Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS)
► A major fallacy of some of the prior research on bankruptcy prediction is the manner in which the sample is drawn and the model accuracy is defined. In these studies, each one of the bankrupt companies is matched with a known non-bankrupt company from the same time period. Then, a model that predi...
Saved in:
| Published in: | Expert systems with applications Vol. 38; no. 3; pp. 1866 - 1875 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.03.2011
|
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► A major fallacy of some of the prior research on bankruptcy prediction is the manner in which the sample is drawn and the model accuracy is defined. In these studies, each one of the bankrupt companies is matched with a known non-bankrupt company from the same time period. Then, a model that predicts better than 50% (the assumed rate of chance) is thought to outperform random guessing. ► We considered a real setting. That is, we used a database made up of the annual accounts of 59,474 Spanish firms, 138 of them bankrupt. Therefore only a 0.232% of the companies went bankrupt. ► The present research presents a hybrid approach using fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). In a first stage, clusters are created using fuzzy c-means. The clusters are classified into two groups: those that contain bankrupted companies and those that not. Then, a MARS model is created using such clusters as a part of the input information. ► The performance of the proposed model is better than those obtained with the following benchmark techniques: MARS, discriminant analysis and neural networks.
During the last years, hybrid models have proven to be a promising approach for the design of classification systems for the forecasting of bankruptcy. In the present research we propose a hybrid system which combines fuzzy clustering and MARS. Both models are especially suitable for the bankruptcy prediction problem, due to their theoretical advantages when the information used for the forecasting is drawn from company financial statements. We test the accuracy of our approach in a real setting consisting of a database made up of 59,336 non-bankrupt Spanish companies and 138 distressed firms which went bankrupt during 2007. As benchmarking techniques we used discriminant analysis, MARS and a feed-forward neural network. Our results show that the hybrid model outperforms the other systems, both in terms of the percentage of correct classifications and in terms of the profit generated by the lending decisions. |
|---|---|
| AbstractList | ► A major fallacy of some of the prior research on bankruptcy prediction is the manner in which the sample is drawn and the model accuracy is defined. In these studies, each one of the bankrupt companies is matched with a known non-bankrupt company from the same time period. Then, a model that predicts better than 50% (the assumed rate of chance) is thought to outperform random guessing. ► We considered a real setting. That is, we used a database made up of the annual accounts of 59,474 Spanish firms, 138 of them bankrupt. Therefore only a 0.232% of the companies went bankrupt. ► The present research presents a hybrid approach using fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). In a first stage, clusters are created using fuzzy c-means. The clusters are classified into two groups: those that contain bankrupted companies and those that not. Then, a MARS model is created using such clusters as a part of the input information. ► The performance of the proposed model is better than those obtained with the following benchmark techniques: MARS, discriminant analysis and neural networks.
During the last years, hybrid models have proven to be a promising approach for the design of classification systems for the forecasting of bankruptcy. In the present research we propose a hybrid system which combines fuzzy clustering and MARS. Both models are especially suitable for the bankruptcy prediction problem, due to their theoretical advantages when the information used for the forecasting is drawn from company financial statements. We test the accuracy of our approach in a real setting consisting of a database made up of 59,336 non-bankrupt Spanish companies and 138 distressed firms which went bankrupt during 2007. As benchmarking techniques we used discriminant analysis, MARS and a feed-forward neural network. Our results show that the hybrid model outperforms the other systems, both in terms of the percentage of correct classifications and in terms of the profit generated by the lending decisions. During the last years, hybrid models have proven to be a promising approach for the design of classification systems for the forecasting of bankruptcy. In the present research we propose a hybrid system which combines fuzzy clustering and MARS. Both models are especially suitable for the bankruptcy prediction problem, due to their theoretical advantages when the information used for the forecasting is drawn from company financial statements. We test the accuracy of our approach in a real setting consisting of a database made up of 59,336 non-bankrupt Spanish companies and 138 distressed firms which went bankrupt during 2007. As benchmarking techniques we used discriminant analysis, MARS and a feed-forward neural network. Our results show that the hybrid model outperforms the other systems, both in terms of the percentage of correct classifications and in terms of the profit generated by the lending decisions. |
| Author | De Andrés, Javier Sánchez-Lasheras, Fernando Lorca, Pedro de Cos Juez, Francisco Javier |
| Author_xml | – sequence: 1 givenname: Javier surname: De Andrés fullname: De Andrés, Javier email: jdandres@uniovi.es organization: University of Oviedo, Department of Accounting, Avda. del Cristo s/n, Oviedo 33006, Spain – sequence: 2 givenname: Pedro surname: Lorca fullname: Lorca, Pedro organization: University of Oviedo, Department of Accounting, Avda. del Cristo s/n, Oviedo 33006, Spain – sequence: 3 givenname: Francisco Javier surname: de Cos Juez fullname: de Cos Juez, Francisco Javier organization: University of Oviedo, Department of Exploitation and Exploration of Mines, c/ Independencia No 13, Oviedo 33004, Spain – sequence: 4 givenname: Fernando surname: Sánchez-Lasheras fullname: Sánchez-Lasheras, Fernando organization: Tecniproject SL, Research Department, c/ Marqués de Pidal No 7, Oviedo 33004, Spain |
| BookMark | eNp9kU1v1DAQhi1UJLalf4CTb5RDtnbixAnislSUIrWq1MLZmjiT1kvWCR6naKv--Hq1nDjsyR_zPiPNPMfsyI8eGfsgxVIKWZ2vl0h_YZmL9CH0Ukr9hi1krYus0k1xxBaiKXWmpFbv2DHRWgiphdAL9vIV_O8wT9FueT8GtEDR-YfPfMUft21wHYdpCiPYRz5TKvDL-fl5y222QfDE7TBTxLArgO_4zTxE9wTBQUS-6mBKL-R3-BCQyI2e30-D80j87GZ1d__pPXvbw0B4-u88Yb8uv_28uMqub7__uFhdZ1aJJmYlqgp7kDliJUotC9ugKqBqa7SoVAlF2UJbpovqWmuFlNCXolZ5jVWe27Y4YR_3fdMkf2akaDaOLA4DeBxnMrVqVFU2SqXk2cFk2poUVa6LOkXrfdSGkShgb6yLENOUMYAbjBRmp8aszU6N2akxQpukJqH5f-gU3AbC9jD0ZQ9h2tSTw2DIOvQWO5e0RdON7hD-Cjhfq_Y |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2016_04_013 crossref_primary_10_1007_s00170_017_1430_7 crossref_primary_10_3390_risks11060099 crossref_primary_10_1016_j_jhazmat_2011_08_061 crossref_primary_10_1111_itor_12298 crossref_primary_10_1016_j_eswa_2015_08_034 crossref_primary_10_1007_s10614_022_10328_5 crossref_primary_10_1016_j_asoc_2014_09_010 crossref_primary_10_1016_j_still_2019_104449 crossref_primary_10_1007_s11356_019_05553_9 crossref_primary_10_1002_isaf_1471 crossref_primary_10_1007_s00521_022_07699_z crossref_primary_10_1016_j_eswa_2019_112827 crossref_primary_10_1016_j_soildyn_2019_01_011 crossref_primary_10_1007_s00704_022_03982_0 crossref_primary_10_1016_j_asoc_2014_05_008 crossref_primary_10_1016_j_compag_2017_08_012 crossref_primary_10_3390_su12052150 crossref_primary_10_1016_j_asoc_2013_09_020 crossref_primary_10_1016_j_envsoft_2021_105203 crossref_primary_10_1057_s41274_016_0166_3 crossref_primary_10_3390_s19163451 crossref_primary_10_1016_j_jcae_2024_100403 crossref_primary_10_1080_17517575_2015_1090630 crossref_primary_10_1007_s10479_021_04089_x crossref_primary_10_1007_s10100_023_00897_7 crossref_primary_10_1016_j_flowmeasinst_2019_04_005 crossref_primary_10_3390_s151229842 crossref_primary_10_1007_s11869_017_0477_9 crossref_primary_10_1088_1742_6596_1869_1_012135 crossref_primary_10_1109_TSMC_2017_2682883 crossref_primary_10_1016_j_jhydrol_2015_12_014 crossref_primary_10_1155_2014_383910 crossref_primary_10_1007_s00521_018_3519_9 crossref_primary_10_1038_s41598_020_68636_5 crossref_primary_10_1016_j_aei_2016_05_003 crossref_primary_10_1016_j_asoc_2012_02_008 crossref_primary_10_1016_j_asoc_2020_107008 crossref_primary_10_1002_met_1841 crossref_primary_10_1016_j_ins_2013_11_004 crossref_primary_10_1007_s43153_023_00381_4 crossref_primary_10_3390_math11143141 crossref_primary_10_1016_j_eswa_2012_01_135 crossref_primary_10_1080_10739149_2023_2252497 crossref_primary_10_1016_j_csbj_2022_09_029 crossref_primary_10_15240_tul_001_2021_3_010 crossref_primary_10_3389_fpsyg_2014_00343 crossref_primary_10_1016_j_envsoft_2014_05_022 crossref_primary_10_5004_dwt_2020_25944 crossref_primary_10_7717_peerj_cs_1915 crossref_primary_10_1080_1331677X_2020_1833746 crossref_primary_10_3390_su13094648 crossref_primary_10_1007_s40815_015_0121_5 crossref_primary_10_1016_j_agwat_2021_107067 crossref_primary_10_1007_s41870_022_00924_x crossref_primary_10_1080_01446193_2016_1219037 crossref_primary_10_1016_j_eswa_2017_10_040 crossref_primary_10_1108_BIJ_03_2017_0052 crossref_primary_10_1016_j_jobe_2023_106595 crossref_primary_10_2166_hydro_2024_086 crossref_primary_10_1145_3723157 crossref_primary_10_1016_j_cam_2020_113353 crossref_primary_10_1080_09715010_2020_1801528 crossref_primary_10_15446_ing_investig_v40n2_78649 crossref_primary_10_1016_j_ejor_2018_10_024 crossref_primary_10_1016_j_sbspro_2014_11_241 crossref_primary_10_3390_risks11050097 crossref_primary_10_1007_s10796_013_9469_y crossref_primary_10_1080_19942060_2020_1715845 crossref_primary_10_1007_s00521_023_08439_7 crossref_primary_10_2166_wpt_2024_147 crossref_primary_10_1002_hyp_13669 crossref_primary_10_1007_s11665_018_3714_y crossref_primary_10_1016_j_egyr_2021_07_004 crossref_primary_10_1080_02664763_2014_947359 crossref_primary_10_3390_jrfm18080465 crossref_primary_10_1007_s00521_015_2003_z crossref_primary_10_3390_risks11110199 crossref_primary_10_1007_s10479_018_2845_8 crossref_primary_10_1007_s12597_017_0314_9 crossref_primary_10_1002_for_2354 crossref_primary_10_1016_j_rse_2017_05_017 crossref_primary_10_14267_VEZTUD_2022_01_06 crossref_primary_10_1007_s10479_022_04993_w crossref_primary_10_1016_j_amc_2012_07_001 crossref_primary_10_1016_j_ins_2020_02_011 crossref_primary_10_1007_s00477_019_01684_0 crossref_primary_10_1016_j_conbuildmat_2025_140236 crossref_primary_10_1016_j_apergo_2019_102981 crossref_primary_10_1016_j_asoc_2017_03_014 crossref_primary_10_1515_jisys_2018_0063 crossref_primary_10_1111_pirs_12738 crossref_primary_10_4018_IJISSC_2016040102 crossref_primary_10_1007_s10100_017_0496_5 crossref_primary_10_1108_JAL_08_2022_0086 crossref_primary_10_1016_j_adiac_2023_100722 crossref_primary_10_1007_s00521_018_3630_y crossref_primary_10_1016_j_asoc_2021_108153 crossref_primary_10_1111_acfi_13044 crossref_primary_10_1007_s10462_012_9367_6 |
| Cites_doi | 10.1016/j.cor.2004.06.023 10.1016/j.cor.2004.03.017 10.1016/j.cor.2003.08.015 10.2307/2490859 10.1016/j.eswa.2004.12.031 10.1080/01969727308546046 10.1016/S0377-2217(01)00130-8 10.1016/0167-8655(94)00064-A 10.1023/B:RAST.0000013627.90884.b7 10.1016/S0148-2963(00)00126-0 10.1016/j.eswa.2008.01.018 10.1016/S0377-2217(98)00051-4 10.1016/j.eswa.2008.07.048 10.1016/j.neucom.2007.04.008 10.2307/2490395 10.1016/j.eswa.2007.01.009 10.1007/BF02551274 10.1016/j.ejor.2006.09.100 10.1111/j.1468-5957.1991.tb00231.x 10.1080/03610927708827542 10.1016/j.eswa.2009.01.076 10.1016/S0957-4174(97)00011-0 10.1016/j.eswa.2004.12.022 10.1016/j.eswa.2008.01.003 10.1016/S0377-2217(97)00398-6 10.1016/S0377-2217(01)00052-2 10.1111/j.1468-5957.1990.tb00548.x 10.1016/S0957-4174(99)00061-5 10.1177/096228029500400303 10.2307/2978933 10.1016/S0957-4174(99)00053-6 10.1016/j.eswa.2008.09.054 10.1016/j.eswa.2007.05.019 10.1109/ICMSE.2008.4668897 10.1002/cem.1180060405 10.1016/j.cor.2007.11.005 10.1016/0378-4266(94)90007-8 10.2307/2328060 10.1016/S0020-0255(99)00070-5 10.1016/0377-2217(93)E0134-J 10.1111/j.1468-5957.1995.tb00375.x 10.1016/j.jbankfin.2007.07.014 10.1016/S0378-4266(98)00059-4 10.1111/1468-0300.00066 10.1016/0377-2217(89)90351-2 10.1007/BF00570833 10.1016/j.eswa.2006.07.007 10.1109/TFUZZ.2005.859320 10.1016/S0378-4266(02)00319-9 10.1016/j.ejor.2006.08.043 10.1016/j.omega.2004.04.002 10.28945/2931 10.1016/j.eswa.2007.11.067 10.1016/S0957-4174(02)00044-1 10.1109/79.180705 10.1016/0167-9236(95)00033-X 10.1109/ICMSE.2008.4668889 10.1111/j.1540-5915.1992.tb00425.x 10.1016/S0305-0483(98)00051-6 10.1016/j.eswa.2008.06.068 10.1016/j.csda.2004.11.006 10.1002/j.1099-1174.1995.tb00078.x 10.1016/j.dss.2007.12.002 10.1214/aos/1176347963 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier Ltd |
| Copyright_xml | – notice: 2010 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2010.07.117 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 1875 |
| ExternalDocumentID | 10_1016_j_eswa_2010_07_117 S0957417410007451 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-5e46efa12ee605713c9e43a6b8ece445a35bab545a4dbcc011af508428e622cb3 |
| ISICitedReferencesCount | 133 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284863200065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Sep 28 11:11:59 EDT 2025 Wed Oct 01 17:18:53 EDT 2025 Sat Nov 29 04:44:20 EST 2025 Tue Nov 18 22:26:55 EST 2025 Fri Feb 23 02:30:23 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Clusters Hybrid Fuzzy Financial information MARS Bankruptcy forecasting |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-5e46efa12ee605713c9e43a6b8ece445a35bab545a4dbcc011af508428e622cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | http://hdl.handle.net/10651/7610 |
| PQID | 1701062738 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_849465944 proquest_miscellaneous_1701062738 crossref_citationtrail_10_1016_j_eswa_2010_07_117 crossref_primary_10_1016_j_eswa_2010_07_117 elsevier_sciencedirect_doi_10_1016_j_eswa_2010_07_117 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-01 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nanni, Lumini (b0290) 2009; 36 Hsieh (b0190) 2005; 28 Ravi Kumar, Ravi (b0330) 2007; 180 Hillegeist, Keating, Cram, Lundstedt (b0185) 2004; 9 Gorzalczany, Piasta (b0160) 1999; 120 Hastie, Tibshirani, Friedman (b0175) 2003 Ravi Kumar, P., & Ravi, V. (2006). Bankruptcy prediction in banks by an ensemble classifier. In Yu, Wang, Lai (b0410) 2008; 34 Lau, Hing-Ling, Gribbin (b0245) 1995; 22 Kim, Cho (b0225) 2008; 71 Lee, Chiu, Chou, Lu (b0255) 2006; 50 Altman (b0040) 1968; 23 Chen, L. H., Song, J. S., & Ji, F. (2006). MARS-based research of personal credit scoring: Verification of Chinese data. In Lee, Chen (b0250) 2005; 28 Frydman, Altman, Kao (b0150) 1985; 40 McLachlan (b0285) 2004 Salchenberger, Cianr, Lash (b0350) 1992; 23 Altman, Marco, Varetto (b0050) 1994; 18 Becchetti, Sierra (b0055) 2003; 27 Agarwal, Taffler (b0010) 2008; 32 Martikainen, Perttunen, Yli-Olli, Gunasekaran (b0275) 1995; 80 West, Dellana, Quian (b0395) 2005; 32 Alfaro, Gámez, García (b0025) 2008; 137 Dunn (b0130) 1973; 3 Dipillo (b0125) 1977; A6 Sekulic, Kowalski (b0355) 1992; 6 Zhang, Hu, Patuwo, Indro (b0415) 1999; 116 Defu, Z., Leung, S. C. H., & Zhimei, Y. (2008). A decision tree scoring model based on genetic algorithm and k-means algorithm. In (pp. 25–30), Long Beach, CA, USA. Tseng, Lin (b0380) 2005; 33 Platt, Platt (b0320) 1990; 17 Altman (b0045) 1993 Boyacioglu, Kara, Baykan (b0075) 2009; 36 Bishop (b0070) 1995 Alfaro, García, Gámez, Elizondo (b0030) 2008; 45 Foglia, Iannotti, Marullo-Reedtz (b0135) 2001; 30 Piramuthu (b0315) 1999; 112 Tsai, Wu (b0375) 2008; 34 International Finance Corporation (IFC) (2008). Kriner, M. (2007). Survival Analysis with Multivariate Adaptive Regression Splines. Ph.D. Thesis. Fakultät für Mathematik, Informatik und Statistik. Ludwig-Maximilians-Universität München. Hung, Chen (b0205) 2009; 36 Zmijevski (b0420) 1984; 22 Alfaro-Cid, Castillo, Esparcia, Sharman, Merelo, Prieto (b0035) 2008; 1–6 Chen, Ma, Ma (b0095) 2009; 36 Mckee, Lensberg (b0280) 2002; 138 Otair, M. A., & Salameh, W. A. (2005). Speeding up back-propagation neural networks. In Crook, Edelman, Thomas (b0110) 2007; 183 (pp. 2032–2036), 15–17 December. Friedman, Roosen (b0145) 1995; 4 Cybenko (b0115) 1989; 2 Begley, Ming, Watts (b0060) 1996; 1 Chuang, Lin (b0105) 2009; 36 Lee, Chiu, Lu, Chen (b0260) 2002; 23 (Vol. 1, pp. 1043–1047), 11–13 November 2008. Quinlan (b0325) 1993 Alam, Booth, Lee, Thordarson (b0020) 2000; 18 Pendharkar (b0310) 2005; 32 Jo, Han (b0220) 1997; 13 Ohlson (b0300) 1980; 18 Bezdek (b0065) 1981 Hush, Horne (b0210) 1993; 10 Friedman (b0140) 1991; 19 (pp. 167–173), Arizona, USA. Haykin (b0180) 1994 Odom, Sharda (b0295) 1993 Breiman, Friedman, Olshen, Stone (b0080) 1984 (pp. 78–82), 10–12 September 2008. Yli-Olly, Virtanen (b0405) 1989; 39 Lizarraga Dallo (b0265) 1998; 1 Serrano-Cinca (b0360) 1996; 17 Gopalakrishnan, Sridhar, Krishnamurthy (b0155) 1995; 16 Varetto (b0385) 1998; 22 Chen, Chiou (b0090) 1999; 27 (pp. 1498–1501), 5–7 October. Huang, Chen, Wang (b0200) 2007; 33 Washington: Palgrave Macmillan, World Bank. Sun, Li (b0370) 2009; 36 Chrzanowska, Alfaro, Witkowska (b0100) 2009; 36 Hastie, Tibshirani (b0170) 1990 Malhotra, Malhotra (b0270) 2002; 136 Wang, Wang, Lai (b0390) 2005; 13 Ahn, Cho, Kim (b0015) 2000; 18 Abdou (b0425) 2009; 36 Ripley (b0340) 1996 Hu, G., & Wang, Y. (2008). The application of data mining to customer credit analysis in medicament enterprise. In Slowinski, Zopounidis (b0365) 1995; 4 Laitinen (b0240) 1991; 18 Salcedo, Fernández, Segovia, Bousoño (b0345) 2005; 32 Wu, Ch., & Xia, H. (2008). Study of personal credit evaluation under C2C environment based on support vector machines ensemble. In Grice, Ingram (b0165) 2001; 54 10.1016/j.eswa.2010.07.117_b0400 Crook (10.1016/j.eswa.2010.07.117_b0110) 2007; 183 Hastie (10.1016/j.eswa.2010.07.117_b0170) 1990 West (10.1016/j.eswa.2010.07.117_b0395) 2005; 32 Foglia (10.1016/j.eswa.2010.07.117_b0135) 2001; 30 Slowinski (10.1016/j.eswa.2010.07.117_b0365) 1995; 4 Ohlson (10.1016/j.eswa.2010.07.117_b0300) 1980; 18 Becchetti (10.1016/j.eswa.2010.07.117_b0055) 2003; 27 Breiman (10.1016/j.eswa.2010.07.117_b0080) 1984 Salchenberger (10.1016/j.eswa.2010.07.117_b0350) 1992; 23 Sekulic (10.1016/j.eswa.2010.07.117_b0355) 1992; 6 Altman (10.1016/j.eswa.2010.07.117_b0050) 1994; 18 Lee (10.1016/j.eswa.2010.07.117_b0260) 2002; 23 10.1016/j.eswa.2010.07.117_b0085 Bishop (10.1016/j.eswa.2010.07.117_b0070) 1995 10.1016/j.eswa.2010.07.117_b0120 Hillegeist (10.1016/j.eswa.2010.07.117_b0185) 2004; 9 Agarwal (10.1016/j.eswa.2010.07.117_b0010) 2008; 32 McLachlan (10.1016/j.eswa.2010.07.117_b0285) 2004 Alfaro (10.1016/j.eswa.2010.07.117_b0025) 2008; 137 Serrano-Cinca (10.1016/j.eswa.2010.07.117_b0360) 1996; 17 Yli-Olly (10.1016/j.eswa.2010.07.117_b0405) 1989; 39 Zhang (10.1016/j.eswa.2010.07.117_b0415) 1999; 116 Gopalakrishnan (10.1016/j.eswa.2010.07.117_b0155) 1995; 16 Begley (10.1016/j.eswa.2010.07.117_b0060) 1996; 1 Wang (10.1016/j.eswa.2010.07.117_b0390) 2005; 13 Bezdek (10.1016/j.eswa.2010.07.117_b0065) 1981 Ripley (10.1016/j.eswa.2010.07.117_b0340) 1996 Boyacioglu (10.1016/j.eswa.2010.07.117_b0075) 2009; 36 10.1016/j.eswa.2010.07.117_b0195 Jo (10.1016/j.eswa.2010.07.117_b0220) 1997; 13 Laitinen (10.1016/j.eswa.2010.07.117_b0240) 1991; 18 Lizarraga Dallo (10.1016/j.eswa.2010.07.117_b0265) 1998; 1 Hastie (10.1016/j.eswa.2010.07.117_b0175) 2003 Quinlan (10.1016/j.eswa.2010.07.117_b0325) 1993 Ravi Kumar (10.1016/j.eswa.2010.07.117_b0330) 2007; 180 10.1016/j.eswa.2010.07.117_b0230 Martikainen (10.1016/j.eswa.2010.07.117_b0275) 1995; 80 Sun (10.1016/j.eswa.2010.07.117_b0370) 2009; 36 Odom (10.1016/j.eswa.2010.07.117_b0295) 1993 Dunn (10.1016/j.eswa.2010.07.117_b0130) 1973; 3 Lee (10.1016/j.eswa.2010.07.117_b0250) 2005; 28 Tseng (10.1016/j.eswa.2010.07.117_b0380) 2005; 33 Nanni (10.1016/j.eswa.2010.07.117_b0290) 2009; 36 10.1016/j.eswa.2010.07.117_b0305 Varetto (10.1016/j.eswa.2010.07.117_b0385) 1998; 22 Hung (10.1016/j.eswa.2010.07.117_b0205) 2009; 36 Tsai (10.1016/j.eswa.2010.07.117_b0375) 2008; 34 Gorzalczany (10.1016/j.eswa.2010.07.117_b0160) 1999; 120 Altman (10.1016/j.eswa.2010.07.117_b0045) 1993 Alam (10.1016/j.eswa.2010.07.117_b0020) 2000; 18 Lee (10.1016/j.eswa.2010.07.117_b0255) 2006; 50 Huang (10.1016/j.eswa.2010.07.117_b0200) 2007; 33 Alfaro (10.1016/j.eswa.2010.07.117_b0030) 2008; 45 Chen (10.1016/j.eswa.2010.07.117_b0090) 1999; 27 Hush (10.1016/j.eswa.2010.07.117_b0210) 1993; 10 Salcedo (10.1016/j.eswa.2010.07.117_b0345) 2005; 32 Frydman (10.1016/j.eswa.2010.07.117_b0150) 1985; 40 Abdou (10.1016/j.eswa.2010.07.117_b0425) 2009; 36 Haykin (10.1016/j.eswa.2010.07.117_b0180) 1994 10.1016/j.eswa.2010.07.117_b0335 Yu (10.1016/j.eswa.2010.07.117_b0410) 2008; 34 Chen (10.1016/j.eswa.2010.07.117_b0095) 2009; 36 10.1016/j.eswa.2010.07.117_b0215 Pendharkar (10.1016/j.eswa.2010.07.117_b0310) 2005; 32 Piramuthu (10.1016/j.eswa.2010.07.117_b0315) 1999; 112 Zmijevski (10.1016/j.eswa.2010.07.117_b0420) 1984; 22 Friedman (10.1016/j.eswa.2010.07.117_b0145) 1995; 4 Mckee (10.1016/j.eswa.2010.07.117_b0280) 2002; 138 Malhotra (10.1016/j.eswa.2010.07.117_b0270) 2002; 136 Altman (10.1016/j.eswa.2010.07.117_b0040) 1968; 23 Hsieh (10.1016/j.eswa.2010.07.117_b0190) 2005; 28 Dipillo (10.1016/j.eswa.2010.07.117_b0125) 1977; A6 Grice (10.1016/j.eswa.2010.07.117_b0165) 2001; 54 Platt (10.1016/j.eswa.2010.07.117_b0320) 1990; 17 Chuang (10.1016/j.eswa.2010.07.117_b0105) 2009; 36 Lau (10.1016/j.eswa.2010.07.117_b0245) 1995; 22 Friedman (10.1016/j.eswa.2010.07.117_b0140) 1991; 19 Ahn (10.1016/j.eswa.2010.07.117_b0015) 2000; 18 Cybenko (10.1016/j.eswa.2010.07.117_b0115) 1989; 2 Kim (10.1016/j.eswa.2010.07.117_b0225) 2008; 71 Alfaro-Cid (10.1016/j.eswa.2010.07.117_b0035) 2008; 1–6 Chrzanowska (10.1016/j.eswa.2010.07.117_b0100) 2009; 36 |
| References_xml | – reference: (pp. 78–82), 10–12 September 2008. – reference: Kriner, M. (2007). Survival Analysis with Multivariate Adaptive Regression Splines. Ph.D. Thesis. Fakultät für Mathematik, Informatik und Statistik. Ludwig-Maximilians-Universität München. – volume: 183 start-page: 1447 year: 2007 end-page: 1465 ident: b0110 article-title: Recent developments in consumer credit risk assessment publication-title: European Journal of Operational Research – reference: (pp. 1498–1501), 5–7 October. – volume: 22 start-page: 59 year: 1984 end-page: 82 ident: b0420 article-title: Methodological issues related to the estimation of financial distress prediction model publication-title: Journal of Accounting Research – volume: 32 start-page: 749 year: 2005 end-page: 765 ident: b0345 article-title: Genetic programming for the prediction of insolvency in non-life insurance companies publication-title: Computers & Operations Research – volume: 36 start-page: 11402 year: 2009 end-page: 11417 ident: b0425 article-title: Genetic programming for credit scoring: The case of Egyptian public sector banks publication-title: Expert Systems with Applications – volume: 180 start-page: 1 year: 2007 end-page: 28 ident: b0330 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review publication-title: European Journal of Operational Research – volume: 39 start-page: 40 year: 1989 end-page: 53 ident: b0405 article-title: On the long term stability and cross-country invariance of financial ratio patterns publication-title: European Journal of Operational Research – volume: 19 start-page: 1 year: 1991 end-page: 141 ident: b0140 article-title: Multivariate adaptive regression splines publication-title: Annals of Statistics – volume: 4 start-page: 197 year: 1995 end-page: 217 ident: b0145 article-title: An introduction to multivariate adaptive regression splines publication-title: Statistical Methods in Medical Research – volume: 137 start-page: 13 year: 2008 end-page: 32 ident: b0025 article-title: Linear discriminant analysis versus adaboost for failure forecasting publication-title: Spanish Journal of Finance and Accounting – volume: 22 start-page: 521 year: 1995 end-page: 549 ident: b0245 article-title: On modelling cross sectional distributions of financial ratios publication-title: Journal of Business Finance & Accounting – volume: 36 start-page: 3028 year: 2009 end-page: 3033 ident: b0290 article-title: An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring publication-title: Expert Systems with Applications – volume: 18 start-page: 505 year: 1994 end-page: 529 ident: b0050 article-title: Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) publication-title: Journal of Banking and Finance – year: 1993 ident: b0045 article-title: Corporate financial distress and bankruptcy – volume: 30 start-page: 421 year: 2001 end-page: 456 ident: b0135 article-title: The definition of the grading scales in banks’ internal rating systems publication-title: Economic Notes – volume: 1–6 start-page: 2902 year: 2008 end-page: 2908 ident: b0035 article-title: Comparing multiobjective evolutionary ensembles for minimizing type I and II errors for bankruptcy prediction publication-title: IEEE Congress on Evolutionary Computation – volume: 6 start-page: 199 year: 1992 end-page: 216 ident: b0355 article-title: MARS: A tutorial publication-title: Journal of Chemometrics – volume: 36 start-page: 6409 year: 2009 end-page: 6414 ident: b0100 article-title: The individual borrowers recognition: Single and ensemble trees publication-title: Expert Systems with Applications – volume: 17 start-page: 31 year: 1990 end-page: 51 ident: b0320 article-title: Development of a class of stable predictive variables: The case of bankruptcy prediction publication-title: Journal of Business, Finance and Accounting – volume: 32 start-page: 2561 year: 2005 end-page: 2582 ident: b0310 article-title: A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem publication-title: Computers & Operations Research – reference: Ravi Kumar, P., & Ravi, V. (2006). Bankruptcy prediction in banks by an ensemble classifier. In – volume: 36 start-page: 1685 year: 2009 end-page: 1694 ident: b0105 article-title: Constructing a reassigning credit scoring model publication-title: Expert Systems with Applications – reference: (pp. 167–173), Arizona, USA. – volume: 1 start-page: 137 year: 1998 end-page: 166 ident: b0265 article-title: Modelos de previsión del fracaso empresarial: ¿funciona entre nuestras empresas el modelo de Altman de 1968? publication-title: Revista de Contabilidad – reference: Otair, M. A., & Salameh, W. A. (2005). Speeding up back-propagation neural networks. In – volume: 40 start-page: 269 year: 1985 end-page: 291 ident: b0150 article-title: Introducing recursive partitioning for financial classification: The case of financial distress publication-title: Journal of Finance – reference: Chen, L. H., Song, J. S., & Ji, F. (2006). MARS-based research of personal credit scoring: Verification of Chinese data. In – year: 1990 ident: b0170 article-title: Generalized additive models – volume: 18 start-page: 109 year: 1980 end-page: 132 ident: b0300 article-title: Financial ratios and the probabilistic prediction of bankruptcy publication-title: Journal of Accounting Research – volume: 4 start-page: 27 year: 1995 end-page: 41 ident: b0365 article-title: Application of the rough set approach to evaluation of bankruptcy risk publication-title: International Journal of Intelligent Systems Accounting, Finance & Management – volume: 9 start-page: 5 year: 2004 end-page: 34 ident: b0185 article-title: Assessing the probability of bankruptcy publication-title: Review of Accounting Studies – reference: Hu, G., & Wang, Y. (2008). The application of data mining to customer credit analysis in medicament enterprise. In – volume: 36 start-page: 5297 year: 2009 end-page: 5303 ident: b0205 article-title: A selective ensemble based on expected probabilities for bankruptcy prediction publication-title: Expert Systems with Applications – year: 1996 ident: b0340 article-title: Pattern recognition and neural networks – volume: 36 start-page: 7611 year: 2009 end-page: 7616 ident: b0095 article-title: Mining the customer credit using hybrid support vector machine technique publication-title: Expert Systems with Applications – volume: A6 start-page: 933 year: 1977 end-page: 943 ident: b0125 article-title: Further application of bias discriminant analysis publication-title: Communication in Statistics Theory and Methodology – volume: 120 start-page: 45 year: 1999 end-page: 68 ident: b0160 article-title: Neuro-fuzzy approach versus rough set inspired methodology for intelligent decision support publication-title: Information Sciences – volume: 71 start-page: 1604 year: 2008 end-page: 1618 ident: b0225 article-title: Evolutionary ensemble of diverse artificial neural networks using speciation publication-title: Neurocomputing – volume: 23 start-page: 589 year: 1968 end-page: 609 ident: b0040 article-title: Financial ratios, discriminant analysis and the prediction of the corporate bankruptcy publication-title: Journal of Finance – volume: 1 start-page: 267 year: 1996 end-page: 284 ident: b0060 article-title: Bankruptcy classification errors in the 1980s: An empirical analysis of Altman’s and Ohlson’s models publication-title: Review of Accounting Studies – reference: . Washington: Palgrave Macmillan, World Bank. – volume: 17 start-page: 227 year: 1996 end-page: 238 ident: b0360 article-title: Self organizing neural networks for financial diagnosis publication-title: Decision Support Systems – year: 1981 ident: b0065 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 33 start-page: 85 year: 2005 end-page: 91 ident: b0380 article-title: A quadratic interval logit model for forecasting bankruptcy publication-title: Omega – volume: 3 start-page: 32 year: 1973 end-page: 57 ident: b0130 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics – reference: International Finance Corporation (IFC) (2008). – volume: 50 start-page: 1113 year: 2006 end-page: 1130 ident: b0255 article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines publication-title: Computational Statistics & Data Analysis – year: 1994 ident: b0180 publication-title: Neural networks – volume: 16 start-page: 59 year: 1995 end-page: 65 ident: b0155 article-title: Some applications of clustering in the design of neural networks publication-title: Pattern Recognition Letters – volume: 23 start-page: 245 year: 2002 end-page: 254 ident: b0260 article-title: Credit scoring using the hybrid neural discriminant technique publication-title: Expert Systems with Applications – volume: 116 start-page: 16 year: 1999 end-page: 32 ident: b0415 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European Journal of Operational Research – volume: 18 start-page: 649 year: 1991 end-page: 673 ident: b0240 article-title: Financial ratios and different failure processes publication-title: Journal of Business, Finance & Accounting – volume: 36 start-page: 885 year: 2009 end-page: 906 ident: b0370 article-title: Financial distress early warning based on group decision making publication-title: Computers & Operations Research – reference: Wu, Ch., & Xia, H. (2008). Study of personal credit evaluation under C2C environment based on support vector machines ensemble. In – volume: 13 start-page: 820 year: 2005 end-page: 831 ident: b0390 article-title: A new fuzzy support vector machine to evaluate credit risk publication-title: IEEE Transactions on Fuzzy Systems – volume: 32 start-page: 2543 year: 2005 end-page: 2559 ident: b0395 article-title: Neural network ensemble strategies for financial decision applications publication-title: Computers & Operations Research – volume: 10 start-page: 8 year: 1993 end-page: 39 ident: b0210 article-title: Progress in supervised neural networks publication-title: IEEE Signal Processing Magazine – year: 2003 ident: b0175 article-title: The elements of statistical learning – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b0115 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of Control, Signals, and Systems – volume: 33 start-page: 847 year: 2007 end-page: 856 ident: b0200 article-title: Credit scoring with a data mining approach based on Support Vector Machines publication-title: Expert Systems with Applications – volume: 28 start-page: 743 year: 2005 end-page: 752 ident: b0250 article-title: A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines publication-title: Expert Systems with Applications – volume: 22 start-page: 1421 year: 1998 end-page: 1439 ident: b0385 article-title: Genetic algorithms applications in the analysis of insolvency risk publication-title: Journal of Banking and Finance – volume: 54 start-page: 53 year: 2001 end-page: 61 ident: b0165 article-title: Test of generalizability of Altman’s bankruptcy prediction model publication-title: Journal of Business Research – year: 1984 ident: b0080 article-title: Classification and regression trees – reference: Defu, Z., Leung, S. C. H., & Zhimei, Y. (2008). A decision tree scoring model based on genetic algorithm and k-means algorithm. In – volume: 80 start-page: 34 year: 1995 end-page: 44 ident: b0275 article-title: Financial ratio distribution irregularities: Implications for ratio classification publication-title: European Journal of Operational Research – volume: 13 start-page: 97 year: 1997 end-page: 108 ident: b0220 article-title: Bankruptcy prediction using case based reasoning, neural networks, and discriminant analysis publication-title: Expert Systems with Applications – reference: (pp. 25–30), Long Beach, CA, USA. – volume: 18 start-page: 65 year: 2000 end-page: 74 ident: b0015 article-title: The integrated methodology of rough set theory and artificial neural network for business failure prediction publication-title: Expert Systems with Applications – year: 1993 ident: b0325 article-title: C4.5: Programs for machine learning – year: 2004 ident: b0285 article-title: Discriminant analysis and statistical pattern recognition – volume: 27 start-page: 407 year: 1999 end-page: 419 ident: b0090 article-title: A fuzzy credit rating approach for commercial loans: A Taiwan case publication-title: Omega – start-page: 163 year: 1993 end-page: 168 ident: b0295 article-title: A neural network model for bankruptcy prediction publication-title: Neural networks in finance and investing. Using artificial intelligence to improve real-world performance – volume: 34 start-page: 1434 year: 2008 end-page: 1444 ident: b0410 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Systems with Applications – volume: 23 start-page: 899 year: 1992 end-page: 916 ident: b0350 article-title: Neural networks: A new tool for predicting thrift failures publication-title: Decision Sciences – volume: 36 start-page: 3355 year: 2009 end-page: 3366 ident: b0075 article-title: Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey publication-title: Expert Systems with Applications – volume: 27 start-page: 2099 year: 2003 end-page: 2120 ident: b0055 article-title: Bankruptcy risk and productive efficiency in manufacturing firms publication-title: Journal of Banking and Finance – volume: 138 start-page: 436 year: 2002 end-page: 451 ident: b0280 article-title: Genetic programming and rough sets: A hybrid approach to bankruptcy classification publication-title: European Journal of Operational Research – volume: 45 start-page: 110 year: 2008 end-page: 122 ident: b0030 article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks publication-title: Decision Support Systems – year: 1995 ident: b0070 article-title: Neural networks for pattern recognition – volume: 34 start-page: 2639 year: 2008 end-page: 2649 ident: b0375 article-title: Using neural network ensembles for bankruptcy prediction and credit scoring publication-title: Expert Systems with Applications – volume: 18 start-page: 185 year: 2000 end-page: 199 ident: b0020 article-title: The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: An experimental study publication-title: Expert Systems with Applications – volume: 112 start-page: 310 year: 1999 end-page: 321 ident: b0315 article-title: Financial credit-risk evaluation with neural and neurofuzzy systems publication-title: European Journal of Operational Research – volume: 32 start-page: 1541 year: 2008 end-page: 1551 ident: b0010 article-title: Comparing the performance of market-based and accounting-based bankruptcy prediction models publication-title: Journal of Banking and Finance – reference: (Vol. 1, pp. 1043–1047), 11–13 November 2008. – volume: 28 start-page: 655 year: 2005 end-page: 665 ident: b0190 article-title: Hybrid mining approach in the design of credit scoring models publication-title: Expert Systems with Applications – volume: 136 start-page: 190 year: 2002 end-page: 211 ident: b0270 article-title: Differentiating between good credits and bad credits using neuro-fuzzy systems publication-title: European Journal of Operational Research – reference: (pp. 2032–2036), 15–17 December. – volume: 32 start-page: 2561 issue: 10 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0310 article-title: A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.06.023 – volume: 32 start-page: 2543 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0395 article-title: Neural network ensemble strategies for financial decision applications publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.03.017 – volume: 32 start-page: 749 issue: 4 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0345 article-title: Genetic programming for the prediction of insolvency in non-life insurance companies publication-title: Computers & Operations Research doi: 10.1016/j.cor.2003.08.015 – year: 1984 ident: 10.1016/j.eswa.2010.07.117_b0080 – year: 1990 ident: 10.1016/j.eswa.2010.07.117_b0170 – volume: 22 start-page: 59 year: 1984 ident: 10.1016/j.eswa.2010.07.117_b0420 article-title: Methodological issues related to the estimation of financial distress prediction model publication-title: Journal of Accounting Research doi: 10.2307/2490859 – volume: 1–6 start-page: 2902 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0035 article-title: Comparing multiobjective evolutionary ensembles for minimizing type I and II errors for bankruptcy prediction publication-title: IEEE Congress on Evolutionary Computation – year: 1994 ident: 10.1016/j.eswa.2010.07.117_b0180 – volume: 28 start-page: 743 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0250 article-title: A two stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.12.031 – volume: 3 start-page: 32 year: 1973 ident: 10.1016/j.eswa.2010.07.117_b0130 article-title: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters publication-title: Journal of Cybernetics doi: 10.1080/01969727308546046 – volume: 138 start-page: 436 year: 2002 ident: 10.1016/j.eswa.2010.07.117_b0280 article-title: Genetic programming and rough sets: A hybrid approach to bankruptcy classification publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(01)00130-8 – volume: 16 start-page: 59 year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0155 article-title: Some applications of clustering in the design of neural networks publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(94)00064-A – volume: 9 start-page: 5 year: 2004 ident: 10.1016/j.eswa.2010.07.117_b0185 article-title: Assessing the probability of bankruptcy publication-title: Review of Accounting Studies doi: 10.1023/B:RAST.0000013627.90884.b7 – volume: 54 start-page: 53 issue: 1 year: 2001 ident: 10.1016/j.eswa.2010.07.117_b0165 article-title: Test of generalizability of Altman’s bankruptcy prediction model publication-title: Journal of Business Research doi: 10.1016/S0148-2963(00)00126-0 – volume: 36 start-page: 3028 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0290 article-title: An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.01.018 – volume: 116 start-page: 16 issue: 1 year: 1999 ident: 10.1016/j.eswa.2010.07.117_b0415 article-title: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(98)00051-4 – volume: 36 start-page: 6409 issue: 2 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0100 article-title: The individual borrowers recognition: Single and ensemble trees publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.07.048 – ident: 10.1016/j.eswa.2010.07.117_b0215 – volume: 71 start-page: 1604 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0225 article-title: Evolutionary ensemble of diverse artificial neural networks using speciation publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.04.008 – volume: 18 start-page: 109 issue: 1 year: 1980 ident: 10.1016/j.eswa.2010.07.117_b0300 article-title: Financial ratios and the probabilistic prediction of bankruptcy publication-title: Journal of Accounting Research doi: 10.2307/2490395 – year: 1981 ident: 10.1016/j.eswa.2010.07.117_b0065 – volume: 34 start-page: 1434 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0410 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.01.009 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.eswa.2010.07.117_b0115 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of Control, Signals, and Systems doi: 10.1007/BF02551274 – volume: 183 start-page: 1447 year: 2007 ident: 10.1016/j.eswa.2010.07.117_b0110 article-title: Recent developments in consumer credit risk assessment publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.09.100 – volume: 18 start-page: 649 issue: 5 year: 1991 ident: 10.1016/j.eswa.2010.07.117_b0240 article-title: Financial ratios and different failure processes publication-title: Journal of Business, Finance & Accounting doi: 10.1111/j.1468-5957.1991.tb00231.x – year: 2003 ident: 10.1016/j.eswa.2010.07.117_b0175 – volume: A6 start-page: 933 year: 1977 ident: 10.1016/j.eswa.2010.07.117_b0125 article-title: Further application of bias discriminant analysis publication-title: Communication in Statistics Theory and Methodology doi: 10.1080/03610927708827542 – volume: 36 start-page: 11402 issue: 9 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0425 article-title: Genetic programming for credit scoring: The case of Egyptian public sector banks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.01.076 – volume: 13 start-page: 97 issue: 2 year: 1997 ident: 10.1016/j.eswa.2010.07.117_b0220 article-title: Bankruptcy prediction using case based reasoning, neural networks, and discriminant analysis publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(97)00011-0 – volume: 28 start-page: 655 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0190 article-title: Hybrid mining approach in the design of credit scoring models publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2004.12.022 – volume: 36 start-page: 3355 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0075 article-title: Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.01.003 – volume: 112 start-page: 310 year: 1999 ident: 10.1016/j.eswa.2010.07.117_b0315 article-title: Financial credit-risk evaluation with neural and neurofuzzy systems publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(97)00398-6 – volume: 136 start-page: 190 year: 2002 ident: 10.1016/j.eswa.2010.07.117_b0270 article-title: Differentiating between good credits and bad credits using neuro-fuzzy systems publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(01)00052-2 – volume: 17 start-page: 31 issue: 1 year: 1990 ident: 10.1016/j.eswa.2010.07.117_b0320 article-title: Development of a class of stable predictive variables: The case of bankruptcy prediction publication-title: Journal of Business, Finance and Accounting doi: 10.1111/j.1468-5957.1990.tb00548.x – volume: 18 start-page: 185 year: 2000 ident: 10.1016/j.eswa.2010.07.117_b0020 article-title: The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: An experimental study publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(99)00061-5 – volume: 137 start-page: 13 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0025 article-title: Linear discriminant analysis versus adaboost for failure forecasting publication-title: Spanish Journal of Finance and Accounting – volume: 4 start-page: 197 year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0145 article-title: An introduction to multivariate adaptive regression splines publication-title: Statistical Methods in Medical Research doi: 10.1177/096228029500400303 – volume: 23 start-page: 589 issue: 4 year: 1968 ident: 10.1016/j.eswa.2010.07.117_b0040 article-title: Financial ratios, discriminant analysis and the prediction of the corporate bankruptcy publication-title: Journal of Finance doi: 10.2307/2978933 – volume: 18 start-page: 65 year: 2000 ident: 10.1016/j.eswa.2010.07.117_b0015 article-title: The integrated methodology of rough set theory and artificial neural network for business failure prediction publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(99)00053-6 – volume: 36 start-page: 7611 issue: 4 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0095 article-title: Mining the customer credit using hybrid support vector machine technique publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.09.054 – volume: 34 start-page: 2639 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0375 article-title: Using neural network ensembles for bankruptcy prediction and credit scoring publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.05.019 – year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0070 – ident: 10.1016/j.eswa.2010.07.117_b0195 doi: 10.1109/ICMSE.2008.4668897 – volume: 6 start-page: 199 year: 1992 ident: 10.1016/j.eswa.2010.07.117_b0355 article-title: MARS: A tutorial publication-title: Journal of Chemometrics doi: 10.1002/cem.1180060405 – volume: 36 start-page: 885 issue: 3 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0370 article-title: Financial distress early warning based on group decision making publication-title: Computers & Operations Research doi: 10.1016/j.cor.2007.11.005 – volume: 18 start-page: 505 year: 1994 ident: 10.1016/j.eswa.2010.07.117_b0050 article-title: Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) publication-title: Journal of Banking and Finance doi: 10.1016/0378-4266(94)90007-8 – volume: 40 start-page: 269 issue: 1 year: 1985 ident: 10.1016/j.eswa.2010.07.117_b0150 article-title: Introducing recursive partitioning for financial classification: The case of financial distress publication-title: Journal of Finance doi: 10.2307/2328060 – volume: 120 start-page: 45 issue: 4 year: 1999 ident: 10.1016/j.eswa.2010.07.117_b0160 article-title: Neuro-fuzzy approach versus rough set inspired methodology for intelligent decision support publication-title: Information Sciences doi: 10.1016/S0020-0255(99)00070-5 – volume: 80 start-page: 34 year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0275 article-title: Financial ratio distribution irregularities: Implications for ratio classification publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(93)E0134-J – year: 1993 ident: 10.1016/j.eswa.2010.07.117_b0325 – start-page: 163 year: 1993 ident: 10.1016/j.eswa.2010.07.117_b0295 article-title: A neural network model for bankruptcy prediction – volume: 22 start-page: 521 issue: 4 year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0245 article-title: On modelling cross sectional distributions of financial ratios publication-title: Journal of Business Finance & Accounting doi: 10.1111/j.1468-5957.1995.tb00375.x – volume: 32 start-page: 1541 issue: 8 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0010 article-title: Comparing the performance of market-based and accounting-based bankruptcy prediction models publication-title: Journal of Banking and Finance doi: 10.1016/j.jbankfin.2007.07.014 – volume: 22 start-page: 1421 year: 1998 ident: 10.1016/j.eswa.2010.07.117_b0385 article-title: Genetic algorithms applications in the analysis of insolvency risk publication-title: Journal of Banking and Finance doi: 10.1016/S0378-4266(98)00059-4 – volume: 30 start-page: 421 issue: 3 year: 2001 ident: 10.1016/j.eswa.2010.07.117_b0135 article-title: The definition of the grading scales in banks’ internal rating systems publication-title: Economic Notes doi: 10.1111/1468-0300.00066 – volume: 39 start-page: 40 year: 1989 ident: 10.1016/j.eswa.2010.07.117_b0405 article-title: On the long term stability and cross-country invariance of financial ratio patterns publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(89)90351-2 – volume: 1 start-page: 267 issue: 4 year: 1996 ident: 10.1016/j.eswa.2010.07.117_b0060 article-title: Bankruptcy classification errors in the 1980s: An empirical analysis of Altman’s and Ohlson’s models publication-title: Review of Accounting Studies doi: 10.1007/BF00570833 – volume: 33 start-page: 847 year: 2007 ident: 10.1016/j.eswa.2010.07.117_b0200 article-title: Credit scoring with a data mining approach based on Support Vector Machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.07.007 – ident: 10.1016/j.eswa.2010.07.117_b0230 – ident: 10.1016/j.eswa.2010.07.117_b0085 – ident: 10.1016/j.eswa.2010.07.117_b0335 – volume: 13 start-page: 820 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0390 article-title: A new fuzzy support vector machine to evaluate credit risk publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2005.859320 – year: 1993 ident: 10.1016/j.eswa.2010.07.117_b0045 – volume: 27 start-page: 2099 year: 2003 ident: 10.1016/j.eswa.2010.07.117_b0055 article-title: Bankruptcy risk and productive efficiency in manufacturing firms publication-title: Journal of Banking and Finance doi: 10.1016/S0378-4266(02)00319-9 – year: 2004 ident: 10.1016/j.eswa.2010.07.117_b0285 – year: 1996 ident: 10.1016/j.eswa.2010.07.117_b0340 – volume: 180 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.eswa.2010.07.117_b0330 article-title: Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.08.043 – volume: 33 start-page: 85 issue: 1 year: 2005 ident: 10.1016/j.eswa.2010.07.117_b0380 article-title: A quadratic interval logit model for forecasting bankruptcy publication-title: Omega doi: 10.1016/j.omega.2004.04.002 – ident: 10.1016/j.eswa.2010.07.117_b0305 doi: 10.28945/2931 – volume: 36 start-page: 1685 issue: 2 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0105 article-title: Constructing a reassigning credit scoring model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.11.067 – volume: 23 start-page: 245 issue: 3 year: 2002 ident: 10.1016/j.eswa.2010.07.117_b0260 article-title: Credit scoring using the hybrid neural discriminant technique publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(02)00044-1 – volume: 10 start-page: 8 issue: 1 year: 1993 ident: 10.1016/j.eswa.2010.07.117_b0210 article-title: Progress in supervised neural networks publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.180705 – volume: 17 start-page: 227 issue: 3 year: 1996 ident: 10.1016/j.eswa.2010.07.117_b0360 article-title: Self organizing neural networks for financial diagnosis publication-title: Decision Support Systems doi: 10.1016/0167-9236(95)00033-X – ident: 10.1016/j.eswa.2010.07.117_b0400 doi: 10.1109/ICMSE.2008.4668889 – volume: 23 start-page: 899 year: 1992 ident: 10.1016/j.eswa.2010.07.117_b0350 article-title: Neural networks: A new tool for predicting thrift failures publication-title: Decision Sciences doi: 10.1111/j.1540-5915.1992.tb00425.x – volume: 27 start-page: 407 issue: 4 year: 1999 ident: 10.1016/j.eswa.2010.07.117_b0090 article-title: A fuzzy credit rating approach for commercial loans: A Taiwan case publication-title: Omega doi: 10.1016/S0305-0483(98)00051-6 – volume: 36 start-page: 5297 issue: 3 year: 2009 ident: 10.1016/j.eswa.2010.07.117_b0205 article-title: A selective ensemble based on expected probabilities for bankruptcy prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.068 – volume: 50 start-page: 1113 year: 2006 ident: 10.1016/j.eswa.2010.07.117_b0255 article-title: Mining the customer credit using classification and regression tree and multivariate adaptive regression splines publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2004.11.006 – volume: 4 start-page: 27 issue: 1 year: 1995 ident: 10.1016/j.eswa.2010.07.117_b0365 article-title: Application of the rough set approach to evaluation of bankruptcy risk publication-title: International Journal of Intelligent Systems Accounting, Finance & Management doi: 10.1002/j.1099-1174.1995.tb00078.x – volume: 45 start-page: 110 year: 2008 ident: 10.1016/j.eswa.2010.07.117_b0030 article-title: Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks publication-title: Decision Support Systems doi: 10.1016/j.dss.2007.12.002 – volume: 1 start-page: 137 issue: 1 year: 1998 ident: 10.1016/j.eswa.2010.07.117_b0265 article-title: Modelos de previsión del fracaso empresarial: ¿funciona entre nuestras empresas el modelo de Altman de 1968? publication-title: Revista de Contabilidad – ident: 10.1016/j.eswa.2010.07.117_b0120 – volume: 19 start-page: 1 year: 1991 ident: 10.1016/j.eswa.2010.07.117_b0140 article-title: Multivariate adaptive regression splines publication-title: Annals of Statistics doi: 10.1214/aos/1176347963 |
| SSID | ssj0017007 |
| Score | 2.402822 |
| Snippet | ► A major fallacy of some of the prior research on bankruptcy prediction is the manner in which the sample is drawn and the model accuracy is defined. In these... During the last years, hybrid models have proven to be a promising approach for the design of classification systems for the forecasting of bankruptcy. In the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1866 |
| SubjectTerms | Bankruptcies Bankruptcy forecasting Classification Clustering Clusters Financial information Forecasting Fuzzy Fuzzy logic Fuzzy set theory Hybrid MARS |
| Title | Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS) |
| URI | https://dx.doi.org/10.1016/j.eswa.2010.07.117 https://www.proquest.com/docview/1701062738 https://www.proquest.com/docview/849465944 |
| Volume | 38 |
| WOSCitedRecordID | wos000284863200065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojykpE4gKKgOnHihFtAu4LVskK7i9Rb5DguUEpSpU3ZrfjB_AzGsZ1ERV2xBy5RZdlW2vnqeXi-GYReyIAJdcHlxqEIXBoS4WYRjd1oOubSiwVnmih8xI6Po8kk_jQY_LZcmPWcFUV0fh4v_quoYQyEraizVxB3uykMwGcQOjxB7PD8J8G_5cX3ql6sRJOKKQVfWlJz4ny9UASttpC4UzeRgoN6s7lwhPtDgt5yxLxWxRMsebFh6K7Bowaj1ElyvmhyjU7kF51AC6eD4vTq4O3H5OTUhhZmbY6frFamYLSl0vUuzVtDWja5lfreXmOLK5XdJgyVleA6oTivSjuaq6Z7S-ew1nFw0yVElFuLT5ttSQEA3bhHXLEANI_NRNHLfuyD9JK_2iAmcynRfX7see5HPdz6vcNZ1fbrKXoS6Z4tfykRHc-YvZbLn9wk_zF1ud2pTJsmsKVJ2_xGmzo3S9UeqdojHTNVWP0a2vNYEEdDtJd82J8ctjdebKyp_fYbGYKXzkXcfpNdRtSWOdHYSGe30U3j3OBEg_IOGsjiLrplG4dgo0fuoV8dRnEPo29wgjVCsUUobhCKG4Rig1DcIRSD8HAfodgiFHcIxQah-KXC56v76PPB_tm7965pA-IKOo5XbiBpKKeceFKC782IL2JJfR5mkRSS0oD7QcYz8AQ4zTMhACZ8Cm4H-NUy9DyR-Q_QsCgL-RBhEmdhKGmm6v5RcN25FwhOSBayHGZTMULE_q6pMDXyVauWebpboiPktGsWukLMpbMDK67U2Ljadk0BfZeue25lm4ICULd6vJBlvUxVQwVVa9yPRgjvmAOnLw2DmNJHV3rZx-hG9697goarqpZP0XWxXn1bVs8Mgv8A6DTjSQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bankruptcy+forecasting%3A+A+hybrid+approach+using+Fuzzy+c-means+clustering+and+Multivariate+Adaptive+Regression+Splines+%28MARS%29&rft.jtitle=Expert+systems+with+applications&rft.au=De+Andr%C3%A9s%2C+Javier&rft.au=Lorca%2C+Pedro&rft.au=de+Cos+Juez%2C+Francisco+Javier&rft.au=S%C3%A1nchez-Lasheras%2C+Fernando&rft.date=2011-03-01&rft.issn=0957-4174&rft.volume=38&rft.issue=3&rft.spage=1866&rft.epage=1875&rft_id=info:doi/10.1016%2Fj.eswa.2010.07.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2010_07_117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |