Quantum Autoencoder for Enhanced Fraud Detection in Imbalanced Credit Card Dataset
Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 12; S. 169671 - 169682 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes it an anomaly detection problem. Traditional detection systems struggle with the highly imbalanced nature of transaction datasets, where genuine transactions vastly outnumber fraudulent cases. In response to these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud Detection (QAE-FD). Our approach leverages quantum computing principles to enhance anomaly detection capabilities by encoding transaction data into compressed quantum states and optimizing the model against a loss function that evaluates the fidelity in flagging fraudulent transactions. The efficacy of the QAE-FD model is tested on a real-world credit card transaction dataset, achieving a G-mean of 0.946 and an AUC of 0.947 which demonstrates superior performance compared to existing models. Our results indicate that QAE-FD has not only higher accuracy in fraud detection but also better computational efficiency. The integration of quantum autoencoders is a promising advancement in the field of anomaly detection for credit card fraud, addressing the limitations of imbalanced datasets and offering a scalable solution for real-time detection systems. |
|---|---|
| AbstractList | Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial losses. Detection is inherently challenging due to the rarity and indistinguishability of fraudulent transactions from genuine ones, which makes it an anomaly detection problem. Traditional detection systems struggle with the highly imbalanced nature of transaction datasets, where genuine transactions vastly outnumber fraudulent cases. In response to these challenges, we propose a novel detection model utilizing Quantum AutoEncoders-based Fraud Detection (QAE-FD). Our approach leverages quantum computing principles to enhance anomaly detection capabilities by encoding transaction data into compressed quantum states and optimizing the model against a loss function that evaluates the fidelity in flagging fraudulent transactions. The efficacy of the QAE-FD model is tested on a real-world credit card transaction dataset, achieving a G-mean of 0.946 and an AUC of 0.947 which demonstrates superior performance compared to existing models. Our results indicate that QAE-FD has not only higher accuracy in fraud detection but also better computational efficiency. The integration of quantum autoencoders is a promising advancement in the field of anomaly detection for credit card fraud, addressing the limitations of imbalanced datasets and offering a scalable solution for real-time detection systems. |
| Author | Huot, Chansreynich Han, Youngsun Heng, Sovanmonynuth Kim, Tae-Kyung |
| Author_xml | – sequence: 1 givenname: Chansreynich orcidid: 0009-0001-3894-1530 surname: Huot fullname: Huot, Chansreynich organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea – sequence: 2 givenname: Sovanmonynuth orcidid: 0000-0003-0074-9954 surname: Heng fullname: Heng, Sovanmonynuth organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea – sequence: 3 givenname: Tae-Kyung orcidid: 0000-0001-9962-1066 surname: Kim fullname: Kim, Tae-Kyung organization: Department of Management Information Systems, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, South Korea – sequence: 4 givenname: Youngsun orcidid: 0000-0001-7712-2514 surname: Han fullname: Han, Youngsun email: youngsun@pknu.ac.kr organization: Department of AI Convergence, Pukyong National University, Busan, Nam-gu, South Korea |
| BookMark | eNp9kU1v1DAQhi1UJErbXwCHSJx38WdiH1dhCytVQvTjbI3tCXi1GxfHOfDv8ZIiVT3UF1sz7_Nqxu97cjamEQn5wOiaMWo-b_p-e3e35pTLtZCmNZS9IeectWYllGjPnr3fkatp2tN6dC2p7pzc_phhLPOx2cwl4ehTwNwMKTfb8ReMHkNznWEOzRcs6EtMYxPHZnd0cFi6fcYQS9NDrhooMGG5JG8HOEx49XRfkIfr7X3_bXXz_euu39ysvKSmrFoGHQcVmAuOoVYSnUYAyoa2dTpQ1snQGdC1Fbw2bmCD7kAJh5xz4ZS4ILvFNyTY28ccj5D_2ATR_iuk_NNCLtEf0HqvuNJyYNi1UmF1k60MWoLizATjqtenxesxp98zTsXu05zHOr4VTDDDJKemqsyi8jlNU8bB-ljg9CslQzxYRu0pEbskYk-J2KdEKitesP8nfp36uFAREZ8RXd1HSfEXvs6YSw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3599147 |
| Cites_doi | 10.1088/2632-2153/acafd5 10.1088/2058-9565/ac0d4d 10.1166/jctn.2020.8648 10.1109/IJCNN.2017.7966342 10.1145/3097983.3098052 10.3390/particles6010016 10.18653/v1/W18-2310 10.1007/978-981-99-8073-4_6 10.1109/ICTAI52525.2021.00037 10.1145/1541880.1541882 10.1109/IJCNN.2017.7966217 10.1103/PhysRevA.97.042315 10.47738/jads.v2i1.16 10.22331/q-2018-08-06-79 10.14569/IJACSA.2019.0101101 10.22331/q-2020-03-26-248 10.1103/PhysRevD.105.095004 10.1088/2058-9565/aa8072 10.1016/j.eswa.2014.02.026 10.1016/j.procs.2020.03.219 10.5555/1953048.2078195 10.9734/jamcs/2019/v33i530192 10.1103/PhysRevA.102.032420 10.1109/IJCNN.2017.7965877 10.1142/S0219749923500442 10.5555/3122009.3122026 10.1109/TQE.2022.3213474 10.1109/ICCNI.2017.8123782 10.1007/s42484-024-00143-6 10.1103/PhysRevResearch.3.043184 10.1109/ACCESS.2020.3033784 10.1023/A:1010091220143 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3496901 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 169682 |
| ExternalDocumentID | oai_doaj_org_article_cc52584f1e7645e89b464d84a5219d9b 10_1109_ACCESS_2024_3496901 10752554 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Education (MOE) grantid: 2023RIS-007 – fundername: “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-61a72a5d1bdb1e854eb8eaa01f66b8d0174d79a8e85dc89bf1f87a53be2223b53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001362134400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:40:42 EDT 2025 Mon Jun 30 14:17:05 EDT 2025 Tue Nov 18 19:52:49 EST 2025 Sat Nov 29 04:27:12 EST 2025 Wed Aug 27 03:06:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-61a72a5d1bdb1e854eb8eaa01f66b8d0174d79a8e85dc89bf1f87a53be2223b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-3894-1530 0000-0001-9962-1066 0000-0001-7712-2514 0000-0003-0074-9954 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10752554 |
| PQID | 3131914209 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_3131914209 crossref_citationtrail_10_1109_ACCESS_2024_3496901 doaj_primary_oai_doaj_org_article_cc52584f1e7645e89b464d84a5219d9b ieee_primary_10752554 crossref_primary_10_1109_ACCESS_2024_3496901 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 Wittek (ref28) 2014 ref37 ref14 ref36 Fisher (ref5) 1988 ref30 ref11 Kyriienko (ref31) 2022 ref33 ref10 Masuda (ref26) 1993; 1 ref32 ref2 ref1 (ref34) 2013 ref17 ref39 ref16 ref38 ref19 ref18 Bhatla (ref25) 2003; 1 Bergholm (ref41) 2018 ref23 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 Lloyd (ref29) 2013 ref40 Du (ref24) 2021 |
| References_xml | – ident: ref12 doi: 10.1088/2632-2153/acafd5 – ident: ref8 doi: 10.1088/2058-9565/ac0d4d – ident: ref17 doi: 10.1166/jctn.2020.8648 – ident: ref19 doi: 10.1109/IJCNN.2017.7966342 – ident: ref3 doi: 10.1145/3097983.3098052 – ident: ref10 doi: 10.3390/particles6010016 – volume: 1 start-page: 34 year: 1993 ident: ref26 article-title: Credit card fraud prevention: A successful retail strategy publication-title: Crime Prevention Stud. – ident: ref20 doi: 10.18653/v1/W18-2310 – ident: ref22 doi: 10.1007/978-981-99-8073-4_6 – year: 1988 ident: ref5 article-title: Iris – volume-title: Quantum Machine Learning: What Quantum Computing Means To Data Mining year: 2014 ident: ref28 – ident: ref35 doi: 10.1109/ICTAI52525.2021.00037 – ident: ref2 doi: 10.1145/1541880.1541882 – ident: ref4 doi: 10.1109/IJCNN.2017.7966217 – ident: ref7 doi: 10.1103/PhysRevA.97.042315 – ident: ref15 doi: 10.47738/jads.v2i1.16 – ident: ref32 doi: 10.22331/q-2018-08-06-79 – ident: ref14 doi: 10.14569/IJACSA.2019.0101101 – ident: ref23 doi: 10.22331/q-2020-03-26-248 – ident: ref18 doi: 10.1103/PhysRevD.105.095004 – ident: ref9 doi: 10.1088/2058-9565/aa8072 – ident: ref6 doi: 10.1016/j.eswa.2014.02.026 – ident: ref16 doi: 10.1016/j.procs.2020.03.219 – ident: ref39 doi: 10.5555/1953048.2078195 – ident: ref27 doi: 10.9734/jamcs/2019/v33i530192 – ident: ref37 doi: 10.1103/PhysRevA.102.032420 – ident: ref21 doi: 10.1109/IJCNN.2017.7965877 – year: 2018 ident: ref41 article-title: PennyLane: Automatic differentiation of hybrid quantum-classical computations publication-title: arXiv:1811.04968 – volume: 1 start-page: 1 issue: 6 year: 2003 ident: ref25 article-title: Understanding credit card frauds publication-title: Cards Bus. Rev. – ident: ref30 doi: 10.1142/S0219749923500442 – ident: ref40 doi: 10.5555/3122009.3122026 – ident: ref13 doi: 10.1109/TQE.2022.3213474 – year: 2013 ident: ref29 article-title: Quantum algorithms for supervised and unsupervised machine learning publication-title: arXiv:1307.0411 – ident: ref1 doi: 10.1109/ICCNI.2017.8123782 – ident: ref33 doi: 10.1007/s42484-024-00143-6 – year: 2022 ident: ref31 article-title: Unsupervised quantum machine learning for fraud detection publication-title: arXiv:2208.01203 – ident: ref11 doi: 10.1103/PhysRevResearch.3.043184 – ident: ref36 doi: 10.1109/ACCESS.2020.3033784 – year: 2021 ident: ref24 article-title: On exploring the potential of quantum auto-encoder for learning quantum systems publication-title: arXiv:2106.15432 – ident: ref38 doi: 10.1023/A:1010091220143 – volume-title: Credit Card Fraud Detection year: 2013 ident: ref34 |
| SSID | ssj0000816957 |
| Score | 2.3328333 |
| Snippet | Credit card fraud detection is crucial for financial security which entails identifying unauthorized transactions that can result in significant financial... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 169671 |
| SubjectTerms | Anomalies Anomaly detection Computational efficiency Computational modeling Credit card fraud credit card fraud detection Credit cards Datasets Fraud Fraud prevention imbalanced dataset Integrated circuit modeling Noise quantum autoencoder (QAE) Quantum computing quantum machine learning (QML) Quantum state Real time Real-time systems |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4gCHiscitgXkQ4-kxK_YPi4BBBJatVVbcbPiR1SkEtCS8PsZO160EhK9cI1tOf5mxjPjON8g9LVVYEEssMJR3RacybJQwnqwKx1EYNLT9B_3nxs5n6vbW_19pdRXvBM20gOPwJ06Jyg4yZYEWXERlLa84l7xBvyO9trG3beUeiWZSnuwIpUWMtMMkVKfzuoaVgQJIeXfIkm6zmVglq4oMfbnEitv9uXkbC630accJeLZ-HY7aC10u2hrhTtwD_38MQAowz2eDf1DZKP0YYEhAsUX3d_0VR9DTDp4fB76dNuqw3cdvr638SpjbK0X4LZ6XIOG4POmB2fWT9Dvy4tf9VWRCyQUDtKyHtK-RtJGeGK9JUEJHqwKTVOStqqs8mBs3EvdKGjyDpBrSatkI5gNMSqwgu2j9e6hCwcIl4xaB1JriQObtqVWRASIBpyyVENUNUV0iZVxmT08FrH4Z1IWUWozAmwiwCYDPEUnr4MeR_KM97ufRSG8do3M1-kB6IPJ-mD-pw9TNIkiXJlPwgDBp-hwKVOTzfTJMMIivx0t9eePmPsL2ozrGU9oDtF6vxjCEdpwz_3d0-I4aegLbgzkQQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Quantum Autoencoder for Enhanced Fraud Detection in Imbalanced Credit Card Dataset |
| URI | https://ieeexplore.ieee.org/document/10752554 https://www.proquest.com/docview/3131914209 https://doaj.org/article/cc52584f1e7645e89b464d84a5219d9b |
| Volume | 12 |
| WOSCitedRecordID | wos001362134400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELXaqgc4AIUiFkrlA8emxLEd28cl3QokWlHUot6s2J6olWgWbROOfDtjx7uqhEDiEkWxo9h-nsyM7XlDyLtOowRx4IWvTFcIrspCSxdQrgxI4CpUKY7722d1fq6vr82XHKyeYmEAIB0-g-N4m_byw9KPcakMJVxJNIHFNtlWqp6CtTYLKjGDhJEqMwux0ryfNw12An3AShxHXnSTM7-stU8i6c9ZVf74FSf9cvr0P1v2jDzJhiSdT8jvkS3on5PHD-gFX5CvFyOO23hH5-OwjISVAVYUjVS66G_Sxj9Fs3UM9ASGdCCrp7c9_XTn4mnHWNqsULMNtMFJRE_aAfXdsE-uTheXzcci51AoPHpuA3qGrapaGZgLjoGWApyGti1ZV9dOB5RHEZRpNRYFr43rWKdVK7mDaDg4yV-SnX7ZwytCS145j8B2zKPYu9JoJgENBq9dZdDwmpFqPbbWZ4LxmOfiu02ORmnsBIiNgNgMyIwcbV76MfFr_Lv6hwjapmokx04PEA2bZc16j1ho0TFQtZCAvRK1CFq0aKqYYNyM7EcEH3xvAm9GDtZzwGZJvrec8UiBV5Xm9V9ee0MexSZO6zIHZGdYjfCW7Pqfw-396jA5-Xg9-7U4TBP2N0jn5IM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fbxQhECZaTdSH-qump1V58NGtCwsHPJ7bNm08L2qq6RtZYDY2sXvNdde_34HlLk2aNvFts0AW-JidGWC-IeRDq1GCKqgKz01biEqVhZYuoFwZkFCpwFMc96-5Wiz02Zn5loPVUywMAKTLZ7AfH9NZflj6IW6VoYQriSawuE8eSCF4OYZrbbZUYg4JI1XmFmKl-TSraxwGeoFc7EdmdJNzv6z1T6Lpz3lVbvyMk4Y5evqffXtGtrMpSWcj9s_JPehekCfXCAZfkh_fB5y54YLOhn4ZKSsDrCiaqfSw-52O_ikarkOgB9CnK1kdPe_oyYWL9x1jab1C3dbTGpcRPWh61Hj9Dvl5dHhaHxc5i0Lh0Xfr0TdsFG9kYC44BloKcBqapmTtdOp0QIkUQZlGY1Hw2riWtVo1snIQTQcnq1dkq1t2sEtoWXHnEdqWeRR8VxrNJKDJ4LXjBk2vCeHrubU-U4zHTBd_bHI1SmNHQGwExGZAJuTjptHlyLBxd_XPEbRN1UiPnV4gGjZLm_UesdCiZaCmQgKOSkxF0KJBY8UE4yZkJyJ47XsjeBOyt14DNsvyla1YFUnweGle39LsPXl0fPp1bucniy9vyOPY3XGXZo9s9asB3pKH_m9_frV6lxbsP4zK5aQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Autoencoder+for+Enhanced+Fraud+Detection+in+Imbalanced+Credit+Card+Dataset&rft.jtitle=IEEE+access&rft.au=Huot%2C+Chansreynich&rft.au=Heng%2C+Sovanmonynuth&rft.au=Kim%2C+Tae-Kyung&rft.au=Han%2C+Youngsun&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=169671&rft.epage=169682&rft_id=info:doi/10.1109%2FACCESS.2024.3496901&rft.externalDocID=10752554 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |