Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics

The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagno...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of clinical medicine Ročník 10; číslo 14; s. 3100
Hlavní autoři: Yousefi, Bardia, Kawakita, Satoru, Amini, Arya, Akbari, Hamed, Advani, Shailesh M., Akhloufi, Moulay, Maldague, Xavier P. V., Ahadian, Samad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 14.07.2021
MDPI
Témata:
ISSN:2077-0383, 2077-0383
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson–Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4–74.4%) for multiclass and 89.6% (88.4–90.7%) for binary-class classification.
AbstractList The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification.
The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification.The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited testing availability. One of the simply available imaging modalities in clinical routine involves chest X-ray (CXR), which is often used for diagnostic purposes. Here, we proposed a computer-aided detection of COVID-19 in CXR imaging using deep and conventional radiomic features. First, we used a 2D U-Net model to segment the lung lobes. Then, we extracted deep latent space radiomics by applying deep convolutional autoencoder (ConvAE) with internal dense layers to extract low-dimensional deep radiomics. We used Johnson-Lindenstrauss (JL) lemma, Laplacian scoring (LS), and principal component analysis (PCA) to reduce dimensionality in conventional radiomics. The generated low-dimensional deep and conventional radiomics were integrated to classify COVID-19 from pneumonia and healthy patients. We used 704 CXR images for training the entire model (i.e., U-Net, ConvAE, and feature selection in conventional radiomics). Afterward, we independently validated the whole system using a study cohort of 1597 cases. We trained and tested a random forest model for detecting COVID-19 cases through multivariate binary-class and multiclass classification. The maximal (full multivariate) model using a combination of the two radiomic groups yields performance in classification cross-validated accuracy of 72.6% (69.4-74.4%) for multiclass and 89.6% (88.4-90.7%) for binary-class classification.
Author Kawakita, Satoru
Akbari, Hamed
Advani, Shailesh M.
Yousefi, Bardia
Ahadian, Samad
Amini, Arya
Maldague, Xavier P. V.
Akhloufi, Moulay
AuthorAffiliation 3 Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; aamini@coh.org
5 Department of Computer Science, Perception Robotics and Intelligent Machines (PRIME) Research Group, University of Moncton, New Brunswick, NB E1A 3E9, Canada; moulay.akhloufi@umoncton.ca
4 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; AkbariHA@upenn.edu
2 Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; skawakita@terasaki.org (S.K.); sadvani@terasaki.org (S.M.A.)
1 Department of Electrical and Computer Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
AuthorAffiliation_xml – name: 2 Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA; skawakita@terasaki.org (S.K.); sadvani@terasaki.org (S.M.A.)
– name: 4 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; AkbariHA@upenn.edu
– name: 1 Department of Electrical and Computer Engineering, Laval University, Quebec City, QC G1V 0A6, Canada
– name: 5 Department of Computer Science, Perception Robotics and Intelligent Machines (PRIME) Research Group, University of Moncton, New Brunswick, NB E1A 3E9, Canada; moulay.akhloufi@umoncton.ca
– name: 3 Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; aamini@coh.org
Author_xml – sequence: 1
  givenname: Bardia
  orcidid: 0000-0003-3121-4573
  surname: Yousefi
  fullname: Yousefi, Bardia
– sequence: 2
  givenname: Satoru
  surname: Kawakita
  fullname: Kawakita, Satoru
– sequence: 3
  givenname: Arya
  surname: Amini
  fullname: Amini, Arya
– sequence: 4
  givenname: Hamed
  orcidid: 0000-0001-9786-3707
  surname: Akbari
  fullname: Akbari, Hamed
– sequence: 5
  givenname: Shailesh M.
  surname: Advani
  fullname: Advani, Shailesh M.
– sequence: 6
  givenname: Moulay
  orcidid: 0000-0002-4378-2669
  surname: Akhloufi
  fullname: Akhloufi, Moulay
– sequence: 7
  givenname: Xavier P. V.
  orcidid: 0000-0002-8777-2008
  surname: Maldague
  fullname: Maldague, Xavier P. V.
– sequence: 8
  givenname: Samad
  orcidid: 0000-0002-6784-5716
  surname: Ahadian
  fullname: Ahadian, Samad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34300266$$D View this record in MEDLINE/PubMed
BookMark eNptkdtrFDEYxYNU7MU--S4BXwQZTSbJXF4EmXpZ2FJQW3wLXy7TzZKZjJOMsP99s7SWtZiXhO_75XAO5xQdjWG0CL2i5D1jLfmw1QMllDNKyDN0UpK6Lghr2NHB-xidx7gl-TQNL2n9Ah0zzggpq-oEhdUwwZwceL_DN-CdgWQNvlx8cpO3-MLaqeg24EZ8GYz1EaeQh8nqhLurm9VFQVucl93GxoR_FTPs8HV04y1eZ6Ex4R8TaIu_g3FhcDq-RM978NGeP9xn6PrL55_dt2J99XXVfVoXmpM2FUKoWpWV4sD7VgkujOpZX3GuSa2bstFUmBYAmrYWFdNAeqaa1lCtFDG9qNkZ-nivOy1qsEZnKzN4Oc1ugHknAzj572Z0G3kb_siGEc5YlQXePgjM4feSw8nBRW29h9GGJcpSCEGJqEqa0TdP0G1Y5jHH21Nc1ILSMlOvDx09WvnbRQbe3QN6DjHOtn9EKJH7suVB2ZmmT2jtEiQX9nGc_--fO4Qlqyw
CitedBy_id crossref_primary_10_3390_jcm11113013
crossref_primary_10_1080_13682199_2023_2204038
crossref_primary_10_3389_fdgth_2021_662343
crossref_primary_10_1109_TIM_2025_3545983
crossref_primary_10_3390_cancers14112663
crossref_primary_10_1016_j_bbe_2023_06_003
Cites_doi 10.1007/s00330-020-07032-z
10.1007/s10044-021-00984-y
10.1148/radiol.2020200432
10.1016/j.asoc.2020.106897
10.1109/TMI.2013.2284099
10.3390/bios10110164
10.1148/radiol.2020200241
10.1148/radiol.2020200642
10.1038/s41598-020-76550-z
10.1109/TPAMI.2012.277
10.1016/j.ijmedinf.2020.104284
10.1371/journal.pone.0242535
10.1148/radiol.2020201160
10.3390/ijerph17186933
10.1038/s41598-020-76282-0
10.1016/j.imu.2020.100360
10.1109/TMI.2020.2993291
10.1109/TIM.2004.834070
10.1016/j.compbiomed.2020.103792
10.1109/3DV.2016.79
10.1148/ryct.2020200075
10.1101/2020.02.29.20029603
10.1007/s13246-020-00865-4
10.1007/s13755-020-00119-3
10.1109/SSCI47803.2020.9308571
10.2214/AJR.20.23034
10.1109/CVPR.2017.369
10.1007/s10278-014-9718-8
10.1148/radiol.2020200343
10.1016/j.cmpb.2020.105581
10.1007/978-3-319-24574-4_28
10.3389/fmed.2020.608525
10.1613/jair.1.12162
10.1038/323533a0
10.1109/TMI.2013.2290491
10.1148/ryct.2020200322
10.7759/cureus.9448
10.1148/radiol.2020200905
10.1016/j.media.2020.101794
10.1090/conm/026/737400
10.2307/1932409
10.1109/CVPR.2016.90
10.1109/SIBGRAPI-T.2017.12
10.1158/0008-5472.CAN-17-0339
10.1109/CVPR.2015.7298594
10.59275/j.melba.2020-48g7
10.1148/ryct.2020200082
10.21037/tlcr.2017.01.04
10.1148/radiol.2020200463
10.1109/RBME.2020.2987975
10.20944/preprints202003.0300.v1
10.1109/SIBGRAPI.2018.00063
10.1101/2020.03.12.20027185
10.3389/fmed.2020.00427
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm10143100
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID PMC8304336
34300266
10_3390_jcm10143100
Genre Journal Article
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
ALIPV
NPM
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c409t-55b7b26b4a4f9b545dbf3f644c07c828c15d9aaa897563ca0f3b89d1cbb0df573
IEDL.DBID 7X7
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000676613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-0383
IngestDate Tue Nov 04 01:55:19 EST 2025
Fri Sep 05 08:17:08 EDT 2025
Tue Oct 07 07:09:23 EDT 2025
Mon Jul 21 06:04:40 EDT 2025
Sat Nov 29 07:07:44 EST 2025
Tue Nov 18 22:43:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords imaging biomarker
chest X-ray imaging
deep latent space radiomics
COVID-19 detection
deep convolutional autoencoder (ConvAE)
2D U-Net model
deep-learning features
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-55b7b26b4a4f9b545dbf3f644c07c828c15d9aaa897563ca0f3b89d1cbb0df573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3121-4573
0000-0002-4378-2669
0000-0002-8777-2008
0000-0001-9786-3707
0000-0002-6784-5716
OpenAccessLink https://www.proquest.com/docview/2554575112?pq-origsite=%requestingapplication%
PMID 34300266
PQID 2554575112
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8304336
proquest_miscellaneous_2555105621
proquest_journals_2554575112
pubmed_primary_34300266
crossref_primary_10_3390_jcm10143100
crossref_citationtrail_10_3390_jcm10143100
PublicationCentury 2000
PublicationDate 20210714
PublicationDateYYYYMMDD 2021-07-14
PublicationDate_xml – month: 7
  year: 2021
  text: 20210714
  day: 14
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of clinical medicine
PublicationTitleAlternate J Clin Med
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bernheim (ref_5) 2020; 295
ref_50
Sorensen (ref_40) 1948; 5
ref_92
ref_91
Oh (ref_28) 2020; 39
ref_90
ref_14
ref_58
ref_56
Malhi (ref_68) 2004; 53
ref_55
Shi (ref_13) 2021; 14
ref_54
Ai (ref_10) 2020; 296
Li (ref_20) 2020; 296
ref_51
Chowdhury (ref_37) 2020; 8
ref_19
ref_18
Wilson (ref_62) 2017; 6
ref_15
ref_59
Krizhevsky (ref_48) 2012; Volume 25
He (ref_67) 2005; Volume 18
ref_60
Rahimzadeh (ref_34) 2020; 19
Dice (ref_41) 1945; 26
ref_25
ref_24
ref_23
ref_22
ref_66
ref_21
Fang (ref_11) 2020; 296
Yoo (ref_29) 2020; 7
Minaee (ref_38) 2020; 65
Wang (ref_83) 2020; 10
Wong (ref_26) 2020; 296
Jaeger (ref_69) 2014; 33
ref_72
ref_71
Kanne (ref_4) 2020; 295
Shin (ref_57) 2013; 35
ref_36
ref_79
ref_78
ref_33
ref_77
ref_76
ref_31
ref_75
ref_30
ref_74
Cao (ref_16) 2020; 2
ref_73
Han (ref_63) 2015; 28
Candemir (ref_70) 2014; 33
Heidari (ref_27) 2020; 144
ref_39
Johnson (ref_65) 1984; 26
Fang (ref_53) 2020; 30
Homayounieh (ref_52) 2020; 2
Rumelhart (ref_61) 1986; 323
ref_82
ref_81
ref_80
Khan (ref_32) 2020; 196
ref_47
ref_46
Ozturk (ref_35) 2020; 121
ref_45
ref_89
ref_44
ref_88
ref_43
ref_87
Xie (ref_6) 2020; 296
ref_42
ref_86
ref_85
Huang (ref_17) 2020; 2
Fedorov (ref_64) 2017; 77
ref_84
ref_1
Salehi (ref_12) 2020; 215
ref_3
ref_2
ref_49
ref_9
ref_8
ref_7
References_xml – ident: ref_78
– ident: ref_80
– volume: 30
  start-page: 6888
  year: 2020
  ident: ref_53
  article-title: Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07032-z
– ident: ref_7
  doi: 10.1007/s10044-021-00984-y
– volume: 296
  start-page: E115
  year: 2020
  ident: ref_11
  article-title: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR
  publication-title: Radiology
  doi: 10.1148/radiol.2020200432
– ident: ref_84
– ident: ref_22
  doi: 10.1016/j.asoc.2020.106897
– volume: 33
  start-page: 233
  year: 2014
  ident: ref_69
  article-title: Automatic tuberculosis screening using chest radiographs
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2284099
– ident: ref_54
  doi: 10.3390/bios10110164
– ident: ref_90
– ident: ref_88
– ident: ref_1
– volume: 295
  start-page: 16
  year: 2020
  ident: ref_4
  article-title: Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: Key points for the radiologist
  publication-title: Radiology
  doi: 10.1148/radiol.2020200241
– ident: ref_23
– volume: 296
  start-page: E32
  year: 2020
  ident: ref_10
  article-title: Correlation of chest CT and RT-PCR testing for Coronavirus Disease 2019 (COVID-19) in China: A report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– ident: ref_58
– volume: 10
  start-page: 19549
  year: 2020
  ident: ref_83
  article-title: COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76550-z
– volume: 35
  start-page: 1930
  year: 2013
  ident: ref_57
  article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.277
– ident: ref_77
– volume: 144
  start-page: 104284
  year: 2020
  ident: ref_27
  article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2020.104284
– volume: Volume 18
  start-page: 507
  year: 2005
  ident: ref_67
  article-title: Laplacian score for feature selection
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_33
  doi: 10.1371/journal.pone.0242535
– volume: 296
  start-page: E72
  year: 2020
  ident: ref_26
  article-title: Frequency and distribution of chest radiographic findings in patients positive for COVID-19
  publication-title: Radiology
  doi: 10.1148/radiol.2020201160
– ident: ref_92
  doi: 10.3390/ijerph17186933
– ident: ref_21
  doi: 10.1038/s41598-020-76282-0
– volume: 19
  start-page: 100360
  year: 2020
  ident: ref_34
  article-title: A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100360
– volume: 39
  start-page: 2688
  year: 2020
  ident: ref_28
  article-title: Deep learning COVID-19 features on CXR using limited training data sets
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/TMI.2020.2993291
– volume: 53
  start-page: 1517
  year: 2004
  ident: ref_68
  article-title: PCA-based feature selection scheme for machine defect classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2004.834070
– ident: ref_87
– volume: 121
  start-page: 103792
  year: 2020
  ident: ref_35
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– ident: ref_42
  doi: 10.1109/3DV.2016.79
– volume: 2
  start-page: e200075
  year: 2020
  ident: ref_17
  article-title: Serial quantitative chest CT assessment of COVID-19: A deep learning approach
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200075
– ident: ref_66
– ident: ref_18
  doi: 10.1101/2020.02.29.20029603
– ident: ref_45
– ident: ref_72
– ident: ref_8
  doi: 10.1007/s13246-020-00865-4
– volume: 8
  start-page: 27
  year: 2020
  ident: ref_37
  article-title: PDCOVIDNet: A parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-020-00119-3
– ident: ref_30
  doi: 10.1109/SSCI47803.2020.9308571
– ident: ref_59
– volume: 215
  start-page: 87
  year: 2020
  ident: ref_12
  article-title: Coronavirus Disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.20.23034
– ident: ref_82
  doi: 10.1109/CVPR.2017.369
– volume: 28
  start-page: 99
  year: 2015
  ident: ref_63
  article-title: Texture Feature Analysis for Computer-Aided Diagnosis on Pulmonary Nodules
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-014-9718-8
– ident: ref_76
– volume: 296
  start-page: E41
  year: 2020
  ident: ref_6
  article-title: Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– ident: ref_3
– ident: ref_24
– volume: 196
  start-page: 105581
  year: 2020
  ident: ref_32
  article-title: CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2020.105581
– ident: ref_39
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_47
– ident: ref_86
– volume: 5
  start-page: 1
  year: 1948
  ident: ref_40
  article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons
  publication-title: K. Dan. Vidensk. Selsk. Biol. Skr.
– ident: ref_9
  doi: 10.3389/fmed.2020.608525
– ident: ref_14
  doi: 10.1613/jair.1.12162
– ident: ref_44
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_61
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 33
  start-page: 577
  year: 2014
  ident: ref_70
  article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2290491
– volume: 2
  start-page: e200322
  year: 2020
  ident: ref_52
  article-title: CT radiomics, radiologists, and clinical information in predicting outcome of patients with COVID-19 pneumonia
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200322
– volume: Volume 25
  start-page: 1097
  year: 2012
  ident: ref_48
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: ref_73
– ident: ref_74
  doi: 10.7759/cureus.9448
– ident: ref_79
– volume: 296
  start-page: E65
  year: 2020
  ident: ref_20
  article-title: Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– volume: 65
  start-page: 101794
  year: 2020
  ident: ref_38
  article-title: Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101794
– volume: 26
  start-page: 189
  year: 1984
  ident: ref_65
  article-title: Extensions of Lipschitz mappings into a Hilbert space
  publication-title: Contemp. Math.
  doi: 10.1090/conm/026/737400
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_41
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: ref_75
– ident: ref_25
– ident: ref_49
  doi: 10.1109/CVPR.2016.90
– ident: ref_50
– ident: ref_81
– ident: ref_2
– ident: ref_46
– ident: ref_56
  doi: 10.1109/SIBGRAPI-T.2017.12
– ident: ref_85
– volume: 77
  start-page: e104
  year: 2017
  ident: ref_64
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: ref_51
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_71
  doi: 10.59275/j.melba.2020-48g7
– volume: 2
  start-page: e200082
  year: 2020
  ident: ref_16
  article-title: Longitudinal assessment of COVID-19 using a deep learning-based quantitative CT pipeline: Illustration of two cases
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200082
– ident: ref_89
– ident: ref_91
– ident: ref_36
– ident: ref_19
– ident: ref_43
– ident: ref_60
– volume: 6
  start-page: 86
  year: 2017
  ident: ref_62
  article-title: Radiomics of pulmonary nodules and lung cancer
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2017.01.04
– volume: 295
  start-page: 200463
  year: 2020
  ident: ref_5
  article-title: Chest CT findings in coronavirus disease-19 (COVID-19): Relationship to duration of infection
  publication-title: Radiology
  doi: 10.1148/radiol.2020200463
– volume: 14
  start-page: 4
  year: 2021
  ident: ref_13
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2987975
– ident: ref_31
  doi: 10.20944/preprints202003.0300.v1
– ident: ref_55
  doi: 10.1109/SIBGRAPI.2018.00063
– ident: ref_15
  doi: 10.1101/2020.03.12.20027185
– volume: 7
  start-page: 427
  year: 2020
  ident: ref_29
  article-title: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging
  publication-title: Front. Med.
  doi: 10.3389/fmed.2020.00427
SSID ssj0000884217
Score 2.2197192
Snippet The COVID-19 pandemic continues to spread globally at a rapid pace, and its rapid detection remains a challenge due to its rapid infectivity and limited...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3100
SubjectTerms Accuracy
Artificial intelligence
Biomarkers
Clinical medicine
Coronaviruses
COVID-19
Disease transmission
Health care
Machine learning
Medical imaging
Neural networks
Pandemics
Pneumonia
Radiomics
Viral infections
Title Impartially Validated Multiple Deep-Chain Models to Detect COVID-19 in Chest X-ray Using Latent Space Radiomics
URI https://www.ncbi.nlm.nih.gov/pubmed/34300266
https://www.proquest.com/docview/2554575112
https://www.proquest.com/docview/2555105621
https://pubmed.ncbi.nlm.nih.gov/PMC8304336
Volume 10
WOSCitedRecordID wos000676613500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884217
  issn: 2077-0383
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2077-0383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884217
  issn: 2077-0383
  databaseCode: 7X7
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-0383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884217
  issn: 2077-0383
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2077-0383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884217
  issn: 2077-0383
  databaseCode: PIMPY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BixCX8iw1lGqRekKyantt7_qEIE1FpCZEBaJwsvZhq0HBTmO3Ui_97Z1xHNMA4sLF0npH9lozs_vNwzMAh9KaSAcqdm3EtRtS9VYpE7R5pJ9p5XERNIW0J6diNJLTaTJuHW5Vm1a53hObjdqWhnzkRwh9Q4oR-MH7xYVLXaMoutq20LgP29Q2m-RcTEXnY0ENChFyr37L42jdH_0wP6k5LXm1Nw-iP9Dl70mSd06dk8f_u94nsNPiTfZhJSBP4V5WPIOHwzai_hzKAeWgo5rP59dsgqCcPACWDds8Q3acZQu3d65mBaO2afOK1SXepNAD632eDI5dP2E42aO-W2zqLtU1a9IQ2Ck-qKjZFzTKM3am7Iz-f65ewLeT_tfeJ7dtwuAaNP1qN4q00EGsQxXmicZvsjrnOaIo4wmD5prxI5sopWQiopgb5eVcy8T6RmvP5pHgu7BVlEW2BwzBgS-1xa0ejT4EKhKPQh5EeebFKgqF58C7NUdS01Yop0YZ8xQtFWJfeod9Dhx2xItVYY6_k-2v2ZO22lmlv3jjwNtuGvWKgiWqyMrLhoawZxz4DrxcSUL3Hh5ysl1jB8SGjHQEVLN7c6aYnTe1uyWninHxq38v6zU8Cih3hgp4hvuwVS8vszfwwFzVs2p50Ah5c5UHsP2xPxqf4Wh408fReDAcf78F_noLIg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgoALb0qgwCKVC5JV22t77QNCKKFq1CQgKFFu7u56rQaldohdUP4Uv5EZv2gAceuBq3e1fn07M9_M7AzAXphoX7kysBKfK8uj6q1hGCHnCR2jpM2FWxXSno7EZBLOZtGHLfjRnoWhtMpWJlaCOsk1-cj30fT1KEbguG-WXy3qGkXR1baFRg2LI7P-jpSteD0c4P996boH7477h1bTVcDSyGVKy_eVUG6gPOmlkcJFE5XyFM0CbQuN_EM7fhJJKcNI-AHX0k65CqPE0UrZSeoLjutegasoxwWRPTETnU8Hd6yHJn59DJDzyN7_os-oGS550TcV3x_W7O9JmRe03MHt_-373IFbjT3N3tYb4C5smeweXB83GQP3IR9Sjj2KscVizaZIOsjDkbBxk0fJBsYsrf6pnGeM2sItClbmeJFCK6z_fjocWE7EcLBPfcXYzFrJNavSLNgIF8pK9mkptWEfZTKn893FA_h8Ka_7ELazPDOPgKHx44QqQVWGpBYNsRBVPXf91NiB9D1h9-BVi4BYNxXYqRHIIkYmRnCJL8ClB3vd5GVdeOTv03ZbOMSN9CniX1jowYtuGOUGBYNkZvLzag7Z1oHr9GCnRl53H-5x4uZBD8QGJrsJVJN8cySbn1a1yUNOFfGCx_9-rOdw4_B4PIpHw8nRE7jpUp4QFSv1dmG7XJ2bp3BNfyvnxepZtcEYnFw2Yn8CZ85kIQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceEMNBRapXJCs2F4_DwihhAirSYh4ROFkdte2GpTaIXZB-Wv8Omb8ogHErQeu3tH69e3sN4-dATj2Y-VIS7h67HCp21S91fcDtHl8M5HC4J5VFdKej73p1F8sgtke_GjPwlBaZasTK0Ud54p85H2kvjbFCEyrnzZpEbPh6OX6q04dpCjS2rbTqCFykmy_o_lWvAiH-K-fWdbo9YfBG73pMKArtGtK3XGkJy1X2sJOA4k3iGXKU6QIyvAU2iLKdOJACOEHnuNyJYyUSz-ITSWlEaeOx3HeK7CPlNy2erA_CyezT52HB9evjYS_PhTIeWD0v6gzao1LPvXdbfAPbvt7iuaFPW9043_-WjfhesO02at6adyCvSS7DQeTJpfgDuQhZd-jgluttmyO5gj5PmI2aTIs2TBJ1vrgVCwzRg3jVgUrc7xIQRc2eDsPh7oZMBwcUMcxttA3YsuqBAw2xomykr1fC5WwdyJe0snv4i58vJTXvQe9LM-SQ2BIi0xfxrjJobmLFM1HEsAtJ00MVzi2Z2jwvEVDpJra7NQiZBWhjUbQiS5AR4PjTnhdlyT5u9hRC42o0UtF9AsXGjzthlGjUJhIZEl-XskQ63YtU4P7NQq7-3Cbk9XuauDt4LMToGrluyPZ8rSqWu5zqpXnPvj3Yz2BAwRqNA6nJw_hmkUJRFTF1D6CXrk5Tx7BVfWtXBabx81qY_D5siH7E4nVbnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impartially+Validated+Multiple+Deep-Chain+Models+to+Detect+COVID-19+in+Chest+X-ray+Using+Latent+Space+Radiomics&rft.jtitle=Journal+of+clinical+medicine&rft.au=Yousefi%2C+Bardia&rft.au=Kawakita%2C+Satoru&rft.au=Amini%2C+Arya&rft.au=Akbari%2C+Hamed&rft.date=2021-07-14&rft.pub=MDPI+AG&rft.eissn=2077-0383&rft.volume=10&rft.issue=14&rft.spage=3100&rft_id=info:doi/10.3390%2Fjcm10143100&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon