref11
  doi: 10.1109/TGRS.2010.2075937
– ident: ref9
  doi: 10.1109/MGRS.2021.3121761
– ident: ref27
  doi: 10.1109/cvpr.2016.187
– ident: ref59
  doi: 10.1109/TGRS.2021.3131878
– ident: ref41
  doi: 10.1109/JSTARS.2017.2779539
– volume: 34
  start-page: 5430
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref62
  article-title: A trainable spectral-spatial sparse coding model for hyperspectral image restoration
– ident: ref54
  doi: 10.1109/JSTARS.2023.3257051
– ident: ref39
  doi: 10.1109/TGRS.2015.2452812
– ident: ref29
  doi: 10.1109/JSTARS.2018.2791718
– ident: ref8
  doi: 10.1109/JSTARS.2023.3312523
– ident: ref52
  doi: 10.1109/TGRS.2022.3156646
– ident: ref38
  doi: 10.1109/TGRS.2020.3024623
– ident: ref28
  doi: 10.1109/cvpr.2014.377
– ident: ref7
  doi: 10.1109/JSTARS.2020.3024903
– ident: ref14
  doi: 10.1109/TIP.2012.2210725
– ident: ref6
  doi: 10.1109/JSTARS.2019.2902430
– ident: ref51
  doi: 10.1109/JSTARS.2023.3294619
– ident: ref21
  doi: 10.1109/TGRS.2016.2547879
– ident: ref46
  doi: 10.1109/TGRS.2018.2865197
– ident: ref4
  doi: 10.1109/JSTARS.2023.3288521
– ident: ref58
  doi: 10.1109/JSTARS.2021.3138564
– ident: ref63
  doi: 10.1109/TCI.2018.2840334
– ident: ref18
  doi: 10.1109/JSTARS.2022.3185657
– ident: ref36
  doi: 10.1109/tgrs.2022.3177719
– ident: ref50
  doi: 10.1109/JSTARS.2022.3218820
– ident: ref35
  doi: 10.1109/TGRS.2019.2946050
– ident: ref3
  doi: 10.1109/JSTARS.2023.3282975
– ident: ref30
  doi: 10.1109/TGRS.2019.2897316
– ident: ref37
  doi: 10.1109/TGRS.2022.3142988
– ident: ref43
  doi: 10.1109/cvpr.2017.625
– ident: ref44
  doi: 10.1109/TCYB.2021.3051656
– ident: ref25
  doi: 10.1109/TCYB.2017.2677944
– ident: ref13
  doi: 10.1109/TGRS.2012.2225065
– ident: ref33
  doi: 10.1109/TCYB.2020.2983102
– ident: ref26
  doi: 10.1109/TGRS.2017.2771155
– ident: ref49
  doi: 10.1109/LGRS.2021.3112038
– ident: ref48
  doi: 10.1109/TGRS.2021.3071799
– ident: ref60
  doi: 10.1109/TIP.2019.2928627
– ident: ref10
  doi: 10.1109/TGRS.2005.860982
– ident: ref34
  doi: 10.1109/JSTARS.2017.2714338
– ident: ref42
  doi: 10.1109/JSTARS.2023.3301149
– ident: ref31
  doi: 10.1109/TSP.2020.2971441
– ident: ref2
  doi: 10.1109/JSTARS.2023.3319587
– ident: ref61
  doi: 10.1109/TNNLS.2021.3112577
– ident: ref24
  doi: 10.1109/JSTARS.2018.2805290
– ident: ref15
  doi: 10.1109/TGRS.2012.2185054
– ident: ref55
  doi: 10.1109/TNNLS.2020.2978756
– ident: ref53
  doi: 10.1109/TGRS.2022.3217097
SSID ssj0062793
Score 2.379606
Snippet Despite the significant successes in hyperspectral image (HSI) denoising, pure data-driven HSI denoising networks still suffer from limited understanding of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4125
SubjectTerms 3-D convolution
Adaptability
Convolution
Convolutional codes
convolutional sparse coding
deep network
deep unfolding
Encoding
Filters
Hyperspectral image denoising
Hyperspectral imaging
Image coding
Noise reduction
separable convolution
Tensors
Three-dimensional displays
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG-EaOILCmI4RLMPPFLcbr8fkRMhIcSIkHtruu1sQqJ7l2Mh4b932u0RidHEt00_drs7M-382p3fELIvM4lU7WlIsR8iGEWtFEBbAyzHXtucJeL6XF9cmNnMfi3B6jkWBgDyz2dwmC7zWX6ch7u0VYYWLlgiUF8ja1qrMVhrNe2qRmeGXXRILE2cMYViiNX2I-r40bdLBIONOORcas2bJ8tQZusv6VX-mJPzQnPy6j-H-JpsFI-yOhpVYJM8g36LvPiSM_Y-vCGzKcCiyiRU_UCnJeftUHE6TaX3RfXwDpcLBLmAhWk5q9CZrU4RpI6xmEusP_uJc081hX5-kzYYtsnVyefvx6e0pFOgAUHcQFWAIGswXRAajGC6jcyarkMPxhuLtcDaTtWguyi6GpJthtBJLiO6GRA4f0vW-3kPO6RqEWioKHVrmiiU514ZwZX1UXqN_qadkGb1dV0oXOMp5cUPlzFHbd0oEpdE4opIJuTgsdNipNr4d_NPSWyPTRNPdi5Aebhids4rERnTwTKPb-2jkS3ircanDCPWtGFCtpMMf3veKL4J2VtpgStGfeuaxK2oLHqlu3_p9o68TEMct2j2yPqwvIP35Hm4H25ulx-yvv4CK1zktw
  priority: 102
  providerName: IEEE
Title Deep Content-Dependent 3-D Convolutional Sparse Coding for Hyperspectral Image Denoising
URI https://ieeexplore.ieee.org/document/10412620
https://www.proquest.com/docview/2926269009
https://doaj.org/article/a64d117c91ac47ad85b4282a042798bc
Volume 17
WOSCitedRecordID wos001162787700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQBBIv04ChFUaVBx4xi-Pfj4VShoQmRAH1zXIcR5o0sqoLk_bfc2e7VRESe-HVduLk7ny-c3LfR8hrmUCkak8D1n6IYBS1UkTamshS7bVNLBE_PuuLC7Na2S97VF_4T1iGB86CO_NKdIzpYJkPQvvOyBYi5sYjR4Q1bUDvW2u7TaayD1bQx_P3ZEsRQKbgDbHanoHBz74uITNsxFvOpda8-WNPStD9hWvlLweddp3FETks4WI1y4_5hDyIw1Py6GOi4717RlbzGNdVQpgaRjovhLZjxekcW2-LXcEdlmvIYCM04l5VQaRanUMGmgstN9D_6Sc4lmoeh-tLPD04Jt8XH769P6eFK4EGyNBGqkIMso6mByFFI5huO2ZN30N44o2F3sjaXtVR953o64gLL4RectlBDBED58_JwXA9xBNStZBFqE7q1jSdUJ57ZQRX1nfSawgm7YQ0W2m5UIDEkc_iyqWEorYui9ihiF0R8YS82V20zjga_x7-DtWwG4og2KkBTMMV03D3mcaEHKMS9-YTDPH3J-R0q1VXVuyNaxA4UVkIOV_8j7lfksf4Pvmw5pQcjJtf8RV5GG7Hy5vNNBnrNBUb_gYlTeft
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaggODCs4iFAjlwxCWO38fCUrZiWSFa0N4sx55IlUp2tU0r8e8ZO94KhEDiFvmROJkZez478w0hr2Qmkao9DSn2QwSjqJUCaGuA5dhrm7NEfJvrxcIsl_ZzCVbPsTAAkH8-g_10mc_y4ypcpK0ytHDBEoH6dXJDCtHUY7jWduJVjc4cu-iSWJpYYwrJEKvtG9Tygy_HCAcbsc-51Jo3vy1Ema-_JFj5Y1bOS83hvf8c5H1yt_iU1cGoBA_INegfklsfcs7eH4_IcgqwrjINVT_Qacl6O1ScTlPpZVE-vMPxGmEuYGFa0Cp0Z6sZwtQxGnOD9UffcfapptCvTtMWwy75evj-5N2MloQKNCCMG6gKEGQNpgtCgxFMt5FZ03Xow3hjsRZY26kadBdFV0OyzhA6yWVERwMC54_JTr_q4QmpWoQaKkrdmiYK5blXRnBlfZReo8dpJ6TZfl0XCtt4Snpx5jLqqK0bReKSSFwRyYS8vuq0Hsk2_t38bRLbVdPElJ0LUB6uGJ7zSkTGdLDM41v7aGSLiKvxKceINW2YkN0kw1-eN4pvQva2WuCKWZ-7JrErKot-6dO_dHtJbs9OPs3d_Gjx8Rm5k4Y7btjskZ1hcwHPyc1wOZyeb15k3f0JNvrn_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Content-Dependent+3-D+Convolutional+Sparse+Coding+for+Hyperspectral+Image+Denoising&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Yin%2C+Haitao&rft.au=Chen%2C+Hao&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=4125&rft.epage=4138&rft_id=info:doi/10.1109%2FJSTARS.2024.3357732&rft.externalDocID=10412620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon