A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges

Large Language Models (LLMs) recently demonstrated extraordinary capability, including natural language processing (NLP), language translation, text generation, question answering, etc. Moreover, LLMs are a new and essential part of computerized language processing, having the ability to understand...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; p. 1
Main Authors: Raiaan, Mohaimenul Azam Khan, Mukta, Md. Saddam Hossain, Fatema, Kaniz, Fahad, Nur Mohammad, Sakib, Sadman, Mim, Most. Marufatul Jannat, Ahmad, Jubaer, Ali, Mohammed Eunus, Azam, Sami
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Large Language Models (LLMs) recently demonstrated extraordinary capability, including natural language processing (NLP), language translation, text generation, question answering, etc. Moreover, LLMs are a new and essential part of computerized language processing, having the ability to understand complex verbal patterns and generate coherent and appropriate replies for the situation. Though this success of LLMs has prompted a substantial increase in research contributions, rapid growth has made it difficult to understand the overall impact of these improvements. Since a lot of new research on LLMs is coming out quickly, it is getting tough to get an overview of all of them in a short note. Consequently, the research community would benefit from a short but thorough review of the recent changes in this area. This article thoroughly overviews LLMs, including their history, architectures, transformers, resources, training methods, applications, impacts, challenges, etc. This paper begins by discussing the fundamental concepts of LLMs with its traditional pipeline of the LLMs training phase. It then provides an overview of the existing works, the history of LLMs, their evolution over time, the architecture of transformers in LLMs, the different resources of LLMs, and the different training methods that have been used to train them. It also demonstrated the datasets utilized in the studies. After that, the paper discusses the wide range of applications of LLMs, including biomedical and healthcare, education, social, business, and agriculture. It also illustrates how LLMs create an impact on society and shape the future of AI and how they can be used to solve real-world problems. Then it also explores open issues and challenges to deploying LLMs in real-world scenario. Our review paper aims to help practitioners, researchers, and experts thoroughly understand the evolution of LLMs, pre-trained architectures, applications, challenges, and future goals.
AbstractList Large Language Models (LLMs) recently demonstrated extraordinary capability in various natural language processing (NLP) tasks including language translation, text generation, question answering, etc. Moreover, LLMs are new and essential part of computerized language processing, having the ability to understand complex verbal patterns and generate coherent and appropriate replies in a given context. Though this success of LLMs has prompted a substantial increase in research contributions, rapid growth has made it difficult to understand the overall impact of these improvements. Since a plethora of research on LLMs have been appeared within a short time, it is quite impossible to track all of these and get an overview of the current state of research in this area. Consequently, the research community would benefit from a short but thorough review of the recent changes in this area. This article thoroughly overviews LLMs, including their history, architectures, transformers, resources, training methods, applications, impacts, challenges, etc. This paper begins by discussing the fundamental concepts of LLMs with its traditional pipeline of the LLMs training phase. Then the paper provides an overview of the existing works, the history of LLMs, their evolution over time, the architecture of transformers in LLMs, the different resources of LLMs, and the different training methods that have been used to train them. The paper also demonstrates the datasets utilized in the studies. After that, the paper discusses the wide range of applications of LLMs, including biomedical and healthcare, education, social, business, and agriculture. The study also illustrates how LLMs create an impact on society and shape the future of AI and how they can be used to solve real-world problems. Finally, the paper also explores open issues and challenges to deploy LLMs in real-world scenario. Our review paper aims to help practitioners, researchers, and experts thoroughly understand the evolution of LLMs, pre-trained architectures, applications, challenges, and future goals.
Large Language Models (LLMs) recently demonstrated extraordinary capability, including natural language processing (NLP), language translation, text generation, question answering, etc. Moreover, LLMs are a new and essential part of computerized language processing, having the ability to understand complex verbal patterns and generate coherent and appropriate replies for the situation. Though this success of LLMs has prompted a substantial increase in research contributions, rapid growth has made it difficult to understand the overall impact of these improvements. Since a lot of new research on LLMs is coming out quickly, it is getting tough to get an overview of all of them in a short note. Consequently, the research community would benefit from a short but thorough review of the recent changes in this area. This article thoroughly overviews LLMs, including their history, architectures, transformers, resources, training methods, applications, impacts, challenges, etc. This paper begins by discussing the fundamental concepts of LLMs with its traditional pipeline of the LLMs training phase. It then provides an overview of the existing works, the history of LLMs, their evolution over time, the architecture of transformers in LLMs, the different resources of LLMs, and the different training methods that have been used to train them. It also demonstrated the datasets utilized in the studies. After that, the paper discusses the wide range of applications of LLMs, including biomedical and healthcare, education, social, business, and agriculture. It also illustrates how LLMs create an impact on society and shape the future of AI and how they can be used to solve real-world problems. Then it also explores open issues and challenges to deploying LLMs in real-world scenario. Our review paper aims to help practitioners, researchers, and experts thoroughly understand the evolution of LLMs, pre-trained architectures, applications, challenges, and future goals.
Author Fahad, Nur Mohammad
Ali, Mohammed Eunus
Sakib, Sadman
Azam, Sami
Fatema, Kaniz
Mim, Most. Marufatul Jannat
Raiaan, Mohaimenul Azam Khan
Ahmad, Jubaer
Mukta, Md. Saddam Hossain
Author_xml – sequence: 1
  givenname: Mohaimenul Azam Khan
  orcidid: 0009-0006-4793-5382
  surname: Raiaan
  fullname: Raiaan, Mohaimenul Azam Khan
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 2
  givenname: Md. Saddam Hossain
  orcidid: 0000-0003-2675-5471
  surname: Mukta
  fullname: Mukta, Md. Saddam Hossain
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 3
  givenname: Kaniz
  surname: Fatema
  fullname: Fatema, Kaniz
  organization: Faculty of Science and Technology, Charles Darwin University, Australia
– sequence: 4
  givenname: Nur Mohammad
  surname: Fahad
  fullname: Fahad, Nur Mohammad
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 5
  givenname: Sadman
  orcidid: 0009-0007-2007-5746
  surname: Sakib
  fullname: Sakib, Sadman
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 6
  givenname: Most. Marufatul Jannat
  orcidid: 0009-0000-7138-2331
  surname: Mim
  fullname: Mim, Most. Marufatul Jannat
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 7
  givenname: Jubaer
  surname: Ahmad
  fullname: Ahmad, Jubaer
  organization: Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
– sequence: 8
  givenname: Mohammed Eunus
  orcidid: 0000-0002-0384-7616
  surname: Ali
  fullname: Ali, Mohammed Eunus
  organization: Department of CSE, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
– sequence: 9
  givenname: Sami
  orcidid: 0000-0001-7572-9750
  surname: Azam
  fullname: Azam, Sami
  organization: Faculty of Science and Technology, Charles Darwin University, Australia
BookMark eNp9UU1v1DAQtVCRKKW_AA6RuLKLvx1zi6IWVlpUqR9ny0nGW69SO9hZKP8eb1OkigNzsMfjeU9v5r1FJyEGQOg9wWtCsP7ctO3Fzc2aYsrXjEmhOH2FTimResUEkycv8jfoPOc9LlGXklCnyDXVNfz08KuKodratINyht3BluR7HGDMX6om9fd-hn4-JMifqmaaRt_b2cdQXrf2MYb44I8_VxOEapPzAXJlw1C193YcIewgv0OvnR0znD_fZ-ju8uK2_bbaXn3dtM121XOs55WwnJMBU4Kp0KCo0lR2jioiHVE1obwTJWpHnQMgTijaDXXnpOwsCEIIO0ObhXeIdm-m5B9s-m2i9eapENPO2DT7fgTDeG1xLx0wjDmVWkONheC6E3WnOqEK18eFa0rxRxlpNvt4SKHIN1QzXNZXBJUuvXT1KeacwJnez0_LmZP1oyHYHF0yi0vm6JJ5dqlg2T_Yv4r_j_qwoDwAvEBwVkbC7A9snZ2d
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3513550
crossref_primary_10_35784_acs_6936
crossref_primary_10_1016_j_cosrev_2025_100762
crossref_primary_10_1109_ACCESS_2025_3538599
crossref_primary_10_3390_educsci14080814
crossref_primary_10_1007_s11004_025_10231_3
crossref_primary_10_1109_TIE_2024_3454408
crossref_primary_10_1109_ACCESS_2024_3445413
crossref_primary_10_1016_j_solener_2025_113927
crossref_primary_10_1007_s40593_025_00492_8
crossref_primary_10_1016_j_neucom_2024_128263
crossref_primary_10_3390_app15158570
crossref_primary_10_1109_ACCESS_2025_3600146
crossref_primary_10_3390_computers14030106
crossref_primary_10_1136_rapm_2025_106850
crossref_primary_10_1177_10497323251365211
crossref_primary_10_1080_10511253_2025_2506435
crossref_primary_10_1021_acssynbio_5c00391
crossref_primary_10_3390_buildings15071144
crossref_primary_10_1080_17425255_2025_2551724
crossref_primary_10_1097_CM9_0000000000003456
crossref_primary_10_1109_ACCESS_2025_3565280
crossref_primary_10_1109_ACCESS_2025_3529741
crossref_primary_10_1109_OJCS_2025_3580498
crossref_primary_10_1177_02683962251371062
crossref_primary_10_1002_eng2_70365
crossref_primary_10_1109_ACCESS_2025_3535782
crossref_primary_10_3390_vehicles7010011
crossref_primary_10_1109_ACCESS_2025_3532397
crossref_primary_10_1016_j_jnca_2024_103989
crossref_primary_10_1016_j_ipm_2025_104082
crossref_primary_10_3390_computers14070265
crossref_primary_10_1007_s00521_025_11618_3
crossref_primary_10_1007_s10586_024_04983_6
crossref_primary_10_1088_3049_4761_addac6
crossref_primary_10_1109_OJCOMS_2024_3522103
crossref_primary_10_1177_10732748241286749
crossref_primary_10_1371_journal_pone_0332134
crossref_primary_10_1016_j_tourman_2025_105271
crossref_primary_10_3390_app15126525
crossref_primary_10_7256_2454_0714_2025_2_74270
crossref_primary_10_1080_20964471_2025_2480446
crossref_primary_10_18203_2320_6012_ijrms20252009
crossref_primary_10_3390_computers14050162
crossref_primary_10_1007_s10664_025_10692_4
crossref_primary_10_1016_j_trip_2025_101599
crossref_primary_10_3390_eng5030068
crossref_primary_10_1080_10511253_2024_2413995
crossref_primary_10_1007_s10489_025_06256_0
crossref_primary_10_1109_ACCESS_2025_3568695
crossref_primary_10_1109_ACCESS_2025_3559135
crossref_primary_10_3390_electronics14091728
crossref_primary_10_1038_s41597_025_04417_x
crossref_primary_10_3390_su17146379
crossref_primary_10_1177_21582440251368594
crossref_primary_10_3390_s25072024
crossref_primary_10_1109_ACCESS_2025_3596791
crossref_primary_10_3389_fpls_2025_1583344
crossref_primary_10_1109_ACCESS_2025_3582037
crossref_primary_10_3390_ijgi13100348
crossref_primary_10_1145_3718096
crossref_primary_10_3390_app142110048
crossref_primary_10_3390_ai6080188
crossref_primary_10_4018_JOEUC_383053
crossref_primary_10_1016_j_eswa_2025_127864
crossref_primary_10_3390_ai6050096
crossref_primary_10_1016_j_aei_2025_103142
crossref_primary_10_1016_j_aei_2025_103265
crossref_primary_10_3390_buildings15111944
crossref_primary_10_1007_s42979_024_03055_1
crossref_primary_10_1016_j_ijmedinf_2025_105787
crossref_primary_10_1109_ACCESS_2024_3464242
crossref_primary_10_3390_a17120582
crossref_primary_10_3390_smartcities7050107
crossref_primary_10_1515_zwf_2024_1175
crossref_primary_10_2478_jaiscr_2025_0007
crossref_primary_10_1016_j_jbi_2025_104778
crossref_primary_10_1109_ACCESS_2024_3468996
crossref_primary_10_1016_j_bdr_2025_100551
crossref_primary_10_3390_jcm13195909
crossref_primary_10_1061_JMENEA_MEENG_6705
crossref_primary_10_1007_s40558_024_00309_9
crossref_primary_10_1038_s41598_025_03298_9
crossref_primary_10_1016_j_advmem_2025_100161
crossref_primary_10_3390_electronics14091813
crossref_primary_10_1109_ACCESS_2025_3525849
crossref_primary_10_1007_s40688_025_00554_7
crossref_primary_10_1111_exsy_13760
crossref_primary_10_3390_resources13090119
crossref_primary_10_3390_su17031321
crossref_primary_10_1016_j_ipm_2025_104392
crossref_primary_10_3390_en18174701
crossref_primary_10_1007_s11517_025_03414_x
crossref_primary_10_1093_jamia_ocaf008
crossref_primary_10_1016_j_chb_2025_108730
crossref_primary_10_1111_edt_13041
crossref_primary_10_1111_exsy_70051
crossref_primary_10_3390_designs8030043
crossref_primary_10_3390_electronics14010120
crossref_primary_10_3390_vehicles6030074
crossref_primary_10_1007_s44163_025_00339_0
crossref_primary_10_1038_s44401_025_00027_2
crossref_primary_10_3389_frai_2025_1545851
crossref_primary_10_1007_s11042_024_18608_y
crossref_primary_10_1111_itor_70054
crossref_primary_10_1093_jamia_ocae202
crossref_primary_10_1109_ACCESS_2024_3410035
crossref_primary_10_3390_make7010003
crossref_primary_10_1080_17452007_2025_2456768
crossref_primary_10_1038_s41597_025_05268_2
crossref_primary_10_2196_71916
crossref_primary_10_1109_ACCESS_2025_3559204
crossref_primary_10_1016_j_paerosci_2025_101100
crossref_primary_10_1038_s44407_025_00027_4
crossref_primary_10_1186_s13326_025_00331_8
crossref_primary_10_1007_s10792_025_03711_2
crossref_primary_10_1097_ICL_0000000000001158
crossref_primary_10_1109_ACCESS_2025_3591966
crossref_primary_10_3390_info16050366
crossref_primary_10_1016_j_sftr_2025_101033
crossref_primary_10_1093_polsoc_puaf001
crossref_primary_10_3390_app15137134
crossref_primary_10_1016_j_autcon_2024_105846
crossref_primary_10_1109_ACCESS_2024_3428700
crossref_primary_10_1080_13683500_2024_2417712
crossref_primary_10_3390_app14125068
crossref_primary_10_1007_s41060_025_00744_9
crossref_primary_10_3390_informatics12030083
crossref_primary_10_1016_j_csi_2024_103951
crossref_primary_10_3390_ai6090216
crossref_primary_10_1016_j_knosys_2025_113151
crossref_primary_10_1016_j_knosys_2025_114361
crossref_primary_10_3390_app142411897
crossref_primary_10_1177_17562848251328577
crossref_primary_10_3390_electronics13245040
crossref_primary_10_1093_cid_ciae442
crossref_primary_10_1109_ACCESS_2024_3519264
crossref_primary_10_1007_s10660_025_09990_2
crossref_primary_10_3390_info16080688
crossref_primary_10_1007_s41060_025_00805_z
crossref_primary_10_1016_j_foodcont_2024_111071
crossref_primary_10_2147_IJGM_S497753
crossref_primary_10_3390_app15147730
crossref_primary_10_1007_s10791_025_09580_8
crossref_primary_10_3389_frai_2025_1546179
crossref_primary_10_1109_ACCESS_2025_3527025
crossref_primary_10_1021_acsomega_5c04542
crossref_primary_10_3390_computers13110292
crossref_primary_10_1016_j_ymssp_2025_113226
crossref_primary_10_1007_s11613_025_00946_x
crossref_primary_10_1093_icc_dtae042
crossref_primary_10_1016_j_bsheal_2025_09_007
crossref_primary_10_7717_peerj_cs_2293
crossref_primary_10_1007_s10639_024_13145_5
crossref_primary_10_1016_j_apenergy_2025_126382
crossref_primary_10_1016_j_joms_2025_03_015
crossref_primary_10_1109_ACCESS_2025_3542417
crossref_primary_10_1016_j_biocon_2025_111511
crossref_primary_10_1002_hcs2_70031
crossref_primary_10_1016_j_compag_2025_110442
crossref_primary_10_1109_MPRV_2025_3539421
crossref_primary_10_1016_j_eswa_2025_129753
crossref_primary_10_1177_14604582241304679
crossref_primary_10_1080_01691864_2025_2490601
crossref_primary_10_1016_j_jvcir_2024_104320
crossref_primary_10_3390_fi17060235
crossref_primary_10_1177_1088467X251348350
crossref_primary_10_1007_s11227_024_06413_1
crossref_primary_10_1108_JSM_11_2023_0441
crossref_primary_10_1109_ACCESS_2024_3426279
crossref_primary_10_1111_exsy_70127
crossref_primary_10_1007_s13735_024_00334_8
crossref_primary_10_1109_TIFS_2025_3602233
crossref_primary_10_3390_s25133987
crossref_primary_10_3390_app14146280
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1145_3731680
crossref_primary_10_1007_s10462_025_11189_8
crossref_primary_10_1016_j_rcim_2025_102982
crossref_primary_10_1016_j_coms_2025_04_007
crossref_primary_10_3390_electronics14071384
crossref_primary_10_1109_ACCESS_2025_3555753
crossref_primary_10_1038_s42256_025_01005_x
crossref_primary_10_23962_ajic_i35_21309
crossref_primary_10_3389_frai_2025_1638227
crossref_primary_10_1109_ACCESS_2024_3521945
crossref_primary_10_1016_j_compmedimag_2025_102581
crossref_primary_10_59294_HIUJS2025056
crossref_primary_10_3390_make7030097
crossref_primary_10_3390_batteries11030107
crossref_primary_10_3390_info16090792
crossref_primary_10_3390_computers14030093
crossref_primary_10_3390_network5030039
crossref_primary_10_1109_ACCESS_2025_3608650
crossref_primary_10_3390_app15148103
crossref_primary_10_1016_j_knosys_2025_113503
crossref_primary_10_1109_ACCESS_2025_3573955
crossref_primary_10_1016_j_knosys_2025_114391
crossref_primary_10_1016_j_landurbplan_2025_105323
crossref_primary_10_1016_j_osnem_2025_100311
crossref_primary_10_1108_ICS_03_2025_0093
crossref_primary_10_3390_electronics13153034
Cites_doi 10.18653/v1/P19-1356
10.18653/v1/2022.emnlp-main.42
10.21437/interspeech.2020-1511
10.1109/CONIT51480.2021.9498485
10.1007/978-3-030-90055-7_21
10.48550/ARXIV.1706.03762
10.1609/aaai.v36i10.21319
10.1007/s42452-019-1765-9
10.1016/j.ijinfomgt.2023.102642
10.1155/2023/8691095
10.18653/v1/2023.wmt-1.96
10.1038/s41591-023-02448-8
10.3390/a15020071
10.1016/j.csl.2014.11.004
10.1007/s00146-022-01494-z
10.18653/v1/2023.emnlp-main.4
10.1109/ICCECE51049.2023.10085092
10.1609/aaai.v36i10.21307
10.18653/v1/2020.emnlp-main.437
10.3390/bdcc7030124
10.1145/3503488
10.1016/j.iotcps.2023.04.003
10.18653/v1/2020.acl-main.362
10.18653/v1/2020.emnlp-demos.6
10.1016/j.simpat.2023.102754
10.2139/ssrn.4389233
10.5555/3104322.3104425
10.3390/logistics7020026
10.18653/v1/P18-1007
10.1016/j.psychres.2023.115334
10.1038/s41523-023-00557-8
10.1109/ISBI48211.2021.9434063
10.1007/s11023-020-09548-1
10.1145/3560815
10.3390/healthcare11060887
10.3115/992424.992434
10.1038/s41368-023-00239-y
10.1038/s41433-023-02759-7
10.2139/ssrn.4405389
10.33682/1dze-8739
10.1609/aaai.v35i15.17625
10.1145/3641289
10.1016/0893-6080(89)90020-8
10.18653/v1/2021.emnlp-main.243
10.1002/pra2.927
10.1109/ICASSP.2012.6289079
10.1016/j.mlwa.2023.100508
10.1007/978-3-030-37591-1_6
10.1002/j.1538-7305.1988.tb00232.x
10.3389/fpubh.2023.1166120
10.1126/science.298.5598.1569
10.1007/s12652-021-03439-8
10.1007/s10514-023-10132-6
10.1038/s41746-021-00464-x
10.1126/science.abq1158
10.2139/ssrn.4405391
10.1007/978-1-4842-8844-3_4
10.1515/9783110867275.105
10.1093/bib/bbac409
10.1109/ICCCI48352.2020.9104105
10.1093/mind/LIX.236.433
10.18653/v1/2020.findings-emnlp.151
10.3390/fi15120372
10.18653/v1/2023.emnlp-main.96
10.1148/radiol.230163
10.1007/s10489-022-03865-x
10.1109/ACCESS.2023.3272228
10.18653/v1/2023.acl-long.893
10.18653/v1/2022.findings-acl.146
10.1038/d41586-023-00816-5
10.48550/ARXIV.1907.11692
10.1021/acs.est.3c01106
10.1109/ECCE57851.2023.10101527
10.1007/s11127-023-01097-2
10.1177/20539517211047734
10.1109/SLT48900.2021.9383557
10.18653/v1/2022.bigscience-1.9
10.1016/j.techfore.2022.121559
10.3390/biomedicines11061566
10.3390/jsan12040061
10.1145/3458754
10.1007/s11023-022-09602-0
10.1111/1748-8583.12524
10.1371/journal.pdig.0000198
10.1109/TASLP.2021.3082299
10.1093/bioinformatics/btz682
10.1016/j.ijsu.2021.105906
10.1016/j.chb.2022.107540
10.1108/LHTN-01-2023-0009
10.18653/v1/W19-4808
10.1609/aaai.v35i17.17744
10.18653/v1/P19-1493
10.1007/978-3-030-72188-6_2
10.4324/9781315558325-4
10.1007/s10916-023-01925-4
10.21437/Interspeech.2010-343
10.18653/v1/2020.acl-demos.30
10.1016/j.lindif.2023.102274
10.1109/ASRU51503.2021.9688232
10.1007/s40558-023-00248-x
10.18653/v1/2023.findings-acl.67
10.3390/educsci13040410
10.1016/B978-0-12-819314-3.00005-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
7T9
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3365742
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_348a0c6fe30042699e805549b58b7b57
10_1109_ACCESS_2024_3365742
10433480
Genre orig-research
GrantInformation_xml – fundername: Institute of Advance Research, United International University
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
7T9
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-5a441d0210259e727926bf2716f178124b55558f2ffee1f572bd8bf66bae51113
IEDL.DBID RIE
ISICitedReferencesCount 278
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:41 EDT 2025
Sat Nov 08 00:13:32 EST 2025
Sat Nov 29 06:25:29 EST 2025
Tue Nov 18 22:15:14 EST 2025
Wed Aug 27 02:17:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5a441d0210259e727926bf2716f178124b55558f2ffee1f572bd8bf66bae51113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-7138-2331
0009-0007-2007-5746
0009-0006-4793-5382
0000-0001-7572-9750
0000-0002-0384-7616
0000-0003-2675-5471
0000-0002-0787-5403
OpenAccessLink https://ieeexplore.ieee.org/document/10433480
PQID 2930957124
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2024_3365742
crossref_primary_10_1109_ACCESS_2024_3365742
proquest_journals_2930957124
doaj_primary_oai_doaj_org_article_348a0c6fe30042699e805549b58b7b57
ieee_primary_10433480
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Onat Topal (ref34) 2021
ref56
Hoffmann (ref78) 2022
ref59
ref52
Lisa Li (ref57) 2021
ref169
Radford (ref39) 2024
Jain (ref177) 2023
Azunre (ref28) 2021
Jiang (ref183) 2023
ref170
Thi Nguyen (ref76) 2023
Sanh (ref151) 2019
ref51
Huang (ref142) 2019
ref175
Xue (ref179) 2020
Weingart (ref168)
ref176
Smith (ref74) 2022
ref171
ref172
ref46
(ref115) 2023
ref45
Shazeer (ref99) 2020
ref47
ref42
Naveed (ref82) 2023
Iqbal (ref187) 2023
ref44
Wei (ref80); 35
Ramabhadran (ref7)
Yu (ref134) 2023
Juang (ref25) 2005; 1
ref49
ref8
ref181
ref9
ref4
ref6
ref5
ref101
Rae (ref72) 2021
ref182
Peng (ref146) 2023
ref35
Awasthi (ref160) 2022
Wu (ref31) 2016
ref37
ref36
ref148
ref30
(ref114) 2023
ref149
ref33
ref32
ref147
Chowdhery (ref69) 2022
ref38
Shoeybi (ref43) 2019
Kraljevic (ref132) 2022
Taori (ref15) 2023
ref156
Saba (ref184) 2023
ref154
Sennrich (ref48) 2015
Penedo (ref77) 2023
Sun (ref173) 2023
Lan (ref152) 2019
ref24
Gat (ref157) 2023
ref23
ref26
ref159
ref22
ref158
Ratner (ref180) 2022
ref27
ref29
Du (ref100)
Meng (ref174)
Fan (ref16) 2023
ref166
ref164
ref165
ref162
ref163
ref13
ref12
Hendrycks (ref53) 2016
ref128
Conneau (ref150) 2019
Li (ref167) 2023
ref129
Liu (ref186) 2023
ref97
ref126
ref96
ref127
ref11
ref124
(ref116) 2023
ref125
ref17
ref19
ref18
Lu (ref64); 34
Peng (ref95) 2023
ref133
ref92
ref131
ref94
Pinker (ref1) 2003
Sridhar (ref161) 2023
ref130
ref91
ref90
ref89
Shen (ref93) 2023
ref139
ref85
ref138
Hadi (ref20) 2023
Touvron (ref75) 2023
ref88
ref135
Thoppilan (ref70) 2022
ref136
(ref113) 2023
Zeng (ref81) 2021
Chung (ref58) 2022
Hadi (ref137) 2023
ref144
ref145
ref84
ref83
ref143
Zhang (ref185) 2023
ref141
ref108
ref109
ref106
ref104
ref2
Dao (ref105) 2023
Brown (ref155)
Zhu (ref178) 2023
Yang (ref107); 32
Zhao (ref3) 2023
Devlin (ref10) 2018
Pichai (ref14) 2023
Lieber (ref73) 2021; 1
ref111
Bolukbasi (ref153); 29
Fan (ref87) 2023
Hagendorff (ref103) 2022
ref112
Wang (ref121) 2023
Nijkamp (ref102) 2022
ref110
Koizumi (ref86) 2020
Radford (ref41) 2019; 1
ref68
ref119
ref67
ref118
Workshop (ref55)
ref63
ref66
Chen (ref122) 2023
Zong (ref140) 2022
ref65
Ghojogh (ref40) 2024
Cronin (ref21) 2004; 39
Child (ref50) 2019
Zhang (ref54); 32
Taylor (ref98) 2022
(ref117) 2023
Zeng (ref71) 2022
Zhang (ref79) 2022
ref60
ref123
ref62
ref120
ref61
References_xml – year: 2023
  ident: ref146
  article-title: Embedding-based retrieval with LLM for effective agriculture information extracting from unstructured data
  publication-title: arXiv:2308.03107
– ident: ref83
  doi: 10.18653/v1/P19-1356
– year: 2023
  ident: ref95
  article-title: Instruction tuning with GPT-4
  publication-title: arXiv:2304.03277
– year: 2020
  ident: ref99
  article-title: GLU variants improve transformer
  publication-title: arXiv:2002.05202
– year: 2022
  ident: ref103
  article-title: Thinking fast and slow in large language models
  publication-title: arXiv:2212.05206
– ident: ref112
  doi: 10.18653/v1/2022.emnlp-main.42
– volume: 32
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref54
  article-title: Root mean square layer normalization
– ident: ref108
  doi: 10.21437/interspeech.2020-1511
– year: 2023
  ident: ref161
  article-title: Harnessing LLMs in curricular design: Using GPT-4 to support authoring of learning objectives
  publication-title: arXiv:2306.17459
– year: 2019
  ident: ref152
  article-title: ALBERT: A lite BERT for self-supervised learning of language representations
  publication-title: arXiv:1909.11942
– volume-title: IBM Watson Natural Language Understanding
  year: 2023
  ident: ref117
– ident: ref32
  doi: 10.1109/CONIT51480.2021.9498485
– ident: ref30
  doi: 10.1007/978-3-030-90055-7_21
– year: 2022
  ident: ref58
  article-title: Scaling instruction-finetuned language models
  publication-title: arXiv:2210.11416
– ident: ref9
  doi: 10.48550/ARXIV.1706.03762
– ident: ref63
  doi: 10.1609/aaai.v36i10.21319
– year: 2021
  ident: ref81
  article-title: PanGu-α: Large-scale autoregressive pretrained Chinese language models with auto-parallel computation
  publication-title: arXiv:2104.12369
– ident: ref36
  doi: 10.1007/s42452-019-1765-9
– ident: ref139
  doi: 10.1016/j.ijinfomgt.2023.102642
– year: 2021
  ident: ref57
  article-title: Prefix-tuning: Optimizing continuous prompts for generation
  publication-title: arXiv:2101.00190
– ident: ref172
  doi: 10.1155/2023/8691095
– ident: ref111
  doi: 10.18653/v1/2023.wmt-1.96
– ident: ref125
  doi: 10.1038/s41591-023-02448-8
– year: 2018
  ident: ref10
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– volume-title: A taxonomy for deriving business insights from user-generated content
  ident: ref168
– ident: ref94
  doi: 10.3390/a15020071
– ident: ref29
  doi: 10.1016/j.csl.2014.11.004
– year: 2022
  ident: ref98
  article-title: Galactica: A large language model for science
  publication-title: arXiv:2211.09085
– year: 2023
  ident: ref20
  article-title: A survey on large language models: Applications, challenges, limitations, and practical usage
  publication-title: TechRxiv
– ident: ref27
  doi: 10.1007/s00146-022-01494-z
– year: 2022
  ident: ref102
  article-title: CodeGen: An open large language model for code with multi-turn program synthesis
  publication-title: arXiv:2203.13474
– ident: ref89
  doi: 10.18653/v1/2023.emnlp-main.4
– year: 2023
  ident: ref185
  article-title: Multimodal chain-of-thought reasoning in language models
  publication-title: arXiv:2302.00923
– volume-title: Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey
  year: 2024
  ident: ref40
– ident: ref162
  doi: 10.1109/ICCECE51049.2023.10085092
– ident: ref175
  doi: 10.1609/aaai.v36i10.21307
– year: 2023
  ident: ref122
  article-title: Evaluation of ChatGPT family of models for biomedical reasoning and classification
  publication-title: arXiv:2304.02496
– year: 2023
  ident: ref93
  article-title: Large language models empowered autonomous edge AI for connected intelligence
  publication-title: arXiv:2307.02779
– start-page: 24457
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref174
  article-title: Tuning language models as training data generators for augmentation-enhanced few-shot learning
– ident: ref68
  doi: 10.18653/v1/2020.emnlp-main.437
– volume: 35
  start-page: 24824
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref80
  article-title: Chain-of-thought prompting elicits reasoning in large language models
– ident: ref42
  doi: 10.3390/bdcc7030124
– ident: ref182
  doi: 10.1145/3503488
– ident: ref104
  doi: 10.1016/j.iotcps.2023.04.003
– ident: ref143
  doi: 10.18653/v1/2020.acl-main.362
– year: 2020
  ident: ref86
  article-title: Audio captioning using pre-trained large-scale language model guided by audio-based similar caption retrieval
  publication-title: arXiv:2012.07331
– ident: ref35
  doi: 10.18653/v1/2020.emnlp-demos.6
– ident: ref119
  doi: 10.1016/j.simpat.2023.102754
– year: 2023
  ident: ref157
  article-title: Faithful explanations of black-box NLP models using LLM-generated counterfactuals
  publication-title: arXiv:2310.00603
– ident: ref44
  doi: 10.2139/ssrn.4389233
– year: 2023
  ident: ref134
  article-title: Temporal data meets LLM—Explainable financial time series forecasting
  publication-title: arXiv:2306.11025
– ident: ref52
  doi: 10.5555/3104322.3104425
– ident: ref135
  doi: 10.3390/logistics7020026
– ident: ref47
  doi: 10.18653/v1/P18-1007
– ident: ref97
  doi: 10.1016/j.psychres.2023.115334
– volume: 1
  start-page: 9
  year: 2021
  ident: ref73
  article-title: Jurassic-1: Technical details and evaluation
  publication-title: White Paper. AI21 Labs
– ident: ref124
  doi: 10.1038/s41523-023-00557-8
– start-page: 1
  volume-title: Proc. NAACL-HLT
  ident: ref7
  article-title: Proceedings of the NAACL-HLT 2012 workshop: Will we ever really replace the N-gram model? On the future of language modeling for HLT
– year: 2022
  ident: ref74
  article-title: Using DeepSpeed and megatron to train megatron-turing NLG 530B, a large-scale generative language model
  publication-title: arXiv:2201.11990
– ident: ref11
  doi: 10.1109/ISBI48211.2021.9434063
– ident: ref65
  doi: 10.1007/s11023-020-09548-1
– ident: ref60
  doi: 10.1145/3560815
– year: 2021
  ident: ref72
  article-title: Scaling language models: Methods, analysis & insights from training gopher
  publication-title: arXiv:2112.11446
– year: 2023
  ident: ref121
  article-title: On the robustness of ChatGPT: An adversarial and out-of-distribution perspective
  publication-title: arXiv:2302.12095
– ident: ref128
  doi: 10.3390/healthcare11060887
– volume-title: An Important Next Step on Our AI Journey
  year: 2023
  ident: ref14
– ident: ref46
  doi: 10.3115/992424.992434
– ident: ref123
  doi: 10.1038/s41368-023-00239-y
– ident: ref163
  doi: 10.1038/s41433-023-02759-7
– year: 2023
  ident: ref77
  article-title: The RefinedWeb dataset for falcon LLM: Outperforming curated corpora with web data, and web data only
  publication-title: arXiv:2306.01116
– ident: ref145
  doi: 10.2139/ssrn.4405389
– ident: ref90
  doi: 10.33682/1dze-8739
– ident: ref109
  doi: 10.1609/aaai.v35i15.17625
– ident: ref17
  doi: 10.1145/3641289
– ident: ref51
  doi: 10.1016/0893-6080(89)90020-8
– year: 2022
  ident: ref69
  article-title: PaLM: Scaling language modeling with pathways
  publication-title: arXiv:2204.02311
– ident: ref56
  doi: 10.18653/v1/2021.emnlp-main.243
– year: 2021
  ident: ref34
  article-title: Exploring transformers in natural language generation: GPT, BERT, and XLNet
  publication-title: arXiv:2102.08036
– ident: ref106
  doi: 10.1002/pra2.927
– ident: ref49
  doi: 10.1109/ICASSP.2012.6289079
– ident: ref166
  doi: 10.1016/j.mlwa.2023.100508
– ident: ref22
  doi: 10.1007/978-3-030-37591-1_6
– year: 2022
  ident: ref79
  article-title: OPT: Open pre-trained transformer language models
  publication-title: arXiv:2205.01068
– year: 2023
  ident: ref137
  article-title: Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects
– volume: 29
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref153
  article-title: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings
– ident: ref24
  doi: 10.1002/j.1538-7305.1988.tb00232.x
– ident: ref127
  doi: 10.3389/fpubh.2023.1166120
– ident: ref2
  doi: 10.1126/science.298.5598.1569
– year: 2023
  ident: ref16
  article-title: A bibliometric review of large language models research from 2017 to 2023
  publication-title: arXiv:2304.02020
– year: 2019
  ident: ref50
  article-title: Generating long sequences with sparse transformers
  publication-title: arXiv:1904.10509
– ident: ref37
  doi: 10.1007/s12652-021-03439-8
– year: 2023
  ident: ref105
  article-title: Performance comparison of large language models on VNHSGE English dataset: OpenAI chatGPT, Microsoft bing chat, and Google bard
  publication-title: arXiv:2307.02288
– year: 2023
  ident: ref82
  article-title: A comprehensive overview of large language models
  publication-title: arXiv:2307.06435
– ident: ref92
  doi: 10.1007/s10514-023-10132-6
– ident: ref126
  doi: 10.1038/s41746-021-00464-x
– year: 2023
  ident: ref167
  article-title: EcomGPT: Instruction-tuning large language models with chain-of-task tasks for e-commerce
  publication-title: arXiv:2308.06966
– ident: ref85
  doi: 10.1126/science.abq1158
– volume: 32
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref107
  article-title: XLNet: Generalized autoregressive pretraining for language understanding
– ident: ref147
  doi: 10.2139/ssrn.4405391
– year: 2023
  ident: ref177
  article-title: Bring your own data! Self-supervised evaluation for large language models
  publication-title: arXiv:2306.13651
– start-page: 5547
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref100
  article-title: GLaM: Efficient scaling of language models with mixture-of-experts
– ident: ref120
  doi: 10.1007/978-1-4842-8844-3_4
– ident: ref23
  doi: 10.1515/9783110867275.105
– ident: ref110
  doi: 10.1093/bib/bbac409
– ident: ref118
  doi: 10.1109/ICCCI48352.2020.9104105
– year: 2023
  ident: ref76
  article-title: Fine-tuning llama 2 large language models for detecting online sexual predatory chats and abusive texts
  publication-title: arXiv:2308.14683
– year: 2020
  ident: ref179
  article-title: MT5: A massively multilingual pre-trained text-to-text transformer
  publication-title: arXiv:2010.11934
– ident: ref4
  doi: 10.1093/mind/LIX.236.433
– ident: ref144
  doi: 10.18653/v1/2020.findings-emnlp.151
– year: 2023
  ident: ref184
  article-title: Towards explainable and language-agnostic LLMs: Symbolic reverse engineering of language at scale
  publication-title: arXiv:2306.00017
– year: 2016
  ident: ref31
  article-title: Google’s neural machine translation system: Bridging the gap between human and machine translation
  publication-title: arXiv:1609.08144
– ident: ref148
  doi: 10.3390/fi15120372
– year: 2022
  ident: ref140
  article-title: A survey on GPT-3
  publication-title: arXiv:2212.00857
– year: 2023
  ident: ref75
  article-title: LLaMA: Open and efficient foundation language models
  publication-title: arXiv:2302.13971
– year: 2023
  ident: ref173
  article-title: A short survey of viewing large language models in legal aspect
  publication-title: arXiv:2303.09136
– year: 2019
  ident: ref150
  article-title: Unsupervised cross-lingual representation learning at scale
  publication-title: arXiv:1911.02116
– ident: ref158
  doi: 10.18653/v1/2023.emnlp-main.96
– ident: ref5
  doi: 10.1148/radiol.230163
– ident: ref61
  doi: 10.1007/s10489-022-03865-x
– volume-title: Alpaca: A Strong, Replicable Instruction-following Model
  year: 2023
  ident: ref15
– year: 2022
  ident: ref70
  article-title: LaMDA: Language models for dialog applications
  publication-title: arXiv:2201.08239
– year: 2023
  ident: ref178
  article-title: A survey on model compression for large language models
  publication-title: arXiv:2308.07633
– ident: ref6
  doi: 10.1109/ACCESS.2023.3272228
– ident: ref62
  doi: 10.18653/v1/2023.acl-long.893
– ident: ref84
  doi: 10.18653/v1/2022.findings-acl.146
– ident: ref13
  doi: 10.1038/d41586-023-00816-5
– ident: ref67
  doi: 10.48550/ARXIV.1907.11692
– year: 2023
  ident: ref87
  article-title: Recommender systems in the era of large language models (LLMs)
  publication-title: arXiv:2307.02046
– year: 2019
  ident: ref151
  article-title: DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter
  publication-title: arXiv:1910.01108
– year: 2023
  ident: ref186
  article-title: Dynamic LLM-agent network: An LLM-agent collaboration framework with agent team optimization
  publication-title: arXiv:2310.02170
– ident: ref171
  doi: 10.1021/acs.est.3c01106
– year: 2023
  ident: ref187
  article-title: LLM platform security: Applying a systematic evaluation framework to OpenAI’s ChatGPT plugins
  publication-title: arXiv:2309.10254
– ident: ref176
  doi: 10.1109/ECCE57851.2023.10101527
– ident: ref181
  doi: 10.1007/s11127-023-01097-2
– volume-title: arXiv:2211.05100
  ident: ref55
  article-title: BLOOM: A 176B-parameter open-access multilingual language model
– volume: 39
  volume-title: Annual review of information science and technology
  year: 2004
  ident: ref21
– volume-title: Improving Language Understanding by Generative Pre-Training
  year: 2024
  ident: ref39
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: ref41
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI Blog
– volume-title: The Language Instinct: How the Mind Creates Language
  year: 2003
  ident: ref1
– ident: ref33
  doi: 10.1177/20539517211047734
– volume-title: Transfer Learning for Natural Language Processing
  year: 2021
  ident: ref28
– ident: ref91
  doi: 10.1109/SLT48900.2021.9383557
– ident: ref101
  doi: 10.18653/v1/2022.bigscience-1.9
– volume-title: Google Cloud
  year: 2023
  ident: ref115
– ident: ref26
  doi: 10.1016/j.techfore.2022.121559
– ident: ref59
  doi: 10.3390/biomedicines11061566
– ident: ref159
  doi: 10.3390/jsan12040061
– year: 2023
  ident: ref183
  article-title: Low-parameter federated learning with large language models
  publication-title: arXiv:2307.13896
– volume-title: OpenAI
  year: 2023
  ident: ref113
– year: 2022
  ident: ref71
  article-title: GLM-130B: An open bilingual pre-trained model
  publication-title: arXiv:2210.02414
– year: 2019
  ident: ref43
  article-title: Megatron-LM: Training multi-billion parameter language models using model parallelism
  publication-title: arXiv:1909.08053
– volume-title: Huggingface
  year: 2023
  ident: ref114
– ident: ref131
  doi: 10.1145/3458754
– year: 2019
  ident: ref142
  article-title: Clinical XLNet: Modeling sequential clinical notes and predicting prolonged mechanical ventilation
  publication-title: arXiv:1912.11975
– ident: ref136
  doi: 10.1007/s11023-022-09602-0
– ident: ref165
  doi: 10.1111/1748-8583.12524
– ident: ref130
  doi: 10.1371/journal.pdig.0000198
– ident: ref88
  doi: 10.1109/TASLP.2021.3082299
– ident: ref156
  doi: 10.1093/bioinformatics/btz682
– ident: ref45
  doi: 10.1016/j.ijsu.2021.105906
– ident: ref170
  doi: 10.1016/j.chb.2022.107540
– year: 2022
  ident: ref180
  article-title: Parallel context windows for large language models
  publication-title: arXiv:2212.10947
– ident: ref38
  doi: 10.1108/LHTN-01-2023-0009
– ident: ref96
  doi: 10.18653/v1/W19-4808
– ident: ref12
  doi: 10.1609/aaai.v35i17.17744
– volume: 34
  start-page: 21297
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref64
  article-title: SOFT: Softmax-free transformer with linear complexity
– start-page: 1877
  volume-title: Proc. NIPS
  ident: ref155
  article-title: Language models are few-shot learners
– year: 2016
  ident: ref53
  article-title: Gaussian error linear units (GELUs)
  publication-title: arXiv:1606.08415
– ident: ref149
  doi: 10.18653/v1/P19-1493
– year: 2022
  ident: ref160
  article-title: Bootstrapping multilingual semantic parsers using large language models
  publication-title: arXiv:2210.07313
– year: 2022
  ident: ref78
  article-title: Training compute-optimal large language models
  publication-title: arXiv:2203.15556
– ident: ref169
  doi: 10.1007/978-3-030-72188-6_2
– year: 2023
  ident: ref3
  article-title: A survey of large language models
  publication-title: arXiv:2303.18223
– year: 2015
  ident: ref48
  article-title: Neural machine translation of rare words with subword units
  publication-title: arXiv:1508.07909
– ident: ref164
  doi: 10.4324/9781315558325-4
– volume-title: Azure
  year: 2023
  ident: ref116
– ident: ref129
  doi: 10.1007/s10916-023-01925-4
– ident: ref8
  doi: 10.21437/Interspeech.2010-343
– ident: ref154
  doi: 10.18653/v1/2020.acl-demos.30
– ident: ref19
  doi: 10.1016/j.lindif.2023.102274
– ident: ref66
  doi: 10.1109/ASRU51503.2021.9688232
– ident: ref133
  doi: 10.1007/s40558-023-00248-x
– year: 2022
  ident: ref132
  article-title: Foresight-generative pretrained transformer (GPT) for modelling of patient timelines using EHRs
  publication-title: arXiv:2212.08072
– volume: 1
  start-page: 67
  year: 2005
  ident: ref25
  article-title: Automatic speech recognition—A brief history of the technology development
– ident: ref18
  doi: 10.18653/v1/2023.findings-acl.67
– ident: ref138
  doi: 10.3390/educsci13040410
– ident: ref141
  doi: 10.1016/B978-0-12-819314-3.00005-7
SSID ssj0000816957
Score 2.6979144
Snippet Large Language Models (LLMs) recently demonstrated extraordinary capability, including natural language processing (NLP), language translation, text...
Large Language Models (LLMs) recently demonstrated extraordinary capability in various natural language processing (NLP) tasks including language translation,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agriculture
Application
Artificial intelligence
Automatic text generation
Biomedicine
Challenges
Cognition
Community research
Computerization
Evolution
Health care
Health services
Information analysis
Language
Language modeling
Language translation
Large Language Models
Large language models (LLM)
Linguistics
Natural language generation
Natural language processing
natural language processing (NLP)
pre-trained models
Pretrained models
Question answering (information retrieval)
Surveys
Task analysis
Taxonomy
Training
Transformer
Transformers
Translation
World problems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8SiiUJAHxobm5ThmCxUVA6oYitTNshOfhFSlqCmIn4_PTqsgJFhYMiSOHN9dfHf2-fsIuckMaKFDE5QhQGCNQgQKIgh0qPK00hWwMnVkE3w6zedz8dyh-sKaMA8P7AU3StJchWUGJnHhvhAmD60LFJrlmmvmzpHbqKeTTLk5OI8ywXgLMxSFYlSMx3ZENiGM09skyRhP42-uyCH2txQrP-Zl52wmR-SwjRJp4b_umOyY-oQcdLADTwkU1K_r02VNn7Ce21792iNFgrNFc0eLzi5BM6RFZ7N6SGfq051JxidYVkI9ER9VdUXHG4qVpkdeJg-z8WPQkiYEpU3V1gFTNsCpXCbHhOGID5hpiG1aBBFHb64ZQnxBDGBMBIzHuso1ZJlWhiHv_BnZrZe1OSc0UoKDzrlOmBU9KCWQyipiWgCP4pL3SbyRnyxbRHEktlhIl1mEQnqhSxS6bIXeJ8PtS28eUOP35veomG1TRMN2N6yNyNZG5F820ic9VGunvxQPIId9MtjoWba_biNt_GPDTjvA9OI_-r4k-zgev2ozILvr1bu5Invlx_q1WV07q_0CPbbqyA
  priority: 102
  providerName: Directory of Open Access Journals
Title A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges
URI https://ieeexplore.ieee.org/document/10433480
https://www.proquest.com/docview/2930957124
https://doaj.org/article/348a0c6fe30042699e805549b58b7b57
Volume 12
WOSCitedRecordID wos001173153100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-wwEA8-8eA7-PGe8tYvcvC41bbbNI23uigeVDwoeAtJmwFBug-7iif_dmeS7LIiCl5CaROa9JdpZiaZ-TF2WDqwyqYuaVKABCeFSgxkkNjUVEVrWxBN4ckm5PV1dX-vbmKwuo-Fcc75w2fuiC79Xn47aZ7JVYYSXlDgKFrov6SUIVhr7lAhBgklZMwslKXquB6PcRBoA-bF0WhUClnkH1Yfn6Q_sqp8-hX79eV8_Yc922BrUZHkdUB-ky257g_7vZBe8C-DmgfXP590_JKOfGMZ3JOcONAe-xNeL2wk9ENeL-xnD_mtefVhy_SETp7wwNXHTdfy8YyFpd9id-dnt-OLJPIqJA1ac9NEGNSBWm_sCeUkpRAsLeRoOUEmacG3grKAQQ7gXAZC5ratLJSlNU4QNf02W-4mnfvHeGaUBFtJOxIo_WCMIrarTFgFMssbOWD57HvrJiYdJ-6LR-2Nj1TpAJImkHQEacCG80b_Q86N76ufEpDzqpQw299AhHSUP43gmLQpwY281aiUq1LUpJQVlZVWYEe3CNWF9wVAB2xvNi90lO5eo4qEmikOsNj5otkuW6UuBl_NHluePj27fbbSvEwf-qcDb_hjefV2duAn8Tuhf-vR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBajG7Q7rOuPsazdqkOPcWs7lmX15oaVjqahhxR6E5KtB4XgjDod-_P3nqSElNHBLsbYMpb8SdZ7T3rfx9hp6cAqm7qkSQES7BQqMZBBYlNTFa1tQTSFF5uQ02n18KDuYrK6z4VxzvnNZ-6MTv1afrtonilUhiO8oMRR9NDfiqLIs5CutQ6pkIaEEjJyC2WpOq_HY2wGeoF5cTYalUIW-Yv5x9P0R12Vv37Gfoa52v3Pun1kH6IpyeuA_R5747p99n6DYPCAQc1D8J8vOj6hTd94DAFKTipo8_6C1xtLCf2Q1xsr2kM-M7994jLdob0nPKj1cdO1fLzSYekP2f3V99n4OonKCkmD_twyEQatoNa7e0I5SSSCpYUcfSfIJE35VhAPGOQAzmUgZG7bykJZWuMEidN_YlvdonOfGc-MkmAraUcCxz8Yo0jvKhNWgczyRg5Yvvreuom046R-Mdfe_UiVDiBpAklHkAZsuH7oZ2Dd-HfxSwJyXZQos_0FREjHEagRHJM2JbiR9xuVclWKtpSyorLSCqzoIaG68b4A6IAdr_qFjuO712gkoW2KDSy-vPLYCdu-nt1O9OTH9OaI7VB1Q-TmmG0tn57dV_au-bV87J---U78B-_K7PI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+Large+Language+Models%3A+Architectures%2C+Applications%2C+Taxonomies%2C+Open+Issues+and+Challenges&rft.jtitle=IEEE+access&rft.au=Raiaan%2C+Mohaimenul+Azam+Khan&rft.au=Mukta%2C+Md.+Saddam+Hossain&rft.au=Fatema%2C+Kaniz&rft.au=Fahad%2C+Nur+Mohammad&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3365742&rft.externalDocID=10433480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon