Polynomial-size formulations and relaxations for the quadratic multiple knapsack problem
•Polynomial-size formulations of the quadratic multiple knapsack problem from classical 0-1 quadratic programming reformulations.•New level-1 decomposable reformulation linearization techniques for the problem.•Comparison of LP, surrogate, and Lagrangian relaxations.•Theoretical properties and domin...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 291; číslo 3; s. 871 - 882 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.06.2021
|
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •Polynomial-size formulations of the quadratic multiple knapsack problem from classical 0-1 quadratic programming reformulations.•New level-1 decomposable reformulation linearization techniques for the problem.•Comparison of LP, surrogate, and Lagrangian relaxations.•Theoretical properties and dominances.•Computational experiments on a large set of benchmark instances.
The Quadratic Multiple Knapsack Problem generalizes, simultaneously, two well-known combinatorial optimization problems that have been intensively studied in the literature: the (single) Quadratic Knapsack Problem and the Multiple Knapsack Problem. The only exact algorithm for its solution uses a formulation based on an exponential-size number of variables, that is solved via a Branch-and-Price algorithm. This work studies polynomial-size formulations and upper bounds. We derive linear models from classical reformulations of 0-1 quadratic programs and analyze theoretical properties and dominances among them. We define surrogate and Lagrangian relaxations, and we compare the effectiveness of the Lagrangian relaxation when applied to a quadratic formulation and to a Level 1 reformulation linearization that leads to a decomposable structure. The proposed methods are evaluated through extensive computational experiments. |
|---|---|
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2020.10.047 |