Quantum Autoencoder for Enhanced Fraud Detection in Imbalanced Credit Card Dataset

Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 169671 - 169682
Hauptverfasser: Huot, Chansreynich, Heng, Sovanmonynuth, Kim, Tae-Kyung, Han, Youngsun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes it an anomaly detection problem. Traditional detection systems struggle with the highly imbalanced nature of transaction datasets, where genuine transactions vastly outnumber fraudulent cases. In response to these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud Detection (QAE-FD). Our approach leverages quantum computing principles to enhance anomaly detection capabilities by encoding transaction data into compressed quantum states and optimizing the model against a loss function that evaluates the fidelity in flagging fraudulent transactions. The efficacy of the QAE-FD model is tested on a real-world credit card transaction dataset, achieving a G-mean of 0.946 and an AUC of 0.947 which demonstrates superior performance compared to existing models. Our results indicate that QAE-FD has not only higher accuracy in fraud detection but also better computational efficiency. The integration of quantum autoencoders is a promising advancement in the field of anomaly detection for credit card fraud, addressing the limitations of imbalanced datasets and offering a scalable solution for real-time detection systems.
AbstractList Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes it an anomaly detection problem. Traditional detection systems struggle with the highly imbalanced nature of transaction datasets, where genuine transactions vastly outnumber fraudulent cases. In response to these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud Detection (QAE-FD). Our approach leverages quantum computing principles to enhance anomaly detection capabilities by encoding transaction data into compressed quantum states and optimizing the model against a loss function that evaluates the fidelity in flagging fraudulent transactions. The efficacy of the QAE-FD model is tested on a real-world credit card transaction dataset, achieving a G-mean of 0.946 and an AUC of 0.947 which demonstrates superior performance compared to existing models. Our results indicate that QAE-FD has not only higher accuracy in fraud detection but also better computational efficiency. The integration of quantum autoencoders is a promising advancement in the field of anomaly detection for credit card fraud, addressing the limitations of imbalanced datasets and offering a scalable solution for real-time detection systems.
Author Huot, Chansreynich
Han, Youngsun
Heng, Sovanmonynuth
Kim, Tae-Kyung
Author_xml – sequence: 1
  givenname: Chansreynich
  orcidid: 0009-0001-3894-1530
  surname: Huot
  fullname: Huot, Chansreynich
  organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea
– sequence: 2
  givenname: Sovanmonynuth
  orcidid: 0000-0003-0074-9954
  surname: Heng
  fullname: Heng, Sovanmonynuth
  organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea
– sequence: 3
  givenname: Tae-Kyung
  orcidid: 0000-0001-9962-1066
  surname: Kim
  fullname: Kim, Tae-Kyung
  organization: Department of Management Information Systems, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, South Korea
– sequence: 4
  givenname: Youngsun
  orcidid: 0000-0001-7712-2514
  surname: Han
  fullname: Han, Youngsun
  email: youngsun@pknu.ac.kr
  organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea
BookMark eNp9kU1v1DAQhi1UJErbXwCHSJx38WdiH1dhCytVQvTjbI3tCXi1GxfHOfDv8ZIiVT3UF1sz7_Nqxu97cjamEQn5wOiaMWo-b_p-e3e35pTLtZCmNZS9IeectWYllGjPnr3fkatp2tN6dC2p7pzc_phhLPOx2cwl4ehTwNwMKTfb8ReMHkNznWEOzRcs6EtMYxPHZnd0cFi6fcYQS9NDrhooMGG5JG8HOEx49XRfkIfr7X3_bXXz_euu39ysvKSmrFoGHQcVmAuOoVYSnUYAyoa2dTpQ1snQGdC1Fbw2bmCD7kAJh5xz4ZS4ILvFNyTY28ccj5D_2ATR_iuk_NNCLtEf0HqvuNJyYNi1UmF1k60MWoLizATjqtenxesxp98zTsXu05zHOr4VTDDDJKemqsyi8jlNU8bB-ljg9CslQzxYRu0pEbskYk-J2KdEKitesP8nfp36uFAREZ8RXd1HSfEXvs6YSw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3599147
Cites_doi 10.1088/2632-2153/acafd5
10.1088/2058-9565/ac0d4d
10.1166/jctn.2020.8648
10.1109/IJCNN.2017.7966342
10.1145/3097983.3098052
10.3390/particles6010016
10.18653/v1/W18-2310
10.1007/978-981-99-8073-4_6
10.1109/ICTAI52525.2021.00037
10.1145/1541880.1541882
10.1109/IJCNN.2017.7966217
10.1103/PhysRevA.97.042315
10.47738/jads.v2i1.16
10.22331/q-2018-08-06-79
10.14569/IJACSA.2019.0101101
10.22331/q-2020-03-26-248
10.1103/PhysRevD.105.095004
10.1088/2058-9565/aa8072
10.1016/j.eswa.2014.02.026
10.1016/j.procs.2020.03.219
10.5555/1953048.2078195
10.9734/jamcs/2019/v33i530192
10.1103/PhysRevA.102.032420
10.1109/IJCNN.2017.7965877
10.1142/S0219749923500442
10.5555/3122009.3122026
10.1109/TQE.2022.3213474
10.1109/ICCNI.2017.8123782
10.1007/s42484-024-00143-6
10.1103/PhysRevResearch.3.043184
10.1109/ACCESS.2020.3033784
10.1023/A:1010091220143
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3496901
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 169682
ExternalDocumentID oai_doaj_org_article_cc52584f1e7645e89b464d84a5219d9b
10_1109_ACCESS_2024_3496901
10752554
Genre orig-research
GrantInformation_xml – fundername: Ministry of Education (MOE)
  grantid: 2023RIS-007
– fundername: “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF)
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-61a72a5d1bdb1e854eb8eaa01f66b8d0174d79a8e85dc89bf1f87a53be2223b53
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362134400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:42 EDT 2025
Mon Jun 30 14:17:05 EDT 2025
Tue Nov 18 19:52:49 EST 2025
Sat Nov 29 04:27:12 EST 2025
Wed Aug 27 03:06:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-61a72a5d1bdb1e854eb8eaa01f66b8d0174d79a8e85dc89bf1f87a53be2223b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-3894-1530
0000-0001-9962-1066
0000-0001-7712-2514
0000-0003-0074-9954
OpenAccessLink https://ieeexplore.ieee.org/document/10752554
PQID 3131914209
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_3131914209
crossref_citationtrail_10_1109_ACCESS_2024_3496901
doaj_primary_oai_doaj_org_article_cc52584f1e7645e89b464d84a5219d9b
ieee_primary_10752554
crossref_primary_10_1109_ACCESS_2024_3496901
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
Wittek (ref28) 2014
ref37
ref14
ref36
Fisher (ref5) 1988
ref30
ref11
Kyriienko (ref31) 2022
ref33
ref10
Masuda (ref26) 1993; 1
ref32
ref2
ref1
(ref34) 2013
ref17
ref39
ref16
ref38
ref19
ref18
Bhatla (ref25) 2003; 1
Bergholm (ref41) 2018
ref23
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
Lloyd (ref29) 2013
ref40
Du (ref24) 2021
References_xml – ident: ref12
  doi: 10.1088/2632-2153/acafd5
– ident: ref8
  doi: 10.1088/2058-9565/ac0d4d
– ident: ref17
  doi: 10.1166/jctn.2020.8648
– ident: ref19
  doi: 10.1109/IJCNN.2017.7966342
– ident: ref3
  doi: 10.1145/3097983.3098052
– ident: ref10
  doi: 10.3390/particles6010016
– volume: 1
  start-page: 34
  year: 1993
  ident: ref26
  article-title: Credit card fraud prevention: A successful retail strategy
  publication-title: Crime Prevention Stud.
– ident: ref20
  doi: 10.18653/v1/W18-2310
– ident: ref22
  doi: 10.1007/978-981-99-8073-4_6
– year: 1988
  ident: ref5
  article-title: Iris
– volume-title: Quantum Machine Learning: What Quantum Computing Means To Data Mining
  year: 2014
  ident: ref28
– ident: ref35
  doi: 10.1109/ICTAI52525.2021.00037
– ident: ref2
  doi: 10.1145/1541880.1541882
– ident: ref4
  doi: 10.1109/IJCNN.2017.7966217
– ident: ref7
  doi: 10.1103/PhysRevA.97.042315
– ident: ref15
  doi: 10.47738/jads.v2i1.16
– ident: ref32
  doi: 10.22331/q-2018-08-06-79
– ident: ref14
  doi: 10.14569/IJACSA.2019.0101101
– ident: ref23
  doi: 10.22331/q-2020-03-26-248
– ident: ref18
  doi: 10.1103/PhysRevD.105.095004
– ident: ref9
  doi: 10.1088/2058-9565/aa8072
– ident: ref6
  doi: 10.1016/j.eswa.2014.02.026
– ident: ref16
  doi: 10.1016/j.procs.2020.03.219
– ident: ref39
  doi: 10.5555/1953048.2078195
– ident: ref27
  doi: 10.9734/jamcs/2019/v33i530192
– ident: ref37
  doi: 10.1103/PhysRevA.102.032420
– ident: ref21
  doi: 10.1109/IJCNN.2017.7965877
– year: 2018
  ident: ref41
  article-title: PennyLane: Automatic differentiation of hybrid quantum-classical computations
  publication-title: arXiv:1811.04968
– volume: 1
  start-page: 1
  issue: 6
  year: 2003
  ident: ref25
  article-title: Understanding credit card frauds
  publication-title: Cards Bus. Rev.
– ident: ref30
  doi: 10.1142/S0219749923500442
– ident: ref40
  doi: 10.5555/3122009.3122026
– ident: ref13
  doi: 10.1109/TQE.2022.3213474
– year: 2013
  ident: ref29
  article-title: Quantum algorithms for supervised and unsupervised machine learning
  publication-title: arXiv:1307.0411
– ident: ref1
  doi: 10.1109/ICCNI.2017.8123782
– ident: ref33
  doi: 10.1007/s42484-024-00143-6
– year: 2022
  ident: ref31
  article-title: Unsupervised quantum machine learning for fraud detection
  publication-title: arXiv:2208.01203
– ident: ref11
  doi: 10.1103/PhysRevResearch.3.043184
– ident: ref36
  doi: 10.1109/ACCESS.2020.3033784
– year: 2021
  ident: ref24
  article-title: On exploring the potential of quantum auto-encoder for learning quantum systems
  publication-title: arXiv:2106.15432
– ident: ref38
  doi: 10.1023/A:1010091220143
– volume-title: Credit Card Fraud Detection
  year: 2013
  ident: ref34
SSID ssj0000816957
Score 2.3328333
Snippet Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169671
SubjectTerms Anomalies
Anomaly detection
Computational efficiency
Computational modeling
Credit card fraud
credit card fraud detection
Credit cards
Datasets
Fraud
Fraud prevention
imbalanced dataset
Integrated circuit modeling
Noise
quantum autoencoder (QAE)
Quantum computing
quantum machine learning (QML)
Quantum state
Real time
Real-time systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4gCHiscitgXkQ4-kxK_YPi4BBBJatVVbcbPiR1SkEtCS8PsZO160EhK9cI1tOf5mxjPjON8g9LVVYEEssMJR3RacybJQwnqwKx1EYNLT9B_3nxs5n6vbW_19pdRXvBM20gOPwJ06Jyg4yZYEWXERlLa84l7xBvyO9trG3beUeiWZSnuwIpUWMtMMkVKfzuoaVgQJIeXfIkm6zmVglq4oMfbnEitv9uXkbC630accJeLZ-HY7aC10u2hrhTtwD_38MQAowz2eDf1DZKP0YYEhAsUX3d_0VR9DTDp4fB76dNuqw3cdvr638SpjbK0X4LZ6XIOG4POmB2fWT9Dvy4tf9VWRCyQUDtKyHtK-RtJGeGK9JUEJHqwKTVOStqqs8mBs3EvdKGjyDpBrSatkI5gNMSqwgu2j9e6hCwcIl4xaB1JriQObtqVWRASIBpyyVENUNUV0iZVxmT08FrH4Z1IWUWozAmwiwCYDPEUnr4MeR_KM97ufRSG8do3M1-kB6IPJ-mD-pw9TNIkiXJlPwgDBp-hwKVOTzfTJMMIivx0t9eePmPsL2ozrGU9oDtF6vxjCEdpwz_3d0-I4aegLbgzkQQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantum Autoencoder for Enhanced Fraud Detection in Imbalanced Credit Card Dataset
URI https://ieeexplore.ieee.org/document/10752554
https://www.proquest.com/docview/3131914209
https://doaj.org/article/cc52584f1e7645e89b464d84a5219d9b
Volume 12
WOSCitedRecordID wos001362134400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELXaqgc4AIUiFkrlA8emxLEd28cl3QokWlHUot6s2J6olWgWbROOfDtjx7uqhEDiEkWxo9h-nsyM7XlDyLtOowRx4IWvTFcIrspCSxdQrgxI4CpUKY7722d1fq6vr82XHKyeYmEAIB0-g-N4m_byw9KPcakMJVxJNIHFNtlWqp6CtTYLKjGDhJEqMwux0ryfNw12An3AShxHXnSTM7-stU8i6c9ZVf74FSf9cvr0P1v2jDzJhiSdT8jvkS3on5PHD-gFX5CvFyOO23hH5-OwjISVAVYUjVS66G_Sxj9Fs3UM9ASGdCCrp7c9_XTn4mnHWNqsULMNtMFJRE_aAfXdsE-uTheXzcci51AoPHpuA3qGrapaGZgLjoGWApyGti1ZV9dOB5RHEZRpNRYFr43rWKdVK7mDaDg4yV-SnX7ZwytCS145j8B2zKPYu9JoJgENBq9dZdDwmpFqPbbWZ4LxmOfiu02ORmnsBIiNgNgMyIwcbV76MfFr_Lv6hwjapmokx04PEA2bZc16j1ho0TFQtZCAvRK1CFq0aKqYYNyM7EcEH3xvAm9GDtZzwGZJvrec8UiBV5Xm9V9ee0MexSZO6zIHZGdYjfCW7Pqfw-396jA5-Xg9-7U4TBP2N0jn5IM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fbxQhECZaTdSH-qump1V58NGtCwsHPJ7bNm08L2qq6RtZYDY2sXvNdde_34HlLk2aNvFts0AW-JidGWC-IeRDq1GCKqgKz01biEqVhZYuoFwZkFCpwFMc96-5Wiz02Zn5loPVUywMAKTLZ7AfH9NZflj6IW6VoYQriSawuE8eSCF4OYZrbbZUYg4JI1XmFmKl-TSraxwGeoFc7EdmdJNzv6z1T6Lpz3lVbvyMk4Y5evqffXtGtrMpSWcj9s_JPehekCfXCAZfkh_fB5y54YLOhn4ZKSsDrCiaqfSw-52O_ikarkOgB9CnK1kdPe_oyYWL9x1jab1C3dbTGpcRPWh61Hj9Dvl5dHhaHxc5i0Lh0Xfr0TdsFG9kYC44BloKcBqapmTtdOp0QIkUQZlGY1Hw2riWtVo1snIQTQcnq1dkq1t2sEtoWXHnEdqWeRR8VxrNJKDJ4LXjBk2vCeHrubU-U4zHTBd_bHI1SmNHQGwExGZAJuTjptHlyLBxd_XPEbRN1UiPnV4gGjZLm_UesdCiZaCmQgKOSkxF0KJBY8UE4yZkJyJ47XsjeBOyt14DNsvyla1YFUnweGle39LsPXl0fPp1bucniy9vyOPY3XGXZo9s9asB3pKH_m9_frV6lxbsP4zK5aQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Autoencoder+for+Enhanced+Fraud+Detection+in+Imbalanced+Credit+Card+Dataset&rft.jtitle=IEEE+access&rft.au=Huot%2C+Chansreynich&rft.au=Heng%2C+Sovanmonynuth&rft.au=Kim%2C+Tae-Kyung&rft.au=Han%2C+Youngsun&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=169671&rft.epage=169682&rft_id=info:doi/10.1109%2FACCESS.2024.3496901&rft.externalDocID=10752554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon