Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection for Mobile App Reviews: An Explainable Approach

Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 114023 - 114045
Hlavní autori: Gambo, Ishaya, Massenon, Rhodes, Lin, Chia-Chen, Ogundokun, Roseline Oluwaseun, Agarwal, Saurabh, Pak, Wooguil
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced explanation techniques with engaging visualizations to address this issue. Our system integrates a bidirectional Long Short-Term Memory (BiLSTM) model with attention mechanisms, enhanced by Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). We evaluate this approach on a diverse dataset of 150,000 app reviews, achieving an F1 score of 0.82 and 89% accuracy, significantly outperforming baseline Support Vector Machine (F1: 0.66) and Convolutional Neural Network (CNN) (F1: 0.72) models. Our empirical user studies with developers demonstrate that our explainable approach improves trust (27%) when explanations are provided and correct interpretation (73%). The system's interactive visualizations allowed developers to validate predictions, with over 80% overlap between model-highlighted phrases and human annotations for feature requests. These findings highlight the importance of integrating explainable AI into real-world software engineering workflows. The paper's results and future directions provide a promising approach for feature request detection in app reviews to create more transparent, trustworthy, and effective AI systems.
AbstractList Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced explanation techniques with engaging visualizations to address this issue. Our system integrates a bidirectional Long Short-Term Memory (BiLSTM) model with attention mechanisms, enhanced by Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). We evaluate this approach on a diverse dataset of 150,000 app reviews, achieving an F1 score of 0.82 and 89% accuracy, significantly outperforming baseline Support Vector Machine (F1: 0.66) and Convolutional Neural Network (CNN) (F1: 0.72) models. Our empirical user studies with developers demonstrate that our explainable approach improves trust (27%) when explanations are provided and correct interpretation (73%). The system’s interactive visualizations allowed developers to validate predictions, with over 80% overlap between model-highlighted phrases and human annotations for feature requests. These findings highlight the importance of integrating explainable AI into real-world software engineering workflows. The paper’s results and future directions provide a promising approach for feature request detection in app reviews to create more transparent, trustworthy, and effective AI systems.
Author Lin, Chia-Chen
Massenon, Rhodes
Ogundokun, Roseline Oluwaseun
Pak, Wooguil
Agarwal, Saurabh
Gambo, Ishaya
Author_xml – sequence: 1
  givenname: Ishaya
  orcidid: 0000-0002-1289-9266
  surname: Gambo
  fullname: Gambo, Ishaya
  organization: Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
– sequence: 2
  givenname: Rhodes
  surname: Massenon
  fullname: Massenon, Rhodes
  organization: Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
– sequence: 3
  givenname: Chia-Chen
  orcidid: 0000-0003-4480-7351
  surname: Lin
  fullname: Lin, Chia-Chen
  email: ally.cclin@ncut.edu.tw
  organization: Department of Information Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung, Taiwan
– sequence: 4
  givenname: Roseline Oluwaseun
  orcidid: 0000-0002-2592-2824
  surname: Ogundokun
  fullname: Ogundokun, Roseline Oluwaseun
  organization: Department of Centre of Real Time Computer Sciences, Kaunas University of Technology, Kaunas, Lithuania
– sequence: 5
  givenname: Saurabh
  orcidid: 0000-0003-3836-2595
  surname: Agarwal
  fullname: Agarwal, Saurabh
  email: saurabh@yu.ac.kr
  organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
– sequence: 6
  givenname: Wooguil
  orcidid: 0000-0002-9551-7373
  surname: Pak
  fullname: Pak, Wooguil
  email: wooguilpak@yu.ac.kr
  organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
BookMark eNp9kU1v1DAQhi1UJErpL4CDJc5Z7PhjY27RdktXKkKi7dmadSatV8EOjrfQGz-93qZIFQfsg63xPK9n5n1LjkIMSMh7zhacM_OpXa3WV1eLmtVyIaQUql6-Isc116YSSuijF_c35HSadqyspoTU8pj8WYc7CM6HW3ozYaLXaT9lCqGjm5AxjQkzbP3g8wP1gbab6iz5ewz0HCHvE9Lv-HOPhTjDjC77GGgfE_0aC4O0HceScO_x1_SZtoGuf48D-ADb-S1FcHfvyOsehglPn88TcnO-vl5dVJffvmxW7WXlJDO5Ur3jTYeOc5BONEaWjbIpA-BLh7rrXdP3UhlQxigudIddAVFsO4PaSC5OyGbW7SLs7Jj8D0gPNoK3T4GYbi2k7N2AFhhD4FogOl0-rxuluGSKLWXRAXPQ-jhrlRae2re7uE-hlG8FM7oWRoi6ZJk5y6U4TQl763yGw4xyAj9YzuzBPzv7Zw_-2Wf_Civ-Yf9W_H_qw0x5RHxBaKG5FOIRRbKn9Q
CODEN IAECCG
CitedBy_id crossref_primary_10_7717_peerj_cs_2401
crossref_primary_10_1038_s41598_025_15416_8
crossref_primary_10_3390_computers14090374
crossref_primary_10_1016_j_tifs_2025_105153
Cites_doi 10.1145/3495013
10.1109/SEmotion.2017.6
10.1145/2166966.2166996
10.1145/3531146.3533168
10.1145/3561048
10.1016/j.ins.2019.02.064
10.1016/j.compbiomed.2018.03.016
10.1109/JIOT.2022.3181607
10.1109/ICCIKE47802.2019.9004385
10.1016/j.inffus.2019.12.012
10.1007/978-3-031-12807-3_3
10.1109/ICCV.2017.74
10.1145/2414536.2414577
10.1145/3236009
10.1007/s10270-020-00790-w
10.1007/978-3-030-49435-3_25
10.1016/j.cmpb.2022.107161
10.1109/ESEM.2015.7321214
10.1145/3411764.3445315
10.1007/s11277-023-10339-x
10.1109/RE.2019.00046
10.1145/3409585
10.7717/peerj-cs.340
10.1109/ACCESS.2023.3255990
10.1145/3580305.3599869
10.1109/SANER60148.2024.00030
10.1109/TKDE.2021.3054782
10.1007/978-3-031-14463-9_2
10.1109/RE.2014.6912257
10.1177/03611981221076121
10.1007/s00766-020-00333-1
10.1145/3084226.3084246
10.1109/ICPR.2018.8546302
10.1109/ICSM.2015.7332474
10.14257/ijseia.2018.12.1.03
10.2139/ssrn.3064761
10.1061/(asce)gm.1943-5622.0002058
10.1145/3180155.3180218
10.1016/j.cmpb.2021.106584
10.1016/j.apenergy.2023.122151
10.1109/ICSE.2013.6606749
10.1109/LRA.2021.3070828
10.1016/j.neucom.2020.01.006
10.1007/978-981-16-3637-0_7
10.1201/9781003324140-1
10.1109/ACCESS.2023.3246388
10.1109/TII.2022.3146552
10.1109/ESEM56168.2023.10304855
10.1109/RE51729.2021.00025
10.1007/s11257-011-9117-5
10.5220/0010526901580169
10.1109/REW53955.2021.00031
10.1016/j.eswa.2016.03.028
10.18653/v1/p17-1012
10.1145/3236024.3264595
10.31577/cai_2023_6_1491
10.1109/SANER.2017.7884612
10.1080/10494820.2023.2212708
10.1109/BIBM.2018.8621359
10.1609/aaai.v35i8.16819
10.1109/RE.2018.00018
10.1007/978-3-030-76409-8_2
10.1007/s10515-021-00301-1
10.1109/ACCESS.2017.2779939
10.1007/s11042-022-12410-4
10.1109/ICoICT.2019.8835255
10.3390/make5040068
10.1145/3173574.3174156
10.1145/2939672.2939778
10.1109/JSAC.2023.3322766
10.1007/s10664-022-10222-6
10.1109/RE.2013.6636712
10.1109/ACCESS.2019.2957510
10.1109/REW53955.2021.00033
10.1145/2568225.2568263
10.1016/j.neucom.2019.01.078
10.1145/3531146.3534639
10.1109/RE.2017.71
10.3390/app10248924
10.1016/j.eswa.2023.119730
10.1016/j.artint.2018.07.007
10.1007/s10916-021-01736-5
10.7717/peerj-cs.874
10.1109/REW57809.2023.00024
10.1145/3583780.3614871
10.1145/3507921
10.1109/RE.2017.86
10.4018/IJISMD.2021040101
10.1007/s00766-016-0251-9
10.3390/app10175841
10.31577/cai_2023_6_1445
10.1007/978-3-030-96648-5_9
10.1109/ICSE.2017.18
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3443527
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 114045
ExternalDocumentID oai_doaj_org_article_a00ea163eec640928551405074413a91
10_1109_ACCESS_2024_3443527
10636143
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSC 111-2410-H-167-005-MY2; NSC 112-2634-F-005-001-MBK
  funderid: 10.13039/501100020950
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-5fc18dec11a4c3894949e4811017ce6dfc8ff459a5995136dedc40e3bd9e69413
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297370400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:06 EDT 2025
Mon Jun 30 16:54:40 EDT 2025
Tue Nov 18 21:49:03 EST 2025
Sat Nov 29 04:27:01 EST 2025
Wed Aug 27 01:54:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5fc18dec11a4c3894949e4811017ce6dfc8ff459a5995136dedc40e3bd9e69413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4480-7351
0000-0002-9551-7373
0000-0003-3836-2595
0000-0002-1289-9266
0000-0002-2592-2824
OpenAccessLink https://doaj.org/article/a00ea163eec640928551405074413a91
PQID 3096239332
PQPubID 4845423
PageCount 23
ParticipantIDs proquest_journals_3096239332
ieee_primary_10636143
crossref_primary_10_1109_ACCESS_2024_3443527
crossref_citationtrail_10_1109_ACCESS_2024_3443527
doaj_primary_oai_doaj_org_article_a00ea163eec640928551405074413a91
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref59
Suleman (ref77)
ref58
ref53
ref52
ref55
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
Ribera (ref23)
ref49
ref8
ref7
Pang (ref82) 2002
ref9
ref4
Ceci (ref22) 2024
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Liao (ref24) 2021
ref26
ref25
ref20
ref21
Garreau (ref15)
ref28
ref27
ref29
ref13
ref12
ref97
Vu (ref66)
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
Samek (ref54) 2017
ref93
ref92
ref95
ref94
ref91
ref90
ref89
Hoon (ref63) 2013
ref86
ref85
ref88
ref87
Zhang (ref47) 2019
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref104
ref74
ref105
ref102
ref76
ref103
ref2
ref1
ref71
Goyal (ref14)
ref70
ref73
ref72
ref68
ref67
Wang (ref56)
ref69
ref64
ref65
ref60
ref62
ref61
References_xml – ident: ref100
  doi: 10.1145/3495013
– ident: ref69
  doi: 10.1109/SEmotion.2017.6
– ident: ref42
  doi: 10.1145/2166966.2166996
– start-page: 2376
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref14
  article-title: Counterfactual visual explanations
– ident: ref12
  doi: 10.1145/3531146.3533168
– ident: ref99
  doi: 10.1145/3561048
– ident: ref32
  doi: 10.1016/j.ins.2019.02.064
– ident: ref101
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: ref10
  doi: 10.1109/JIOT.2022.3181607
– ident: ref103
  doi: 10.1109/ICCIKE47802.2019.9004385
– ident: ref38
  doi: 10.1016/j.inffus.2019.12.012
– ident: ref39
  doi: 10.1007/978-3-031-12807-3_3
– ident: ref45
  doi: 10.1109/ICCV.2017.74
– ident: ref64
  doi: 10.1145/2414536.2414577
– ident: ref98
  doi: 10.1145/3236009
– start-page: 57
  volume-title: Proc. Int. Conf. Data Sci.
  ident: ref77
  article-title: Google play store app ranking prediction using machine learning algorithm
– ident: ref79
  doi: 10.1007/s10270-020-00790-w
– ident: ref78
  doi: 10.1007/978-3-030-49435-3_25
– ident: ref3
  doi: 10.1016/j.cmpb.2022.107161
– ident: ref29
  doi: 10.1109/ESEM.2015.7321214
– ident: ref105
  doi: 10.1145/3411764.3445315
– year: 2019
  ident: ref47
  article-title: ‘Why should you trust my explanation?’ Understanding uncertainty in LIME explanations
  publication-title: arXiv:1904.12991
– ident: ref93
  doi: 10.1007/s11277-023-10339-x
– ident: ref36
  doi: 10.1109/RE.2019.00046
– ident: ref27
  doi: 10.1145/3409585
– ident: ref52
  doi: 10.7717/peerj-cs.340
– ident: ref95
  doi: 10.1109/ACCESS.2023.3255990
– ident: ref20
  doi: 10.1145/3580305.3599869
– ident: ref59
  doi: 10.1109/SANER60148.2024.00030
– ident: ref9
  doi: 10.1109/TKDE.2021.3054782
– ident: ref48
  doi: 10.1007/978-3-031-14463-9_2
– ident: ref25
  doi: 10.1109/RE.2014.6912257
– ident: ref7
  doi: 10.1177/03611981221076121
– ident: ref37
  doi: 10.1007/s00766-020-00333-1
– ident: ref71
  doi: 10.1145/3084226.3084246
– ident: ref16
  doi: 10.1109/ICPR.2018.8546302
– ident: ref68
  doi: 10.1109/ICSM.2015.7332474
– start-page: 2427
  volume-title: Proc. IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE)
  ident: ref56
  article-title: Where is your app frustrating users?
– ident: ref19
  doi: 10.14257/ijseia.2018.12.1.03
– ident: ref44
  doi: 10.2139/ssrn.3064761
– ident: ref94
  doi: 10.1061/(asce)gm.1943-5622.0002058
– ident: ref55
  doi: 10.1145/3180155.3180218
– ident: ref11
  doi: 10.1016/j.cmpb.2021.106584
– ident: ref50
  doi: 10.1016/j.apenergy.2023.122151
– year: 2013
  ident: ref63
  article-title: An analysis of the mobile app review landscape: Trends and implications
– ident: ref67
  doi: 10.1109/ICSE.2013.6606749
– ident: ref17
  doi: 10.1109/LRA.2021.3070828
– ident: ref89
  doi: 10.1016/j.neucom.2020.01.006
– ident: ref91
  doi: 10.1007/978-981-16-3637-0_7
– ident: ref6
  doi: 10.1201/9781003324140-1
– ident: ref81
  doi: 10.1109/ACCESS.2023.3246388
– ident: ref5
  doi: 10.1109/TII.2022.3146552
– ident: ref53
  doi: 10.1109/ESEM56168.2023.10304855
– year: 2021
  ident: ref24
  article-title: Question-driven design process for explainable AI user experiences
  publication-title: arXiv:2104.03483
– ident: ref34
  doi: 10.1109/RE51729.2021.00025
– start-page: 1
  volume-title: Proc. CEUR Workshop
  ident: ref23
  article-title: Can we do better explanations? A proposal of user-centered explainable AI
– ident: ref43
  doi: 10.1007/s11257-011-9117-5
– year: 2017
  ident: ref54
  article-title: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models
  publication-title: arXiv:1708.08296
– ident: ref62
  doi: 10.5220/0010526901580169
– ident: ref35
  doi: 10.1109/REW53955.2021.00031
– ident: ref102
  doi: 10.1016/j.eswa.2016.03.028
– ident: ref92
  doi: 10.18653/v1/p17-1012
– ident: ref74
  doi: 10.1145/3236024.3264595
– ident: ref30
  doi: 10.31577/cai_2023_6_1491
– ident: ref73
  doi: 10.1109/SANER.2017.7884612
– ident: ref60
  doi: 10.1080/10494820.2023.2212708
– ident: ref51
  doi: 10.1109/BIBM.2018.8621359
– ident: ref8
  doi: 10.1609/aaai.v35i8.16819
– ident: ref76
  doi: 10.1109/RE.2018.00018
– ident: ref2
  doi: 10.1007/978-3-030-76409-8_2
– ident: ref57
  doi: 10.1007/s10515-021-00301-1
– ident: ref84
  doi: 10.1109/ACCESS.2017.2779939
– ident: ref96
  doi: 10.1007/s11042-022-12410-4
– ident: ref26
  doi: 10.1109/ICoICT.2019.8835255
– ident: ref85
  doi: 10.3390/make5040068
– ident: ref41
  doi: 10.1145/3173574.3174156
– ident: ref13
  doi: 10.1145/2939672.2939778
– ident: ref21
  doi: 10.1109/JSAC.2023.3322766
– ident: ref80
  doi: 10.1007/s10664-022-10222-6
– ident: ref28
  doi: 10.1109/RE.2013.6636712
– ident: ref97
  doi: 10.1109/ACCESS.2019.2957510
– ident: ref46
  doi: 10.1109/REW53955.2021.00033
– ident: ref65
  doi: 10.1145/2568225.2568263
– ident: ref86
  doi: 10.1016/j.neucom.2019.01.078
– ident: ref1
  doi: 10.1145/3531146.3534639
– ident: ref72
  doi: 10.1109/RE.2017.71
– volume-title: Annual Number of Mobile App Downloads Worldwide 2023
  year: 2024
  ident: ref22
– ident: ref88
  doi: 10.3390/app10248924
– ident: ref90
  doi: 10.1016/j.eswa.2023.119730
– year: 2002
  ident: ref82
  article-title: Thumbs up? Sentiment classification using machine learning techniques
  publication-title: arXiv:cs/0205070
– ident: ref40
  doi: 10.1016/j.artint.2018.07.007
– ident: ref4
  doi: 10.1007/s10916-021-01736-5
– ident: ref58
  doi: 10.7717/peerj-cs.874
– start-page: 726
  volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE)
  ident: ref66
  article-title: Phrase-based extraction of user opinions in mobile app reviews
– start-page: 3620
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref15
  article-title: What does lime really see in images?
– ident: ref33
  doi: 10.1109/REW57809.2023.00024
– ident: ref49
  doi: 10.1145/3583780.3614871
– ident: ref18
  doi: 10.1145/3507921
– ident: ref75
  doi: 10.1109/RE.2017.86
– ident: ref83
  doi: 10.4018/IJISMD.2021040101
– ident: ref104
  doi: 10.1007/s00766-016-0251-9
– ident: ref87
  doi: 10.3390/app10175841
– ident: ref31
  doi: 10.31577/cai_2023_6_1445
– ident: ref61
  doi: 10.1007/978-3-030-96648-5_9
– ident: ref70
  doi: 10.1109/ICSE.2017.18
SSID ssj0000816957
Score 2.3448374
Snippet Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114023
SubjectTerms Analytical models
Annotations
Applications programs
Artificial intelligence
Artificial neural networks
Explainable AI
Explainable artificial intelligence
Feature extraction
feature request detection
Interactive systems
Machine learning
machine learning interpretability
mobile app development
Mobile applications
Mobile computing
Reviews
Sentiment analysis
Software engineering
software requirements
Support vector machines
Trust management
Trustworthiness
user trust
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcyquoWwqaA0dS4thxYm7LtlUrlQqhFvVmJc6kVELeah-VeuOnM-O4y0oIJG5RYitOPj--sWe-EeKdynvZ6qbKWlp_Mk3zZFabvmUiJwvZ1aqPDrLfzqrz8_rqyn5JweoxFgYRo_MZHvBlPMvvpn7JW2U0wo2i5URtis2qMkOw1mpDhTNI2LJKykIytx_Gkwl9BNmAhT5QmngBp45ZW32iSH_KqvLHVBzXl-On_9myZ2I7EUkYD8g_FxsYXogna_KCL8XPo_Cd5TTCNVxST4MLjq-AJnTw29Uw-sbew02A8Wl2OOO5D5gWLmcIXzG2FA5xER22AhDDhc9TqoNA9BWGg4X5RxgHYGe-FInFz2Kg1o64PD66mJxkKeNC5snOW2Rl72XdoZey0Z6oDEvXoK4lj1uPput93fe6tA3LlEllOuyoIqq2s8gRseqV2ArTgLsCJBpiI4U1hZe6bcvWKjLuaqN9Y1RV2pEoHpBwPsmRc1aMHy6aJbl1A3yO4XMJvpF4v6p0O6hx_Lv4J4Z4VZSltOMNws6lkemaPMeGWCmiN_QTipo5ZE40mYiiaqwciR3Ge-19A9Qjsf_QY1wa93OnyCJkUTlV7P2l2mvxmJs47OLsi63FbIlvxCN_t7iZz97GLv0LtKrxqQ
  priority: 102
  providerName: IEEE
Title Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection for Mobile App Reviews: An Explainable Approach
URI https://ieeexplore.ieee.org/document/10636143
https://www.proquest.com/docview/3096239332
https://doaj.org/article/a00ea163eec640928551405074413a91
Volume 12
WOSCitedRecordID wos001297370400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiI8iFko1B46ExrHj2NyW7VYg0QqhFvVmJc4EKlUu2t1W6gXx05lx3BIJCS5cckhsOfaMPW-SmTdCvFLlIDvdNkVH9qfQdE4W1gwdAzlZyd6qIQXIfvnYHB3Z01P3aVLqi2PCRnrgceH22rLElkADYjDki1SWTXxJKIbsuGpT3npVNm7iTKUz2Erj6ibTDMnS7c0XC5oROYSVfqM0gQSuIzMxRYmxP5dY-eNcTsbm4KF4kFEizMe3eyTuYHws7k-4A5-In8v4jbky4lc4ITWCY06egDb28DuOMAW-XsNZhPmHYn_FBxsw5rtcIXzGNDLs4yZFY0Ug-AqHF9QHgbApjH8N1m9hHoEj9XKaFT9LWVjb4uRgebx4X-RyCkWghdsU9RCk7TFI2epAOIV5aVBbyZsyoOmHYIdB165lDjKpTI89dUTV9Q453VU9FVvxIuIzARINQY3KmSpI3XV15xR5btbo0BrV1G4mqpuV9SFzjXPJi3OffI7S-VEcnsXhszhm4vVtp-8j1cbfm79jkd02ZZ7sdIO0x2ft8f_SnpnYZoFPxjOKAIuaiZ0bDfB5U6-9InePGeNU9fx_jP1C3OP5jN9zdsTWZnWJL8XdcLU5W692kz7T9fDHcjdlJf4CGMv0Wg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPIu6UMAHjqTEseONuS3bVq3YrhDaot6sxJlAJeRF-6jEjZ_OjOMuKyGQuEWJrTj5_PjGnvkG4LXKO9noepg1tP5kmubJrDJdw0ROFrKtVBcdZD9PhtNpdXFhP6Zg9RgLg4jR-QwP-DKe5bdzv-atMhrhRtFyom7CrVLrIu_DtTZbKpxDwpbDpC0kc_t2NB7TZ5AVWOgDpYkZcPKYrfUnyvSnvCp_TMZxhTl-8J9tewj3E5UUox77R3ADw2O4tyUw-AR-HoWvLKgRvohz6mtixhEWog6t-O1sGL1jf4jLIEan2eGCZz_BxHC9QPEJY0vFIa6iy1YQxHHF2ZzqoCACK_qjheU7MQqC3flSLBY_i6Fau3B-fDQbn2Qp50LmydJbZWXnZdWil7LWnsgMi9egriSPXI-m7XzVdbq0NQuVSWVabKkiqqa1yDGx6inshHnAPRASDfGRwprCS900ZWMVmXeV0b42aljaARTXSDifBMk5L8Y3Fw2T3LoePsfwuQTfAN5sKn3v9Tj-Xfw9Q7wpymLa8QZh59LYdHWeY028FNEb-glFxSwyJ6JMVFHVVg5gl_Heel8P9QD2r3uMSyN_6RTZhCwrp4pnf6n2Cu6czM4mbnI6_fAc7nJz-z2dfdhZLdb4Am77q9XlcvEydu9faT708A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+User+Trust+and+Interpretability+in+AI-Driven+Feature+Request+Detection+for+Mobile+App+Reviews%3A+An+Explainable+Approach&rft.jtitle=IEEE+access&rft.au=Gambo%2C+Ishaya&rft.au=Massenon%2C+Rhodes&rft.au=Lin%2C+Chia-Chen&rft.au=Ogundokun%2C+Roseline+Oluwaseun&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=114023&rft.epage=114045&rft_id=info:doi/10.1109%2FACCESS.2024.3443527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3443527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon