Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection for Mobile App Reviews: An Explainable Approach
Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced e...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 114023 - 114045 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced explanation techniques with engaging visualizations to address this issue. Our system integrates a bidirectional Long Short-Term Memory (BiLSTM) model with attention mechanisms, enhanced by Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). We evaluate this approach on a diverse dataset of 150,000 app reviews, achieving an F1 score of 0.82 and 89% accuracy, significantly outperforming baseline Support Vector Machine (F1: 0.66) and Convolutional Neural Network (CNN) (F1: 0.72) models. Our empirical user studies with developers demonstrate that our explainable approach improves trust (27%) when explanations are provided and correct interpretation (73%). The system's interactive visualizations allowed developers to validate predictions, with over 80% overlap between model-highlighted phrases and human annotations for feature requests. These findings highlight the importance of integrating explainable AI into real-world software engineering workflows. The paper's results and future directions provide a promising approach for feature request detection in app reviews to create more transparent, trustworthy, and effective AI systems. |
|---|---|
| AbstractList | Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their complexity often hinders transparency and trust. This paper presents an explainable Artificial Intelligence (AI) approach that combines advanced explanation techniques with engaging visualizations to address this issue. Our system integrates a bidirectional Long Short-Term Memory (BiLSTM) model with attention mechanisms, enhanced by Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). We evaluate this approach on a diverse dataset of 150,000 app reviews, achieving an F1 score of 0.82 and 89% accuracy, significantly outperforming baseline Support Vector Machine (F1: 0.66) and Convolutional Neural Network (CNN) (F1: 0.72) models. Our empirical user studies with developers demonstrate that our explainable approach improves trust (27%) when explanations are provided and correct interpretation (73%). The system’s interactive visualizations allowed developers to validate predictions, with over 80% overlap between model-highlighted phrases and human annotations for feature requests. These findings highlight the importance of integrating explainable AI into real-world software engineering workflows. The paper’s results and future directions provide a promising approach for feature request detection in app reviews to create more transparent, trustworthy, and effective AI systems. |
| Author | Lin, Chia-Chen Massenon, Rhodes Ogundokun, Roseline Oluwaseun Pak, Wooguil Agarwal, Saurabh Gambo, Ishaya |
| Author_xml | – sequence: 1 givenname: Ishaya orcidid: 0000-0002-1289-9266 surname: Gambo fullname: Gambo, Ishaya organization: Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria – sequence: 2 givenname: Rhodes surname: Massenon fullname: Massenon, Rhodes organization: Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria – sequence: 3 givenname: Chia-Chen orcidid: 0000-0003-4480-7351 surname: Lin fullname: Lin, Chia-Chen email: ally.cclin@ncut.edu.tw organization: Department of Information Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung, Taiwan – sequence: 4 givenname: Roseline Oluwaseun orcidid: 0000-0002-2592-2824 surname: Ogundokun fullname: Ogundokun, Roseline Oluwaseun organization: Department of Centre of Real Time Computer Sciences, Kaunas University of Technology, Kaunas, Lithuania – sequence: 5 givenname: Saurabh orcidid: 0000-0003-3836-2595 surname: Agarwal fullname: Agarwal, Saurabh email: saurabh@yu.ac.kr organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea – sequence: 6 givenname: Wooguil orcidid: 0000-0002-9551-7373 surname: Pak fullname: Pak, Wooguil email: wooguilpak@yu.ac.kr organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea |
| BookMark | eNp9kU1v1DAQhi1UJErpL4CDJc5Z7PhjY27RdktXKkKi7dmadSatV8EOjrfQGz-93qZIFQfsg63xPK9n5n1LjkIMSMh7zhacM_OpXa3WV1eLmtVyIaQUql6-Isc116YSSuijF_c35HSadqyspoTU8pj8WYc7CM6HW3ozYaLXaT9lCqGjm5AxjQkzbP3g8wP1gbab6iz5ewz0HCHvE9Lv-HOPhTjDjC77GGgfE_0aC4O0HceScO_x1_SZtoGuf48D-ADb-S1FcHfvyOsehglPn88TcnO-vl5dVJffvmxW7WXlJDO5Ur3jTYeOc5BONEaWjbIpA-BLh7rrXdP3UhlQxigudIddAVFsO4PaSC5OyGbW7SLs7Jj8D0gPNoK3T4GYbi2k7N2AFhhD4FogOl0-rxuluGSKLWXRAXPQ-jhrlRae2re7uE-hlG8FM7oWRoi6ZJk5y6U4TQl763yGw4xyAj9YzuzBPzv7Zw_-2Wf_Civ-Yf9W_H_qw0x5RHxBaKG5FOIRRbKn9Q |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_7717_peerj_cs_2401 crossref_primary_10_1038_s41598_025_15416_8 crossref_primary_10_3390_computers14090374 crossref_primary_10_1016_j_tifs_2025_105153 |
| Cites_doi | 10.1145/3495013 10.1109/SEmotion.2017.6 10.1145/2166966.2166996 10.1145/3531146.3533168 10.1145/3561048 10.1016/j.ins.2019.02.064 10.1016/j.compbiomed.2018.03.016 10.1109/JIOT.2022.3181607 10.1109/ICCIKE47802.2019.9004385 10.1016/j.inffus.2019.12.012 10.1007/978-3-031-12807-3_3 10.1109/ICCV.2017.74 10.1145/2414536.2414577 10.1145/3236009 10.1007/s10270-020-00790-w 10.1007/978-3-030-49435-3_25 10.1016/j.cmpb.2022.107161 10.1109/ESEM.2015.7321214 10.1145/3411764.3445315 10.1007/s11277-023-10339-x 10.1109/RE.2019.00046 10.1145/3409585 10.7717/peerj-cs.340 10.1109/ACCESS.2023.3255990 10.1145/3580305.3599869 10.1109/SANER60148.2024.00030 10.1109/TKDE.2021.3054782 10.1007/978-3-031-14463-9_2 10.1109/RE.2014.6912257 10.1177/03611981221076121 10.1007/s00766-020-00333-1 10.1145/3084226.3084246 10.1109/ICPR.2018.8546302 10.1109/ICSM.2015.7332474 10.14257/ijseia.2018.12.1.03 10.2139/ssrn.3064761 10.1061/(asce)gm.1943-5622.0002058 10.1145/3180155.3180218 10.1016/j.cmpb.2021.106584 10.1016/j.apenergy.2023.122151 10.1109/ICSE.2013.6606749 10.1109/LRA.2021.3070828 10.1016/j.neucom.2020.01.006 10.1007/978-981-16-3637-0_7 10.1201/9781003324140-1 10.1109/ACCESS.2023.3246388 10.1109/TII.2022.3146552 10.1109/ESEM56168.2023.10304855 10.1109/RE51729.2021.00025 10.1007/s11257-011-9117-5 10.5220/0010526901580169 10.1109/REW53955.2021.00031 10.1016/j.eswa.2016.03.028 10.18653/v1/p17-1012 10.1145/3236024.3264595 10.31577/cai_2023_6_1491 10.1109/SANER.2017.7884612 10.1080/10494820.2023.2212708 10.1109/BIBM.2018.8621359 10.1609/aaai.v35i8.16819 10.1109/RE.2018.00018 10.1007/978-3-030-76409-8_2 10.1007/s10515-021-00301-1 10.1109/ACCESS.2017.2779939 10.1007/s11042-022-12410-4 10.1109/ICoICT.2019.8835255 10.3390/make5040068 10.1145/3173574.3174156 10.1145/2939672.2939778 10.1109/JSAC.2023.3322766 10.1007/s10664-022-10222-6 10.1109/RE.2013.6636712 10.1109/ACCESS.2019.2957510 10.1109/REW53955.2021.00033 10.1145/2568225.2568263 10.1016/j.neucom.2019.01.078 10.1145/3531146.3534639 10.1109/RE.2017.71 10.3390/app10248924 10.1016/j.eswa.2023.119730 10.1016/j.artint.2018.07.007 10.1007/s10916-021-01736-5 10.7717/peerj-cs.874 10.1109/REW57809.2023.00024 10.1145/3583780.3614871 10.1145/3507921 10.1109/RE.2017.86 10.4018/IJISMD.2021040101 10.1007/s00766-016-0251-9 10.3390/app10175841 10.31577/cai_2023_6_1445 10.1007/978-3-030-96648-5_9 10.1109/ICSE.2017.18 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3443527 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 114045 |
| ExternalDocumentID | oai_doaj_org_article_a00ea163eec640928551405074413a91 10_1109_ACCESS_2024_3443527 10636143 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Council grantid: NSC 111-2410-H-167-005-MY2; NSC 112-2634-F-005-001-MBK funderid: 10.13039/501100020950 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-5fc18dec11a4c3894949e4811017ce6dfc8ff459a5995136dedc40e3bd9e69413 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297370400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Mon Jun 30 16:54:40 EDT 2025 Tue Nov 18 21:49:03 EST 2025 Sat Nov 29 04:27:01 EST 2025 Wed Aug 27 01:54:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-5fc18dec11a4c3894949e4811017ce6dfc8ff459a5995136dedc40e3bd9e69413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4480-7351 0000-0002-9551-7373 0000-0003-3836-2595 0000-0002-1289-9266 0000-0002-2592-2824 |
| OpenAccessLink | https://doaj.org/article/a00ea163eec640928551405074413a91 |
| PQID | 3096239332 |
| PQPubID | 4845423 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3096239332 ieee_primary_10636143 crossref_primary_10_1109_ACCESS_2024_3443527 crossref_citationtrail_10_1109_ACCESS_2024_3443527 doaj_primary_oai_doaj_org_article_a00ea163eec640928551405074413a91 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref59 Suleman (ref77) ref58 ref53 ref52 ref55 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 Ribera (ref23) ref49 ref8 ref7 Pang (ref82) 2002 ref9 ref4 Ceci (ref22) 2024 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Liao (ref24) 2021 ref26 ref25 ref20 ref21 Garreau (ref15) ref28 ref27 ref29 ref13 ref12 ref97 Vu (ref66) ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 Samek (ref54) 2017 ref93 ref92 ref95 ref94 ref91 ref90 ref89 Hoon (ref63) 2013 ref86 ref85 ref88 ref87 Zhang (ref47) 2019 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref104 ref74 ref105 ref102 ref76 ref103 ref2 ref1 ref71 Goyal (ref14) ref70 ref73 ref72 ref68 ref67 Wang (ref56) ref69 ref64 ref65 ref60 ref62 ref61 |
| References_xml | – ident: ref100 doi: 10.1145/3495013 – ident: ref69 doi: 10.1109/SEmotion.2017.6 – ident: ref42 doi: 10.1145/2166966.2166996 – start-page: 2376 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref14 article-title: Counterfactual visual explanations – ident: ref12 doi: 10.1145/3531146.3533168 – ident: ref99 doi: 10.1145/3561048 – ident: ref32 doi: 10.1016/j.ins.2019.02.064 – ident: ref101 doi: 10.1016/j.compbiomed.2018.03.016 – ident: ref10 doi: 10.1109/JIOT.2022.3181607 – ident: ref103 doi: 10.1109/ICCIKE47802.2019.9004385 – ident: ref38 doi: 10.1016/j.inffus.2019.12.012 – ident: ref39 doi: 10.1007/978-3-031-12807-3_3 – ident: ref45 doi: 10.1109/ICCV.2017.74 – ident: ref64 doi: 10.1145/2414536.2414577 – ident: ref98 doi: 10.1145/3236009 – start-page: 57 volume-title: Proc. Int. Conf. Data Sci. ident: ref77 article-title: Google play store app ranking prediction using machine learning algorithm – ident: ref79 doi: 10.1007/s10270-020-00790-w – ident: ref78 doi: 10.1007/978-3-030-49435-3_25 – ident: ref3 doi: 10.1016/j.cmpb.2022.107161 – ident: ref29 doi: 10.1109/ESEM.2015.7321214 – ident: ref105 doi: 10.1145/3411764.3445315 – year: 2019 ident: ref47 article-title: ‘Why should you trust my explanation?’ Understanding uncertainty in LIME explanations publication-title: arXiv:1904.12991 – ident: ref93 doi: 10.1007/s11277-023-10339-x – ident: ref36 doi: 10.1109/RE.2019.00046 – ident: ref27 doi: 10.1145/3409585 – ident: ref52 doi: 10.7717/peerj-cs.340 – ident: ref95 doi: 10.1109/ACCESS.2023.3255990 – ident: ref20 doi: 10.1145/3580305.3599869 – ident: ref59 doi: 10.1109/SANER60148.2024.00030 – ident: ref9 doi: 10.1109/TKDE.2021.3054782 – ident: ref48 doi: 10.1007/978-3-031-14463-9_2 – ident: ref25 doi: 10.1109/RE.2014.6912257 – ident: ref7 doi: 10.1177/03611981221076121 – ident: ref37 doi: 10.1007/s00766-020-00333-1 – ident: ref71 doi: 10.1145/3084226.3084246 – ident: ref16 doi: 10.1109/ICPR.2018.8546302 – ident: ref68 doi: 10.1109/ICSM.2015.7332474 – start-page: 2427 volume-title: Proc. IEEE/ACM 44th Int. Conf. Softw. Eng. (ICSE) ident: ref56 article-title: Where is your app frustrating users? – ident: ref19 doi: 10.14257/ijseia.2018.12.1.03 – ident: ref44 doi: 10.2139/ssrn.3064761 – ident: ref94 doi: 10.1061/(asce)gm.1943-5622.0002058 – ident: ref55 doi: 10.1145/3180155.3180218 – ident: ref11 doi: 10.1016/j.cmpb.2021.106584 – ident: ref50 doi: 10.1016/j.apenergy.2023.122151 – year: 2013 ident: ref63 article-title: An analysis of the mobile app review landscape: Trends and implications – ident: ref67 doi: 10.1109/ICSE.2013.6606749 – ident: ref17 doi: 10.1109/LRA.2021.3070828 – ident: ref89 doi: 10.1016/j.neucom.2020.01.006 – ident: ref91 doi: 10.1007/978-981-16-3637-0_7 – ident: ref6 doi: 10.1201/9781003324140-1 – ident: ref81 doi: 10.1109/ACCESS.2023.3246388 – ident: ref5 doi: 10.1109/TII.2022.3146552 – ident: ref53 doi: 10.1109/ESEM56168.2023.10304855 – year: 2021 ident: ref24 article-title: Question-driven design process for explainable AI user experiences publication-title: arXiv:2104.03483 – ident: ref34 doi: 10.1109/RE51729.2021.00025 – start-page: 1 volume-title: Proc. CEUR Workshop ident: ref23 article-title: Can we do better explanations? A proposal of user-centered explainable AI – ident: ref43 doi: 10.1007/s11257-011-9117-5 – year: 2017 ident: ref54 article-title: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models publication-title: arXiv:1708.08296 – ident: ref62 doi: 10.5220/0010526901580169 – ident: ref35 doi: 10.1109/REW53955.2021.00031 – ident: ref102 doi: 10.1016/j.eswa.2016.03.028 – ident: ref92 doi: 10.18653/v1/p17-1012 – ident: ref74 doi: 10.1145/3236024.3264595 – ident: ref30 doi: 10.31577/cai_2023_6_1491 – ident: ref73 doi: 10.1109/SANER.2017.7884612 – ident: ref60 doi: 10.1080/10494820.2023.2212708 – ident: ref51 doi: 10.1109/BIBM.2018.8621359 – ident: ref8 doi: 10.1609/aaai.v35i8.16819 – ident: ref76 doi: 10.1109/RE.2018.00018 – ident: ref2 doi: 10.1007/978-3-030-76409-8_2 – ident: ref57 doi: 10.1007/s10515-021-00301-1 – ident: ref84 doi: 10.1109/ACCESS.2017.2779939 – ident: ref96 doi: 10.1007/s11042-022-12410-4 – ident: ref26 doi: 10.1109/ICoICT.2019.8835255 – ident: ref85 doi: 10.3390/make5040068 – ident: ref41 doi: 10.1145/3173574.3174156 – ident: ref13 doi: 10.1145/2939672.2939778 – ident: ref21 doi: 10.1109/JSAC.2023.3322766 – ident: ref80 doi: 10.1007/s10664-022-10222-6 – ident: ref28 doi: 10.1109/RE.2013.6636712 – ident: ref97 doi: 10.1109/ACCESS.2019.2957510 – ident: ref46 doi: 10.1109/REW53955.2021.00033 – ident: ref65 doi: 10.1145/2568225.2568263 – ident: ref86 doi: 10.1016/j.neucom.2019.01.078 – ident: ref1 doi: 10.1145/3531146.3534639 – ident: ref72 doi: 10.1109/RE.2017.71 – volume-title: Annual Number of Mobile App Downloads Worldwide 2023 year: 2024 ident: ref22 – ident: ref88 doi: 10.3390/app10248924 – ident: ref90 doi: 10.1016/j.eswa.2023.119730 – year: 2002 ident: ref82 article-title: Thumbs up? Sentiment classification using machine learning techniques publication-title: arXiv:cs/0205070 – ident: ref40 doi: 10.1016/j.artint.2018.07.007 – ident: ref4 doi: 10.1007/s10916-021-01736-5 – ident: ref58 doi: 10.7717/peerj-cs.874 – start-page: 726 volume-title: Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE) ident: ref66 article-title: Phrase-based extraction of user opinions in mobile app reviews – start-page: 3620 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: What does lime really see in images? – ident: ref33 doi: 10.1109/REW57809.2023.00024 – ident: ref49 doi: 10.1145/3583780.3614871 – ident: ref18 doi: 10.1145/3507921 – ident: ref75 doi: 10.1109/RE.2017.86 – ident: ref83 doi: 10.4018/IJISMD.2021040101 – ident: ref104 doi: 10.1007/s00766-016-0251-9 – ident: ref87 doi: 10.3390/app10175841 – ident: ref31 doi: 10.31577/cai_2023_6_1445 – ident: ref61 doi: 10.1007/978-3-030-96648-5_9 – ident: ref70 doi: 10.1109/ICSE.2017.18 |
| SSID | ssj0000816957 |
| Score | 2.3448374 |
| Snippet | Mobile app developers struggle to prioritize updates by identifying feature requests within user reviews. While machine learning models can assist, their... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114023 |
| SubjectTerms | Analytical models Annotations Applications programs Artificial intelligence Artificial neural networks Explainable AI Explainable artificial intelligence Feature extraction feature request detection Interactive systems Machine learning machine learning interpretability mobile app development Mobile applications Mobile computing Reviews Sentiment analysis Software engineering software requirements Support vector machines Trust management Trustworthiness user trust |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMcyquoWwqaA0dS4thxYm7LtlUrlQqhFvVmJc6kVELeah-VeuOnM-O4y0oIJG5RYitOPj--sWe-EeKdynvZ6qbKWlp_Mk3zZFabvmUiJwvZ1aqPDrLfzqrz8_rqyn5JweoxFgYRo_MZHvBlPMvvpn7JW2U0wo2i5URtis2qMkOw1mpDhTNI2LJKykIytx_Gkwl9BNmAhT5QmngBp45ZW32iSH_KqvLHVBzXl-On_9myZ2I7EUkYD8g_FxsYXogna_KCL8XPo_Cd5TTCNVxST4MLjq-AJnTw29Uw-sbew02A8Wl2OOO5D5gWLmcIXzG2FA5xER22AhDDhc9TqoNA9BWGg4X5RxgHYGe-FInFz2Kg1o64PD66mJxkKeNC5snOW2Rl72XdoZey0Z6oDEvXoK4lj1uPput93fe6tA3LlEllOuyoIqq2s8gRseqV2ArTgLsCJBpiI4U1hZe6bcvWKjLuaqN9Y1RV2pEoHpBwPsmRc1aMHy6aJbl1A3yO4XMJvpF4v6p0O6hx_Lv4J4Z4VZSltOMNws6lkemaPMeGWCmiN_QTipo5ZE40mYiiaqwciR3Ge-19A9Qjsf_QY1wa93OnyCJkUTlV7P2l2mvxmJs47OLsi63FbIlvxCN_t7iZz97GLv0LtKrxqQ priority: 102 providerName: IEEE |
| Title | Enhancing User Trust and Interpretability in AI-Driven Feature Request Detection for Mobile App Reviews: An Explainable Approach |
| URI | https://ieeexplore.ieee.org/document/10636143 https://www.proquest.com/docview/3096239332 https://doaj.org/article/a00ea163eec640928551405074413a91 |
| Volume | 12 |
| WOSCitedRecordID | wos001297370400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOiI8iFko1B46ExrHj2NyW7VYg0QqhFvVmJc4EKlUu2t1W6gXx05lx3BIJCS5cckhsOfaMPW-SmTdCvFLlIDvdNkVH9qfQdE4W1gwdAzlZyd6qIQXIfvnYHB3Z01P3aVLqi2PCRnrgceH22rLElkADYjDki1SWTXxJKIbsuGpT3npVNm7iTKUz2Erj6ibTDMnS7c0XC5oROYSVfqM0gQSuIzMxRYmxP5dY-eNcTsbm4KF4kFEizMe3eyTuYHws7k-4A5-In8v4jbky4lc4ITWCY06egDb28DuOMAW-XsNZhPmHYn_FBxsw5rtcIXzGNDLs4yZFY0Ug-AqHF9QHgbApjH8N1m9hHoEj9XKaFT9LWVjb4uRgebx4X-RyCkWghdsU9RCk7TFI2epAOIV5aVBbyZsyoOmHYIdB165lDjKpTI89dUTV9Q453VU9FVvxIuIzARINQY3KmSpI3XV15xR5btbo0BrV1G4mqpuV9SFzjXPJi3OffI7S-VEcnsXhszhm4vVtp-8j1cbfm79jkd02ZZ7sdIO0x2ft8f_SnpnYZoFPxjOKAIuaiZ0bDfB5U6-9InePGeNU9fx_jP1C3OP5jN9zdsTWZnWJL8XdcLU5W692kz7T9fDHcjdlJf4CGMv0Wg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPIu6UMAHjqTEseONuS3bVq3YrhDaot6sxJlAJeRF-6jEjZ_OjOMuKyGQuEWJrTj5_PjGnvkG4LXKO9noepg1tP5kmubJrDJdw0ROFrKtVBcdZD9PhtNpdXFhP6Zg9RgLg4jR-QwP-DKe5bdzv-atMhrhRtFyom7CrVLrIu_DtTZbKpxDwpbDpC0kc_t2NB7TZ5AVWOgDpYkZcPKYrfUnyvSnvCp_TMZxhTl-8J9tewj3E5UUox77R3ADw2O4tyUw-AR-HoWvLKgRvohz6mtixhEWog6t-O1sGL1jf4jLIEan2eGCZz_BxHC9QPEJY0vFIa6iy1YQxHHF2ZzqoCACK_qjheU7MQqC3flSLBY_i6Fau3B-fDQbn2Qp50LmydJbZWXnZdWil7LWnsgMi9egriSPXI-m7XzVdbq0NQuVSWVabKkiqqa1yDGx6inshHnAPRASDfGRwprCS900ZWMVmXeV0b42aljaARTXSDifBMk5L8Y3Fw2T3LoePsfwuQTfAN5sKn3v9Tj-Xfw9Q7wpymLa8QZh59LYdHWeY028FNEb-glFxSwyJ6JMVFHVVg5gl_Heel8P9QD2r3uMSyN_6RTZhCwrp4pnf6n2Cu6czM4mbnI6_fAc7nJz-z2dfdhZLdb4Am77q9XlcvEydu9faT708A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+User+Trust+and+Interpretability+in+AI-Driven+Feature+Request+Detection+for+Mobile+App+Reviews%3A+An+Explainable+Approach&rft.jtitle=IEEE+access&rft.au=Gambo%2C+Ishaya&rft.au=Massenon%2C+Rhodes&rft.au=Lin%2C+Chia-Chen&rft.au=Ogundokun%2C+Roseline+Oluwaseun&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=114023&rft.epage=114045&rft_id=info:doi/10.1109%2FACCESS.2024.3443527&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3443527 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |