Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics
The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagno...
Uloženo v:
| Vydáno v: | Journal of clinical medicine Ročník 10; číslo 14; s. 3100 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
14.07.2021
MDPI |
| Témata: | |
| ISSN: | 2077-0383, 2077-0383 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson–Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4–74.4%) for multiclass and 89.6% (88.4–90.7%) for binary-class classification. |
|---|---|
| AbstractList | The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification. The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification.The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification. |
| Author | Kawakita, Satoru Akbari, Hamed Advani, Shailesh M. Yousefi, Bardia Ahadian, Samad Amini, Arya Maldague, Xavier P. V. Akhloufi, Moulay |
| AuthorAffiliation | 3 Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; aamini@coh.org 5 Department of Computer Science, Perception Robotics and Intelligent Machines (PRIME) Research Group, University of Moncton, New Brunswick, NB E1A 3E9, Canada; moulay.akhloufi@umoncton.ca 4 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; AkbariHA@upenn.edu 2 Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; skawakita@terasaki.org (S.K.); sadvani@terasaki.org (S.M.A.) 1 Department of Electrical and Computer Engineering, Laval University, Quebec City, QC G1V 0A6, Canada |
| AuthorAffiliation_xml | – name: 2 Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; skawakita@terasaki.org (S.K.); sadvani@terasaki.org (S.M.A.) – name: 4 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; AkbariHA@upenn.edu – name: 1 Department of Electrical and Computer Engineering, Laval University, Quebec City, QC G1V 0A6, Canada – name: 5 Department of Computer Science, Perception Robotics and Intelligent Machines (PRIME) Research Group, University of Moncton, New Brunswick, NB E1A 3E9, Canada; moulay.akhloufi@umoncton.ca – name: 3 Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; aamini@coh.org |
| Author_xml | – sequence: 1 givenname: Bardia orcidid: 0000-0003-3121-4573 surname: Yousefi fullname: Yousefi, Bardia – sequence: 2 givenname: Satoru surname: Kawakita fullname: Kawakita, Satoru – sequence: 3 givenname: Arya surname: Amini fullname: Amini, Arya – sequence: 4 givenname: Hamed orcidid: 0000-0001-9786-3707 surname: Akbari fullname: Akbari, Hamed – sequence: 5 givenname: Shailesh M. surname: Advani fullname: Advani, Shailesh M. – sequence: 6 givenname: Moulay orcidid: 0000-0002-4378-2669 surname: Akhloufi fullname: Akhloufi, Moulay – sequence: 7 givenname: Xavier P. V. orcidid: 0000-0002-8777-2008 surname: Maldague fullname: Maldague, Xavier P. V. – sequence: 8 givenname: Samad orcidid: 0000-0002-6784-5716 surname: Ahadian fullname: Ahadian, Samad |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34300266$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkdtrFDEYxYNU7MU--S4BXwQZTSbJXF4EmXpZ2FJQW3wLXy7TzZKZjJOMsP99s7SWtZiXhO_75XAO5xQdjWG0CL2i5D1jLfmw1QMllDNKyDN0UpK6Lghr2NHB-xidx7gl-TQNL2n9Ah0zzggpq-oEhdUwwZwceL_DN-CdgWQNvlx8cpO3-MLaqeg24EZ8GYz1EaeQh8nqhLurm9VFQVucl93GxoR_FTPs8HV04y1eZ6Ex4R8TaIu_g3FhcDq-RM978NGeP9xn6PrL55_dt2J99XXVfVoXmpM2FUKoWpWV4sD7VgkujOpZX3GuSa2bstFUmBYAmrYWFdNAeqaa1lCtFDG9qNkZ-nivOy1qsEZnKzN4Oc1ugHknAzj572Z0G3kb_siGEc5YlQXePgjM4feSw8nBRW29h9GGJcpSCEGJqEqa0TdP0G1Y5jHH21Nc1ILSMlOvDx09WvnbRQbe3QN6DjHOtn9EKJH7suVB2ZmmT2jtEiQX9nGc_--fO4Qlqyw |
| CitedBy_id | crossref_primary_10_3390_jcm11113013 crossref_primary_10_1080_13682199_2023_2204038 crossref_primary_10_3389_fdgth_2021_662343 crossref_primary_10_1109_TIM_2025_3545983 crossref_primary_10_3390_cancers14112663 crossref_primary_10_1016_j_bbe_2023_06_003 |
| Cites_doi | 10.1007/s00330-020-07032-z 10.1007/s10044-021-00984-y 10.1148/radiol.2020200432 10.1016/j.asoc.2020.106897 10.1109/TMI.2013.2284099 10.3390/bios10110164 10.1148/radiol.2020200241 10.1148/radiol.2020200642 10.1038/s41598-020-76550-z 10.1109/TPAMI.2012.277 10.1016/j.ijmedinf.2020.104284 10.1371/journal.pone.0242535 10.1148/radiol.2020201160 10.3390/ijerph17186933 10.1038/s41598-020-76282-0 10.1016/j.imu.2020.100360 10.1109/TMI.2020.2993291 10.1109/TIM.2004.834070 10.1016/j.compbiomed.2020.103792 10.1109/3DV.2016.79 10.1148/ryct.2020200075 10.1101/2020.02.29.20029603 10.1007/s13246-020-00865-4 10.1007/s13755-020-00119-3 10.1109/SSCI47803.2020.9308571 10.2214/AJR.20.23034 10.1109/CVPR.2017.369 10.1007/s10278-014-9718-8 10.1148/radiol.2020200343 10.1016/j.cmpb.2020.105581 10.1007/978-3-319-24574-4_28 10.3389/fmed.2020.608525 10.1613/jair.1.12162 10.1038/323533a0 10.1109/TMI.2013.2290491 10.1148/ryct.2020200322 10.7759/cureus.9448 10.1148/radiol.2020200905 10.1016/j.media.2020.101794 10.1090/conm/026/737400 10.2307/1932409 10.1109/CVPR.2016.90 10.1109/SIBGRAPI-T.2017.12 10.1158/0008-5472.CAN-17-0339 10.1109/CVPR.2015.7298594 10.59275/j.melba.2020-48g7 10.1148/ryct.2020200082 10.21037/tlcr.2017.01.04 10.1148/radiol.2020200463 10.1109/RBME.2020.2987975 10.20944/preprints202003.0300.v1 10.1109/SIBGRAPI.2018.00063 10.1101/2020.03.12.20027185 10.3389/fmed.2020.00427 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/jcm10143100 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2077-0383 |
| ExternalDocumentID | PMC8304336 34300266 10_3390_jcm10143100 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 7X7 8FI 8FJ AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION DIK FYUFA HMCUK HYE IAO IHR ITC KQ8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY RPM UKHRP ALIPV NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c409t-55b7b26b4a4f9b545dbf3f644c07c828c15d9aaa897563ca0f3b89d1cbb0df573 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000676613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-0383 |
| IngestDate | Tue Nov 04 01:55:19 EST 2025 Fri Sep 05 08:17:08 EDT 2025 Tue Oct 07 07:09:23 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Sat Nov 29 07:07:44 EST 2025 Tue Nov 18 22:43:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | imaging biomarker chest X-ray imaging deep latent space radiomics COVID-19 detection deep convolutional autoencoder (ConvAE) 2D U-Net model deep-learning features |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-55b7b26b4a4f9b545dbf3f644c07c828c15d9aaa897563ca0f3b89d1cbb0df573 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3121-4573 0000-0002-4378-2669 0000-0002-8777-2008 0000-0001-9786-3707 0000-0002-6784-5716 |
| OpenAccessLink | https://www.proquest.com/docview/2554575112?pq-origsite=%requestingapplication% |
| PMID | 34300266 |
| PQID | 2554575112 |
| PQPubID | 5046890 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8304336 proquest_miscellaneous_2555105621 proquest_journals_2554575112 pubmed_primary_34300266 crossref_primary_10_3390_jcm10143100 crossref_citationtrail_10_3390_jcm10143100 |
| PublicationCentury | 2000 |
| PublicationDate | 20210714 |
| PublicationDateYYYYMMDD | 2021-07-14 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210714 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Journal of clinical medicine |
| PublicationTitleAlternate | J Clin Med |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Bernheim (ref_5) 2020; 295 ref_50 Sorensen (ref_40) 1948; 5 ref_92 ref_91 Oh (ref_28) 2020; 39 ref_90 ref_14 ref_58 ref_56 Malhi (ref_68) 2004; 53 ref_55 Shi (ref_13) 2021; 14 ref_54 Ai (ref_10) 2020; 296 Li (ref_20) 2020; 296 ref_51 Chowdhury (ref_37) 2020; 8 ref_19 ref_18 Wilson (ref_62) 2017; 6 ref_15 ref_59 Krizhevsky (ref_48) 2012; Volume 25 He (ref_67) 2005; Volume 18 ref_60 Rahimzadeh (ref_34) 2020; 19 Dice (ref_41) 1945; 26 ref_25 ref_24 ref_23 ref_22 ref_66 ref_21 Fang (ref_11) 2020; 296 Yoo (ref_29) 2020; 7 Minaee (ref_38) 2020; 65 Wang (ref_83) 2020; 10 Wong (ref_26) 2020; 296 Jaeger (ref_69) 2014; 33 ref_72 ref_71 Kanne (ref_4) 2020; 295 Shin (ref_57) 2013; 35 ref_36 ref_79 ref_78 ref_33 ref_77 ref_76 ref_31 ref_75 ref_30 ref_74 Cao (ref_16) 2020; 2 ref_73 Han (ref_63) 2015; 28 Candemir (ref_70) 2014; 33 Heidari (ref_27) 2020; 144 ref_39 Johnson (ref_65) 1984; 26 Fang (ref_53) 2020; 30 Homayounieh (ref_52) 2020; 2 Rumelhart (ref_61) 1986; 323 ref_82 ref_81 ref_80 Khan (ref_32) 2020; 196 ref_47 ref_46 Ozturk (ref_35) 2020; 121 ref_45 ref_89 ref_44 ref_88 ref_43 ref_87 Xie (ref_6) 2020; 296 ref_42 ref_86 ref_85 Huang (ref_17) 2020; 2 Fedorov (ref_64) 2017; 77 ref_84 ref_1 Salehi (ref_12) 2020; 215 ref_3 ref_2 ref_49 ref_9 ref_8 ref_7 |
| References_xml | – ident: ref_78 – ident: ref_80 – volume: 30 start-page: 6888 year: 2020 ident: ref_53 article-title: Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2 publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07032-z – ident: ref_7 doi: 10.1007/s10044-021-00984-y – volume: 296 start-page: E115 year: 2020 ident: ref_11 article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR publication-title: Radiology doi: 10.1148/radiol.2020200432 – ident: ref_84 – ident: ref_22 doi: 10.1016/j.asoc.2020.106897 – volume: 33 start-page: 233 year: 2014 ident: ref_69 article-title: Automatic tuberculosis screening using chest radiographs publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2284099 – ident: ref_54 doi: 10.3390/bios10110164 – ident: ref_90 – ident: ref_88 – ident: ref_1 – volume: 295 start-page: 16 year: 2020 ident: ref_4 article-title: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist publication-title: Radiology doi: 10.1148/radiol.2020200241 – ident: ref_23 – volume: 296 start-page: E32 year: 2020 ident: ref_10 article-title: Correlation of chest CT and RT-PCR testing for Coronavirus Disease 2019 (COVID-19) in China: A report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – ident: ref_58 – volume: 10 start-page: 19549 year: 2020 ident: ref_83 article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. doi: 10.1038/s41598-020-76550-z – volume: 35 start-page: 1930 year: 2013 ident: ref_57 article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.277 – ident: ref_77 – volume: 144 start-page: 104284 year: 2020 ident: ref_27 article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2020.104284 – volume: Volume 18 start-page: 507 year: 2005 ident: ref_67 article-title: Laplacian score for feature selection publication-title: Advances in Neural Information Processing Systems – ident: ref_33 doi: 10.1371/journal.pone.0242535 – volume: 296 start-page: E72 year: 2020 ident: ref_26 article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19 publication-title: Radiology doi: 10.1148/radiol.2020201160 – ident: ref_92 doi: 10.3390/ijerph17186933 – ident: ref_21 doi: 10.1038/s41598-020-76282-0 – volume: 19 start-page: 100360 year: 2020 ident: ref_34 article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100360 – volume: 39 start-page: 2688 year: 2020 ident: ref_28 article-title: Deep learning COVID-19 features on CXR using limited training data sets publication-title: IEEE Trans. Med Imaging doi: 10.1109/TMI.2020.2993291 – volume: 53 start-page: 1517 year: 2004 ident: ref_68 article-title: PCA-based feature selection scheme for machine defect classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2004.834070 – ident: ref_87 – volume: 121 start-page: 103792 year: 2020 ident: ref_35 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – ident: ref_42 doi: 10.1109/3DV.2016.79 – volume: 2 start-page: e200075 year: 2020 ident: ref_17 article-title: Serial quantitative chest CT assessment of COVID-19: A deep learning approach publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200075 – ident: ref_66 – ident: ref_18 doi: 10.1101/2020.02.29.20029603 – ident: ref_45 – ident: ref_72 – ident: ref_8 doi: 10.1007/s13246-020-00865-4 – volume: 8 start-page: 27 year: 2020 ident: ref_37 article-title: PDCOVIDNet: A parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-020-00119-3 – ident: ref_30 doi: 10.1109/SSCI47803.2020.9308571 – ident: ref_59 – volume: 215 start-page: 87 year: 2020 ident: ref_12 article-title: Coronavirus Disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.20.23034 – ident: ref_82 doi: 10.1109/CVPR.2017.369 – volume: 28 start-page: 99 year: 2015 ident: ref_63 article-title: Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules publication-title: J. Digit. Imaging doi: 10.1007/s10278-014-9718-8 – ident: ref_76 – volume: 296 start-page: E41 year: 2020 ident: ref_6 article-title: Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing publication-title: Radiology doi: 10.1148/radiol.2020200343 – ident: ref_3 – ident: ref_24 – volume: 196 start-page: 105581 year: 2020 ident: ref_32 article-title: CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2020.105581 – ident: ref_39 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_47 – ident: ref_86 – volume: 5 start-page: 1 year: 1948 ident: ref_40 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons publication-title: K. Dan. Vidensk. Selsk. Biol. Skr. – ident: ref_9 doi: 10.3389/fmed.2020.608525 – ident: ref_14 doi: 10.1613/jair.1.12162 – ident: ref_44 – volume: 323 start-page: 533 year: 1986 ident: ref_61 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 33 start-page: 577 year: 2014 ident: ref_70 article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2290491 – volume: 2 start-page: e200322 year: 2020 ident: ref_52 article-title: CT radiomics, radiologists, and clinical information in predicting outcome of patients with COVID-19 pneumonia publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200322 – volume: Volume 25 start-page: 1097 year: 2012 ident: ref_48 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – ident: ref_73 – ident: ref_74 doi: 10.7759/cureus.9448 – ident: ref_79 – volume: 296 start-page: E65 year: 2020 ident: ref_20 article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy publication-title: Radiology doi: 10.1148/radiol.2020200905 – volume: 65 start-page: 101794 year: 2020 ident: ref_38 article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101794 – volume: 26 start-page: 189 year: 1984 ident: ref_65 article-title: Extensions of Lipschitz mappings into a Hilbert space publication-title: Contemp. Math. doi: 10.1090/conm/026/737400 – volume: 26 start-page: 297 year: 1945 ident: ref_41 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – ident: ref_75 – ident: ref_25 – ident: ref_49 doi: 10.1109/CVPR.2016.90 – ident: ref_50 – ident: ref_81 – ident: ref_2 – ident: ref_46 – ident: ref_56 doi: 10.1109/SIBGRAPI-T.2017.12 – ident: ref_85 – volume: 77 start-page: e104 year: 2017 ident: ref_64 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – ident: ref_51 doi: 10.1109/CVPR.2015.7298594 – ident: ref_71 doi: 10.59275/j.melba.2020-48g7 – volume: 2 start-page: e200082 year: 2020 ident: ref_16 article-title: Longitudinal assessment of COVID-19 using a deep learning-based quantitative CT pipeline: Illustration of two cases publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200082 – ident: ref_89 – ident: ref_91 – ident: ref_36 – ident: ref_19 – ident: ref_43 – ident: ref_60 – volume: 6 start-page: 86 year: 2017 ident: ref_62 article-title: Radiomics of pulmonary nodules and lung cancer publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2017.01.04 – volume: 295 start-page: 200463 year: 2020 ident: ref_5 article-title: Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection publication-title: Radiology doi: 10.1148/radiol.2020200463 – volume: 14 start-page: 4 year: 2021 ident: ref_13 article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19 publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.2987975 – ident: ref_31 doi: 10.20944/preprints202003.0300.v1 – ident: ref_55 doi: 10.1109/SIBGRAPI.2018.00063 – ident: ref_15 doi: 10.1101/2020.03.12.20027185 – volume: 7 start-page: 427 year: 2020 ident: ref_29 article-title: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging publication-title: Front. Med. doi: 10.3389/fmed.2020.00427 |
| SSID | ssj0000884217 |
| Score | 2.2197192 |
| Snippet | The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited... |
| SourceID | pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3100 |
| SubjectTerms | Accuracy Artificial intelligence Biomarkers Clinical medicine Coronaviruses COVID-19 Disease transmission Health care Machine learning Medical imaging Neural networks Pandemics Pneumonia Radiomics Viral infections |
| Title | Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34300266 https://www.proquest.com/docview/2554575112 https://www.proquest.com/docview/2555105621 https://pubmed.ncbi.nlm.nih.gov/PMC8304336 |
| Volume | 10 |
| WOSCitedRecordID | wos000676613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884217 issn: 2077-0383 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2077-0383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884217 issn: 2077-0383 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-0383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884217 issn: 2077-0383 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2077-0383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884217 issn: 2077-0383 databaseCode: PIMPY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BixCX8iw1lGqRekKyantt7_qEIE1FpCZEBaJwsvZhq0HBTmO3Ui_97Z1xHNMA4sLF0npH9lozs_vNwzMAh9KaSAcqdm3EtRtS9VYpE7R5pJ9p5XERNIW0J6diNJLTaTJuHW5Vm1a53hObjdqWhnzkRwh9Q4oR-MH7xYVLXaMoutq20LgP29Q2m-RcTEXnY0ENChFyr37L42jdH_0wP6k5LXm1Nw-iP9Dl70mSd06dk8f_u94nsNPiTfZhJSBP4V5WPIOHwzai_hzKAeWgo5rP59dsgqCcPACWDds8Q3acZQu3d65mBaO2afOK1SXepNAD632eDI5dP2E42aO-W2zqLtU1a9IQ2Ck-qKjZFzTKM3am7Iz-f65ewLeT_tfeJ7dtwuAaNP1qN4q00EGsQxXmicZvsjrnOaIo4wmD5prxI5sopWQiopgb5eVcy8T6RmvP5pHgu7BVlEW2BwzBgS-1xa0ejT4EKhKPQh5EeebFKgqF58C7NUdS01Yop0YZ8xQtFWJfeod9Dhx2xItVYY6_k-2v2ZO22lmlv3jjwNtuGvWKgiWqyMrLhoawZxz4DrxcSUL3Hh5ysl1jB8SGjHQEVLN7c6aYnTe1uyWninHxq38v6zU8Cih3hgp4hvuwVS8vszfwwFzVs2p50Ah5c5UHsP2xPxqf4Wh408fReDAcf78F_noLIg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0qgwCKVC5JV22t77QNCKKFq1CQgKFFu7u56rQaldohdUP4Uv5EZv2gAceuBq3e1fn07M9_M7AzAXphoX7kysBKfK8uj6q1hGCHnCR2jpM2FWxXSno7EZBLOZtGHLfjRnoWhtMpWJlaCOsk1-cj30fT1KEbguG-WXy3qGkXR1baFRg2LI7P-jpSteD0c4P996boH7477h1bTVcDSyGVKy_eVUG6gPOmlkcJFE5XyFM0CbQuN_EM7fhJJKcNI-AHX0k65CqPE0UrZSeoLjutegasoxwWRPTETnU8Hd6yHJn59DJDzyN7_os-oGS550TcV3x_W7O9JmRe03MHt_-373IFbjT3N3tYb4C5smeweXB83GQP3IR9Sjj2KscVizaZIOsjDkbBxk0fJBsYsrf6pnGeM2sItClbmeJFCK6z_fjocWE7EcLBPfcXYzFrJNavSLNgIF8pK9mkptWEfZTKn893FA_h8Ka_7ELazPDOPgKHx44QqQVWGpBYNsRBVPXf91NiB9D1h9-BVi4BYNxXYqRHIIkYmRnCJL8ClB3vd5GVdeOTv03ZbOMSN9CniX1jowYtuGOUGBYNkZvLzag7Z1oHr9GCnRl53H-5x4uZBD8QGJrsJVJN8cySbn1a1yUNOFfGCx_9-rOdw4_B4PIpHw8nRE7jpUp4QFSv1dmG7XJ2bp3BNfyvnxepZtcEYnFw2Yn8CZ85kIQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceEMNBRapXJCs2F4_DwihhAirSYh4ROFkdte2GpTaIXZB-Wv8Omb8ogHErQeu3tH69e3sN4-dATj2Y-VIS7h67HCp21S91fcDtHl8M5HC4J5VFdKej73p1F8sgtke_GjPwlBaZasTK0Ud54p85H2kvjbFCEyrnzZpEbPh6OX6q04dpCjS2rbTqCFykmy_o_lWvAiH-K-fWdbo9YfBG73pMKArtGtK3XGkJy1X2sJOA4k3iGXKU6QIyvAU2iLKdOJACOEHnuNyJYyUSz-ITSWlEaeOx3HeK7CPlNy2erA_CyezT52HB9evjYS_PhTIeWD0v6gzao1LPvXdbfAPbvt7iuaFPW9043_-WjfhesO02at6adyCvSS7DQeTJpfgDuQhZd-jgluttmyO5gj5PmI2aTIs2TBJ1vrgVCwzRg3jVgUrc7xIQRc2eDsPh7oZMBwcUMcxttA3YsuqBAw2xomykr1fC5WwdyJe0snv4i58vJTXvQe9LM-SQ2BIi0xfxrjJobmLFM1HEsAtJ00MVzi2Z2jwvEVDpJra7NQiZBWhjUbQiS5AR4PjTnhdlyT5u9hRC42o0UtF9AsXGjzthlGjUJhIZEl-XskQ63YtU4P7NQq7-3Cbk9XuauDt4LMToGrluyPZ8rSqWu5zqpXnPvj3Yz2BAwRqNA6nJw_hmkUJRFTF1D6CXrk5Tx7BVfWtXBabx81qY_D5siH7E4nVbnA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impartially+Validated+Multiple+Deep-Chain+Models+to+Detect+COVID-19+in+Chest+X-ray+Using+Latent+Space+Radiomics&rft.jtitle=Journal+of+clinical+medicine&rft.au=Yousefi%2C+Bardia&rft.au=Kawakita%2C+Satoru&rft.au=Amini%2C+Arya&rft.au=Akbari%2C+Hamed&rft.date=2021-07-14&rft.pub=MDPI+AG&rft.eissn=2077-0383&rft.volume=10&rft.issue=14&rft.spage=3100&rft_id=info:doi/10.3390%2Fjcm10143100&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon |