On Hyperparameter Optimization of Machine Learning Methods Using a Bayesian Optimization Algorithm to Predict Work Travel Mode Choice

Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 19762 - 19774
Hlavní autoři: Aghaabbasi, Mahdi, Ali, Mujahid, Jasinski, Michal, Leonowicz, Zbigniew, Novak, Tomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed. To fit a machine-learning model to various challenges, the hyperparameters must be tweaked. Choosing the optimal hyperparameter configuration for machine learning models has an immediate effect on the performance of the model. In this paper, optimizing the hyperparameters of common machine learning models, including support vector machines, k-nearest neighbor, single decision trees, ensemble decision trees, and Naive Bayes, is studied using the Bayesian Optimization algorithm. These models were developed and optimized using two datasets from the 2017 National Household Travel Survey. Using several criteria, including average accuracy (%), average area under the receiver operating characteristics, and a simple ranking system, the performance of the optimized models was investigated. The findings of this study show that the BO is an effective model for improving the performance of the k-nearest neighbor model more than other models. This research lays the groundwork for using optimized machine learning methods to mitigate the negative consequences of automobile use.
AbstractList Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately forecasting how people will get to and from work. In the prediction of travel mode selection, machine learning methods are commonly employed. To fit a machine-learning model to various challenges, the hyperparameters must be tweaked. Choosing the optimal hyperparameter configuration for machine learning models has an immediate effect on the performance of the model. In this paper, optimizing the hyperparameters of common machine learning models, including support vector machines, k-nearest neighbor, single decision trees, ensemble decision trees, and Naive Bayes, is studied using the Bayesian Optimization algorithm. These models were developed and optimized using two datasets from the 2017 National Household Travel Survey. Using several criteria, including average accuracy (%), average area under the receiver operating characteristics, and a simple ranking system, the performance of the optimized models was investigated. The findings of this study show that the BO is an effective model for improving the performance of the k-nearest neighbor model more than other models. This research lays the groundwork for using optimized machine learning methods to mitigate the negative consequences of automobile use.
Author Leonowicz, Zbigniew
Jasinski, Michal
Novak, Tomas
Ali, Mujahid
Aghaabbasi, Mahdi
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0000-0003-2874-5429
  surname: Aghaabbasi
  fullname: Aghaabbasi, Mahdi
  email: mahdi.a@chula.ac.th
  organization: Transportation Institute, Chulalongkorn University, Bangkok, Thailand
– sequence: 2
  givenname: Mujahid
  orcidid: 0000-0003-4376-0459
  surname: Ali
  fullname: Ali, Mujahid
  organization: Department of Transport Systems, Traffic Engineering and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology, Katowice, Poland
– sequence: 3
  givenname: Michal
  orcidid: 0000-0002-0983-2562
  surname: Jasinski
  fullname: Jasinski, Michal
  organization: Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
– sequence: 4
  givenname: Zbigniew
  orcidid: 0000-0002-2388-3710
  surname: Leonowicz
  fullname: Leonowicz, Zbigniew
  organization: Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
– sequence: 5
  givenname: Tomas
  surname: Novak
  fullname: Novak, Tomas
  organization: Department of Electrical Power Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
BookMark eNqFkU9v1DAQxaOqSJTST0APljjv4r-Jc1yiQivtapHaqkdr4kx2vWTjYLtIy53vTbapUOFSX-wZze-9kd-77LT3PWbZB0bnjNHy06Kqrm5v55xyMRdcFlLqk-yMs7ycCSXy0xfvt9lFjDs6Hj22VHGW_V735PowYBggwB4TBrIektu7X5Cc74lvyQrs1vVIlgihd_2GrDBtfRPJfTxWQD7DAaOD_l9y0W18cGm7J8mTbwEbZxN58OE7uQvwEzuy8g2SauudxffZmxa6iBfP93l2_-XqrrqeLddfb6rFcmYlLdNMyVrkwEBRrpGjtAiQF0rXnCOTPG-Q1czWmtK21bzVqpAC6qamdSEtb7k4z24m3cbDzgzB7SEcjAdnnho-bAyE5GyHplG64bK1iudaas1B2lKWtmCIomV5Pmp9nLSG4H88Ykxm5x9DP65veKHZCClRjlNimrLBxxiw_evKqDnGZ6b4zDE-8xzfSJX_Udalp29NAVz3Cns5sQ4RX7hRWSpVij_a-qtw
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_cie_2025_111507
crossref_primary_10_1016_j_saa_2025_126118
crossref_primary_10_1109_TFUZZ_2025_3583874
crossref_primary_10_1038_s41598_025_99999_2
crossref_primary_10_1016_j_jfca_2024_106412
crossref_primary_10_1109_ACCESS_2023_3312305
crossref_primary_10_1016_j_rineng_2024_103534
crossref_primary_10_1088_1361_6501_ad9101
crossref_primary_10_1016_j_sftr_2025_101119
crossref_primary_10_1016_j_jer_2023_09_021
crossref_primary_10_1080_15567036_2024_2325658
crossref_primary_10_1109_ACCESS_2023_3313596
crossref_primary_10_3390_electronics13071384
crossref_primary_10_1109_ACCESS_2025_3532697
crossref_primary_10_1088_2515_7620_ad7e81
crossref_primary_10_1155_2024_6681895
crossref_primary_10_1016_j_cstp_2025_101478
crossref_primary_10_3390_en17133295
crossref_primary_10_32604_cmc_2024_058888
crossref_primary_10_1109_ACCESS_2024_3427402
crossref_primary_10_1016_j_oceaneng_2025_121962
crossref_primary_10_1016_j_heliyon_2024_e30657
crossref_primary_10_1016_j_iot_2025_101574
crossref_primary_10_1007_s11760_024_03479_5
crossref_primary_10_1016_j_jestch_2025_102012
crossref_primary_10_1016_j_trc_2025_105125
crossref_primary_10_1007_s40808_024_02215_9
crossref_primary_10_1016_j_jhydrol_2025_132892
crossref_primary_10_1007_s11709_024_1126_7
crossref_primary_10_1007_s42979_024_03355_6
crossref_primary_10_3390_machines13070570
Cites_doi 10.1111/j.1751-5823.2001.tb00465.x
10.3390/su132112226
10.1016/j.jtrangeo.2016.06.003
10.1016/j.chieco.2006.09.001
10.1080/19427867.2017.1299396
10.1080/03081060290032051
10.1061/JTEPBS.0000158
10.1016/j.tra.2021.03.021
10.1016/j.trb.2017.03.012
10.1080/15568318.2019.1686782
10.3390/su141710467
10.1080/15568318.2019.1570404
10.1016/j.tra.2017.05.016
10.3390/su14063395
10.2495/UT070641
10.2307/2685209
10.1016/j.tra.2011.09.012
10.1016/j.tbs.2020.02.003
10.1609/aaai.v29i1.9375
10.3390/buildings12070919
10.1177/0042098008093377
10.1139/L10-008
10.3141/2468-13
10.1155/2014/434972
10.1007/s11116-012-9399-4
10.3390/su13137465
10.1016/j.jtrangeo.2020.102708
10.1016/j.eswa.2017.01.057
10.3390/su14042436
10.1016/j.jocm.2018.02.002
10.1147/JRD.2017.2709578
10.3390/su14010325
10.1016/j.eswa.2021.116253
10.5038/2375-0901.17.2.4
10.3141/1854-06
10.3390/app112411916
10.1063/1.5042897
10.1023/A:1010933404324
10.3141/2156-09
10.1016/j.cities.2021.103114
10.1016/j.tbs.2018.09.002
10.1007/978-1-4614-6849-3
10.1017/cbo9780511805271
10.1007/s13721-016-0125-6
10.3390/su14073989
10.1016/j.neucom.2020.07.061
10.3390/su141711094
10.1016/j.tra.2020.04.013
10.1016/j.tbs.2022.07.003
10.1007/s11069-021-04862-y
10.1177/0361198105192400111
10.1016/j.tra.2008.11.011
10.1007/978-1-4615-7566-5
10.1016/j.tra.2022.02.003
10.1061/(ASCE)UP.1943-5444.0000710
10.1155/2019/6278908
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3247448
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 19774
ExternalDocumentID oai_doaj_org_article_d58d24fc52684882a4c949c71ee3f166
10_1109_ACCESS_2023_3247448
10049559
Genre orig-research
GrantInformation_xml – fundername: Studentská grantová soutěž [Student Grant Competition (SGS)]
– fundername: VSB—the Technical University of Ostrava
  grantid: SP2023/005
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-54b36a1a5028e2e4ceaa6758b22e1426de1b1cb800ff82f85743abdb0b74c2f23
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000943309600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:27 EDT 2025
Sun Nov 30 05:16:37 EST 2025
Tue Nov 18 22:35:00 EST 2025
Sat Nov 29 04:02:25 EST 2025
Wed Aug 27 02:14:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-54b36a1a5028e2e4ceaa6758b22e1426de1b1cb800ff82f85743abdb0b74c2f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2388-3710
0000-0003-2874-5429
0000-0003-4376-0459
0000-0002-0983-2562
OpenAccessLink https://doaj.org/article/d58d24fc52684882a4c949c71ee3f166
PQID 2781848539
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3247448
doaj_primary_oai_doaj_org_article_d58d24fc52684882a4c949c71ee3f166
crossref_citationtrail_10_1109_ACCESS_2023_3247448
ieee_primary_10049559
proquest_journals_2781848539
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref59
ref58
ref53
Xu (ref47) 2022; 14
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Elshawi (ref31) 2019
ref51
Wang (ref46) 2022; 12
ref50
Maclaurin (ref39)
Ali (ref14) 2021; 13
ref45
Vapnik (ref54) 1999
ref48
ref42
ref41
ref44
Breiman (ref57) 2001; 45
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
McFadden (ref20) 1973
Ali (ref28) 2021; 13
ref37
ref36
Qian (ref34) 2021; 11
ref30
ref33
ref32
Ben-Akiva (ref22) 1985
ref2
ref1
ref38
Tang (ref35) 2022; 14
ref23
ref26
ref25
ref63
Ali (ref15) 2020; 63
ref21
Yang (ref24) 2022; 14
ref27
Eggensperger (ref43); 10
Chen (ref29) 2021; 14
ref60
ref62
ref61
References_xml – ident: ref56
  doi: 10.1111/j.1751-5823.2001.tb00465.x
– volume-title: Discrete Choice Analysis: Theory and Application to Travel Demand
  year: 1985
  ident: ref22
– volume-title: The Nature of Support Vector Machine
  year: 1999
  ident: ref54
– volume: 13
  start-page: 12226
  issue: 21
  year: 2021
  ident: ref28
  article-title: Time-use and spatio-temporal variables influence on physical activity intensity, physical and social health of travelers
  publication-title: Sustainability
  doi: 10.3390/su132112226
– ident: ref6
  doi: 10.1016/j.jtrangeo.2016.06.003
– ident: ref1
  doi: 10.1016/j.chieco.2006.09.001
– ident: ref53
  doi: 10.1080/19427867.2017.1299396
– ident: ref3
  doi: 10.1080/03081060290032051
– ident: ref52
  doi: 10.1061/JTEPBS.0000158
– ident: ref9
  doi: 10.1016/j.tra.2021.03.021
– ident: ref60
  doi: 10.1016/j.trb.2017.03.012
– ident: ref16
  doi: 10.1080/15568318.2019.1686782
– volume: 14
  start-page: 10467
  issue: 17
  year: 2022
  ident: ref24
  article-title: Comparative analysis of the optimized KNN, SVM, and ensemble DT models using Bayesian optimization for predicting pedestrian fatalities: An advance towards realizing the sustainable safety of pedestrians
  publication-title: Sustainability
  doi: 10.3390/su141710467
– ident: ref49
  doi: 10.1080/15568318.2019.1570404
– start-page: 105
  volume-title: Frontiers in Econometrics
  year: 1973
  ident: ref20
  article-title: Conditional logit analysis of qualitative choice behavior
– ident: ref2
  doi: 10.1016/j.tra.2017.05.016
– ident: ref33
  doi: 10.3390/su14063395
– ident: ref48
  doi: 10.2495/UT070641
– year: 2019
  ident: ref31
  article-title: Automated machine learning: State-of-the-art and open challenges
  publication-title: arXiv:1906.02287
– ident: ref55
  doi: 10.2307/2685209
– ident: ref17
  doi: 10.1016/j.tra.2011.09.012
– ident: ref27
  doi: 10.1016/j.tbs.2020.02.003
– ident: ref44
  doi: 10.1609/aaai.v29i1.9375
– volume: 12
  start-page: 919
  issue: 7
  year: 2022
  ident: ref46
  article-title: A novel combination of PCA and machine learning techniques to select the most important factors for predicting tunnel construction performance
  publication-title: Buildings
  doi: 10.3390/buildings12070919
– ident: ref11
  doi: 10.1177/0042098008093377
– ident: ref4
  doi: 10.1139/L10-008
– ident: ref50
  doi: 10.3141/2468-13
– ident: ref41
  doi: 10.1155/2014/434972
– ident: ref5
  doi: 10.1007/s11116-012-9399-4
– volume: 13
  start-page: 7465
  issue: 13
  year: 2021
  ident: ref14
  article-title: The influence of COVID-19-Induced daily activities on health parameters—A case study in Malaysia
  publication-title: Sustainability
  doi: 10.3390/su13137465
– ident: ref13
  doi: 10.1016/j.jtrangeo.2020.102708
– ident: ref19
  doi: 10.1016/j.eswa.2017.01.057
– ident: ref45
  doi: 10.3390/su14042436
– ident: ref23
  doi: 10.1016/j.jocm.2018.02.002
– ident: ref36
  doi: 10.1147/JRD.2017.2709578
– volume: 14
  start-page: 325
  issue: 1
  year: 2021
  ident: ref29
  article-title: Hybrid Bayesian network models to investigate the impact of built environment experience before adulthood on students’ tolerable travel time to campus: Towards sustainable commute behavior
  publication-title: Sustainability
  doi: 10.3390/su14010325
– volume: 10
  start-page: 1
  issue: 3
  volume-title: Proc. NIPS Workshop Bayesian Optim. Theory Pract.
  ident: ref43
  article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
– volume: 63
  start-page: 4026
  issue: 6
  year: 2020
  ident: ref15
  article-title: Travel behaviour and health: Interaction of activity-travel pattern, travel parameter and physical intensity
  publication-title: Solid State Technol.
– ident: ref30
  doi: 10.1016/j.eswa.2021.116253
– ident: ref12
  doi: 10.5038/2375-0901.17.2.4
– ident: ref58
  doi: 10.3141/1854-06
– volume: 11
  start-page: 11916
  issue: 24
  year: 2021
  ident: ref34
  article-title: Classification of imbalanced travel mode choice to work data using adjustable SVM model
  publication-title: Appl. Sci.
  doi: 10.3390/app112411916
– ident: ref51
  doi: 10.1063/1.5042897
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref57
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref61
  doi: 10.3141/2156-09
– ident: ref10
  doi: 10.1016/j.cities.2021.103114
– ident: ref26
  doi: 10.1016/j.tbs.2018.09.002
– ident: ref32
  doi: 10.1007/978-1-4614-6849-3
– ident: ref21
  doi: 10.1017/cbo9780511805271
– ident: ref38
  doi: 10.1007/s13721-016-0125-6
– volume: 14
  start-page: 3989
  issue: 7
  year: 2022
  ident: ref35
  article-title: How sustainable is people’s travel to reach public transit stations to go to work? A machine learning approach to reveal complex relationships
  publication-title: Sustainability
  doi: 10.3390/su14073989
– ident: ref37
  doi: 10.1016/j.neucom.2020.07.061
– volume: 14
  start-page: 11094
  issue: 17
  year: 2022
  ident: ref47
  article-title: Targeting sustainable transportation development: The support vector machine and the Bayesian optimization algorithm for classifying household vehicle ownership
  publication-title: Sustainability
  doi: 10.3390/su141711094
– ident: ref18
  doi: 10.1016/j.tra.2020.04.013
– ident: ref59
  doi: 10.1016/j.tbs.2022.07.003
– ident: ref42
  doi: 10.1007/s11069-021-04862-y
– ident: ref62
  doi: 10.1177/0361198105192400111
– ident: ref63
  doi: 10.1016/j.tra.2008.11.011
– start-page: 2113
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: Gradient-based hyperparameter optimization through reversible learning
– ident: ref25
  doi: 10.1007/978-1-4615-7566-5
– ident: ref8
  doi: 10.1016/j.tra.2022.02.003
– ident: ref7
  doi: 10.1061/(ASCE)UP.1943-5444.0000710
– ident: ref40
  doi: 10.1155/2019/6278908
SSID ssj0000816957
Score 2.4877203
Snippet Prediction of work Travel mode choice is one of the most important parts of travel demand forecasting. Planners can achieve sustainability goals by accurately...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19762
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
Bayesian optimization algorithm
Decision trees
Forecasting
hyperparameters
Machine learning
Mathematical models
Modal choice
Optimization
Optimization algorithms
Predictive models
Support vector machines
sustainable mode choice decision
Transportation
Travel demand
Travel modes
Trip surveys
work travel mode choice
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOpUARC6XygSPZbhwnXh-3K6pe-nEoUm-WMxm3lXY3KJtW4gfwv5lx3NUiBBK3KLIVR88fb2zPe0J8NrSO-qYAGmngMx0wzyjOwswQVW7AA4CCaDZhLi6mNzf2KiWrx1wYRIyXz3DMj_Esv2nhgbfKjlndjBXTdsSOMdWQrLXZUGEHCVuapCyUT-zxbD6nnxizQfiYeIPRbPKztfpEkf7kqvLHVBzXl9NX_9myfbGXiKScDci_Fs9w9Ua83JIXfCt-Xq7kGcWZHet7L_nei7ykGWKZUi9lG-R5vEuJMsms3srz6Ci9lvEqgfTyxP9AzrP8veZscdt29_3dUvatvOr4sKeXvO8ur9nOaCHZYk3O71qahg7Et9Ov1_OzLNkuZEDBXp-Vui4qn_uSqAcq1IDec1hRK4U5LegN5nUONTHNEKYqTEsiIb5u6kltNKigindid9Wu8L2QbCdDHKsqASpdWzarVKUytgllQUwyjIR6gsNB0iRna4yFi7HJxLoBQ8cYuoThSHzZVPo-SHL8u_gJ47wpynra8QUB6NLwdE05bZQOEMVvKOjwGqy2YHLEIuRVNRIHDPrW9wa8R-Lwqdu4NPjXThliQZp4kP3wl2ofxQtu4rCVcyh2--4BP4nn8Njfr7uj2K9_AT1W9nc
  priority: 102
  providerName: IEEE
Title On Hyperparameter Optimization of Machine Learning Methods Using a Bayesian Optimization Algorithm to Predict Work Travel Mode Choice
URI https://ieeexplore.ieee.org/document/10049559
https://www.proquest.com/docview/2781848539
https://doaj.org/article/d58d24fc52684882a4c949c71ee3f166
Volume 11
WOSCitedRecordID wos000943309600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T9wwFLYq1KEdqv6g6hWKPHRs4Ow4cTweJxDLAQOV2CznxQakuwvKpUgsbP2_-55jUBBSu3TJENly7Pdsf895_j7GvmvcR12TA840cJkKXmQYZ_lMI1RuwAGAhCg2oU9Pq8tLcz6S-qKcsIEeeBi4g6aoGqkCRFoShINOgVEGtPA-D6KMZNtTbUbBVFyDK1GaQieaITE1B7P5HHu0T2rh-wgitCLFn9FWFBn7k8TKi3U5bjbH79m7hBL5bPi6D-yVX39kb0fcgZ_Y77M1P8EgsiPy7hUltfAznP6rdK-St4EvYqKk54lD9Yovolz0hsc8Ae74obv3dInyec3Z8qrtbvrrFe9bft7Rn5ye06E6vyCtoiUn_TQ-v25xjdlmP4-PLuYnWdJUyAAjuT4rVJ2XTrgCcYWXXoF3jmKGWkovcLduvKgF1AgjQ6hkqApEGK5u6mmtFcgg889sa92u_RfGSSsGAVRZAJSqNqREKQupTROKHGFimDD5OLwWEuE46V4sbQw8psYONrFkE5tsMmE_nirdDnwbfy9-SHZ7Kkpk2fEFupBNLmT_5UITtk1WH7WHYRNGWhO2--gGNs3sjZUaIY5CkGO-_o-2d9gb6s9wqLPLtvrul__GXsNdf7Pp9qJT43PxcLQXryb-AVb1-oM
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVgIAEPfA6tMMAPPJKucey4eewqpiLWbg9F2pvl3NjbpLaZ0mzSfgD_m3sdr-qEhsRbFNmKo-OPc23fcxj7qnEdtVUGONLAJtK7NME4yyUaqXIFFgAEBLMJPZsNz86K05isHnJhnHPh8pnr02M4y69quKatsgNSNyPFtMfsiZJSDLp0rc2WCnlIFEpHbaF0UByMxmP8jT5ZhPeROWhJNj9b60-Q6Y--Kn9NxmGFOXr1n217zV5GKslHHfZv2CO3estebAkMvmO_T1Z8gpFmQwrfS7r5wk9wjljG5Eteez4Ntykdj0Kr53waPKXXPFwm4JYf2ltHmZb3a44W53Vz2V4seVvz04aOe1pOO-98ToZGC04ma3x8UeNEtMt-HX2fjydJNF5IAMO9NlGyzHKbWoXkwwknwVlLgUUphEtxSa9cWqZQItf0fij8UCENsWVVDkotQXiRvWc7q3rl9hgnQxlkWbkCyGVZkF2lUEIXlVcZcknfY-IODgNRlZzMMRYmRCeDwnQYGsLQRAx77Num0lUnyvHv4oeE86YoKWqHFwigiQPUVGpYCekhyN9g2GElFLIAnTqX-TTPe2yXQN_6Xod3j-3fdRsTh__aCI08SCITKj48UO0LezaZT4_N8Y_Zz4_sOTW329jZZzttc-0-sadw016um8-hj_8BMCf5vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Hyperparameter+Optimization+of+Machine+Learning+Methods+Using+a+Bayesian+Optimization+Algorithm+to+Predict+Work+Travel+Mode+Choice&rft.jtitle=IEEE+access&rft.au=Aghaabbasi%2C+Mahdi&rft.au=Ali%2C+Mujahid&rft.au=Jasi%C5%84ski%2C+Micha%C5%82&rft.au=Leonowicz%2C+Zbigniew&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=19762&rft.epage=19774&rft_id=info:doi/10.1109%2FACCESS.2023.3247448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3247448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon