A Comprehensive Review on Deep Learning Assisted Computer Vision Techniques for Smart Greenhouse Agriculture

With the escalating global challenges of food security and resource sustainability, innovative solutions like deep learning and computer vision are transforming agricultural practices by enabling data-driven decision-making. This paper provides a focused review of recent advancements in deep learnin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 12; s. 1
Hlavní autoři: Akbar, Jalal Uddin Md, Kamarulzaman, Syafiq Fauzi, Muzahid, Abu Jafar Md, Rahman, Md Arafatur, Uddin, Mueen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the escalating global challenges of food security and resource sustainability, innovative solutions like deep learning and computer vision are transforming agricultural practices by enabling data-driven decision-making. This paper provides a focused review of recent advancements in deep learning-enabled computer vision techniques tailored specifically for greenhouse environments. First, deep learning and computer vision fundamentals are briefly introduced. Over 100 studies from 2020 to date are then comprehensively reviewed in which these technologies were applied within greenhouses for growth monitoring, disease detection, yield estimation, and other tasks. The techniques, datasets, models, and overall performance results reported in the literature are analyzed. Tables and figures showcase real-world implementations and results synthesized from current research. Key challenges are also outlined related to aspects like model adaptability, lack of sufficient labeled greenhouse data, computational constraints, the need for multi-modal sensor fusion, and other areas needing further investigation. Future trends and prospects are discussed to provide guidance for researchers exploring computer vision in the niche greenhouse domain. By condensing prior work and elucidating the state-of-the-art, this timely review aims to promote continued progress in smart greenhouse agriculture. The focused analysis, specifically on greenhouse environments, fills a gap compared to previous agricultural surveys. Overall, this paper highlights the immense potential of computer vision and deep learning in driving the emergence of data-driven, smart greenhouse farming worldwide.
AbstractList With the escalating global challenges of food security and resource sustainability, innovative solutions like deep learning and computer vision are transforming agricultural practices by enabling data-driven decision-making. This paper provides a focused review of recent advancements in deep learning-enabled computer vision techniques tailored specifically for greenhouse environments. First, deep learning and computer vision fundamentals are briefly introduced. Over 100 studies from 2020 to date are then comprehensively reviewed in which these technologies were applied within greenhouses for growth monitoring, disease detection, yield estimation, and other tasks. The techniques, datasets, models, and overall performance results reported in the literature are analyzed. Tables and figures showcase real-world implementations and results synthesized from current research. Key challenges are also outlined related to aspects like model adaptability, lack of sufficient labeled greenhouse data, computational constraints, the need for multi-modal sensor fusion, and other areas needing further investigation. Future trends and prospects are discussed to provide guidance for researchers exploring computer vision in the niche greenhouse domain. By condensing prior work and elucidating the state-of-the-art, this timely review aims to promote continued progress in smart greenhouse agriculture. The focused analysis, specifically on greenhouse environments, fills a gap compared to previous agricultural surveys. Overall, this paper highlights the immense potential of computer vision and deep learning in driving the emergence of data-driven, smart greenhouse farming worldwide.
Author Muzahid, Abu Jafar Md
Uddin, Mueen
Kamarulzaman, Syafiq Fauzi
Rahman, Md Arafatur
Akbar, Jalal Uddin Md
Author_xml – sequence: 1
  givenname: Jalal Uddin Md
  surname: Akbar
  fullname: Akbar, Jalal Uddin Md
  organization: Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia
– sequence: 2
  givenname: Syafiq Fauzi
  surname: Kamarulzaman
  fullname: Kamarulzaman, Syafiq Fauzi
  organization: Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang, Malaysia
– sequence: 3
  givenname: Abu Jafar Md
  orcidid: 0000-0003-2344-7027
  surname: Muzahid
  fullname: Muzahid, Abu Jafar Md
  organization: Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
– sequence: 4
  givenname: Md Arafatur
  orcidid: 0000-0002-8221-6168
  surname: Rahman
  fullname: Rahman, Md Arafatur
  organization: School of Mathematics and Computer Science, University of Wolverhampton, Wolverhampton, U.K
– sequence: 5
  givenname: Mueen
  orcidid: 0000-0003-1919-3407
  surname: Uddin
  fullname: Uddin, Mueen
  organization: College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
BookMark eNp9UVFrHCEYlJJC0zS_oH0Q-nxXXV13fVy2aRo4COSSvIqn3955bPSqbkL_fb1sCiEPUeGTYWYYnc_oxAcPCH2lZEkpkT-6vr9Yr5cVqfiSMS45bT-g04oKuWA1Eyev7p_QeUp7UlZboLo5RWOH-_BwiLADn9wj4Bt4dPCEg8c_AQ54BTp657e4S8mlDPaZPmWI-N4lV2i3YHbe_Zkg4SFEvH7QMePLCOB3YUqAu210ZhrzFOEL-jjoMcH5yzxDd78ubvvfi9X15VXfrRaGE5kX3G4E50bXst4wsIISxms66IJUG2albYTQtpWDGEhtpTDtwIStLOfaMsspO0NXs68Neq8O0ZVMf1XQTj0DIW5VCenMCEpL0QwNlY0AwkW7aW3LjLWcSQtli-L1ffY6xHB8ZFb7MEVf4qtKUlaX0xxZcmaZGFKKMCjjss7lf3LUblSUqGNXau5KHbtSL10VLXuj_Z_4fdW3WeUA4JWCNVKIhv0D7m-jRQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102602
crossref_primary_10_3390_agriengineering7090272
crossref_primary_10_1016_j_compag_2025_110800
crossref_primary_10_3390_agriculture15121310
crossref_primary_10_3390_agriengineering6040203
crossref_primary_10_1002_fsn3_70963
crossref_primary_10_3390_app15158438
crossref_primary_10_1016_j_atech_2025_101330
crossref_primary_10_1109_JSTARS_2025_3589635
crossref_primary_10_1016_j_procs_2025_04_270
crossref_primary_10_1051_shsconf_202521601064
crossref_primary_10_1002_fes3_70026
crossref_primary_10_1016_j_jafr_2025_101787
crossref_primary_10_3390_batteries10120440
crossref_primary_10_1038_s41598_025_15755_6
crossref_primary_10_3389_fsufs_2024_1475602
crossref_primary_10_1016_j_atech_2025_101219
crossref_primary_10_1088_2515_7620_adca02
crossref_primary_10_1016_j_dib_2025_111968
crossref_primary_10_3389_fpls_2025_1587869
crossref_primary_10_1109_ACCESS_2025_3574785
crossref_primary_10_1016_j_atech_2025_101020
crossref_primary_10_1109_ACCESS_2024_3386552
crossref_primary_10_1016_j_atech_2025_101442
crossref_primary_10_7717_peerj_cs_2896
crossref_primary_10_1016_j_compag_2024_109721
Cites_doi 10.1109/TSMC.2022.3166397
10.1016/j.compag.2020.105968
10.3390/jimaging5120089
10.1109/CVPR.2014.81
10.1016/j.jretconser.2020.102134
10.3390/s21041492
10.3390/agronomy12020356
10.3390/su141912318
10.3390/agronomy13010196
10.1016/j.aiia.2022.11.001
10.1016/j.sna.2022.114151
10.1109/CVPR.2018.00907
10.3390/app131810104
10.1016/j.compag.2023.108219
10.21273/hortsci16160-21
10.1038/nature14539
10.1117/12.2686194
10.1007/s00500-021-05867-2
10.1109/ACCESS.2020.3012542
10.3390/ijerph16214097
10.1016/j.tifs.2020.06.013
10.1109/CVPR.2016.90
10.1109/ICCV.2017.324
10.1016/j.compag.2020.105701
10.1038/s41438-021-00560-9
10.1186/s13007-022-00864-4
10.4060/cc3017en
10.1155/2022/7186687
10.1109/CVPR.2016.91
10.3390/agriculture12091290
10.1371/journal.pone.0275702
10.1007/978-3-030-00889-5_1
10.3390/agronomy12071638
10.1109/ACCESS.2022.3159339
10.14569/IJACSA.2021.0120713
10.3389/fpls.2021.630425
10.1109/TPAMI.2016.2577031
10.3390/s22155499
10.1007/978-3-319-24574-4_28
10.1109/TIP.2018.2859025
10.25165/j.ijabe.20211402.5098
10.1016/j.compag.2018.02.016
10.1109/ICCVW60793.2023.00073
10.3390/s20020342
10.3390/s22072456
10.4060/cc0639en
10.3390/info12070272
10.1109/TII.2020.3003910
10.1109/TAI.2021.3053511
10.3390/agriculture10050160
10.3389/fpls.2022.834447
10.1145/3065386
10.1016/j.postharvbio.2018.02.013
10.3390/agronomy12112659
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2015.7298965
10.1016/j.neunet.2014.09.003
10.1017/s0021859605005708
10.1038/s41598-022-12732-1
10.1109/JIOT.2020.2998584
10.1016/j.jjimei.2020.100007
10.1016/j.aiia.2022.09.007
10.1109/ICCV.2015.169
10.3390/s23062938
10.3389/fpls.2020.00559
10.34133/2022/9753427
10.1109/CVPR.2017.243
10.13031/ja.15413
10.1016/j.compag.2020.105672
10.5121/csit.2022.121010
10.1016/j.compag.2021.106255
10.3389/fpls.2022.1053329
10.1371/journal.pone.0229651
10.1016/j.atech.2023.100259
10.1007/s11554-022-01239-7
10.3390/app10175887
10.1016/j.compag.2020.105827
10.3390/s21248184
10.1007/s11263-022-01657-x
10.3390/agriculture13010223
10.1109/JRFID.2020.2984391
10.1016/j.inpa.2019.09.006
10.1007/978-3-319-10584-0_20
10.3390/ijgi9050330
10.1016/j.jafr.2022.100325
10.1109/JETCAS.2021.3101740
10.1016/j.mlwa.2021.100134
10.3389/fpls.2023.1255719
10.1016/j.compag.2021.106048
10.1016/j.compag.2020.105652
10.1016/j.imavis.2019.03.005
10.1109/ICCCNT56998.2023.10307074
10.1007/978-3-030-65414-6_20
10.1016/j.compag.2020.105254
10.3390/s22239270
10.1016/j.atech.2023.100271
10.1109/ISRITI51436.2020.9315487
10.1186/s13007-019-0550-5
10.3390/app13010014
10.1016/j.compag.2022.107176
10.1038/s41746-020-00376-2
10.3390/rs13132486
10.1109/ACCESS.2022.3166634
10.1016/j.cub.2014.08.026
10.3389/fpls.2022.889853
10.1016/j.indcrop.2021.113378
10.3390/agronomy11061210
10.3390/atmos13081258
10.1109/CVPR.2019.00326
10.1038/s41438-020-00345-6
10.3390/agriculture13020403
10.1109/MCOM.2017.1601089
10.14419/ijet.v7i1.1.9857
10.1088/1742-6596/1781/1/012059
10.3390/rs13214457
10.1016/j.compag.2019.105200
10.1007/s10669-022-09862-2
10.1016/j.eaef.2018.02.005
10.3390/computers11020026
10.1016/j.compag.2022.107430
10.1016/j.aiia.2021.01.003
10.1109/ICCV.2017.322
10.3390/agriculture12101745
10.1007/978-3-319-10590-1_53
10.1016/j.advengsoft.2022.103320
10.3390/agriculture12111964
10.12785/ijcds/140137
10.1109/ISM46123.2019.00049
10.1007/s11277-022-09528-x
10.1109/ETCCE54784.2021.9689891
10.1109/MCE.2021.3055930
10.3389/fpls.2020.00402
10.3390/s22207965
10.1609/aaai.v36i11.21440
10.1007/s00217-012-1844-2
10.1080/01431161.2022.2155082
10.1080/10942912.2021.1933024
10.1109/ISCAIE54458.2022.9794557
10.3390/engproc2021012046
10.1088/1755-1315/924/1/012009
10.1007/s41095-021-0250-8
10.3390/app10113835
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3349418
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a967f71976e0468b8d83cdd439deded6
10_1109_ACCESS_2024_3349418
10379667
Genre orig-research
GrantInformation_xml – fundername: Qatar National Library
  funderid: 10.13039/100019779
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-4db644ca595b3ed6103451faca52b3d9d766ad89f6f05d96c8f36d2d44ad3d413
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001142753300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:41:48 EDT 2025
Sun Nov 30 04:23:06 EST 2025
Sat Nov 29 06:25:22 EST 2025
Tue Nov 18 22:11:50 EST 2025
Wed Aug 27 02:24:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-4db644ca595b3ed6103451faca52b3d9d766ad89f6f05d96c8f36d2d44ad3d413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8221-6168
0000-0003-2344-7027
0000-0003-1919-3407
0009-0003-0305-1460
OpenAccessLink https://doaj.org/article/a967f71976e0468b8d83cdd439deded6
PQID 2913513576
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a967f71976e0468b8d83cdd439deded6
crossref_citationtrail_10_1109_ACCESS_2024_3349418
proquest_journals_2913513576
crossref_primary_10_1109_ACCESS_2024_3349418
ieee_primary_10379667
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
Szegedy (ref89) 2014
ref55
ref54
Oktay (ref62) 2018
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
Narwade (ref140) 2020; 101
ref35
ref34
ref37
ref36
ref31
Cantoni (ref75) 1997
ref148
ref30
ref149
ref33
ref146
ref32
ref147
Lak (ref120) 2021; 23
ref39
Chen (ref67) 2016
ref38
ref153
ref151
ref152
ref150
ref24
ref23
(ref14) 2023
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
Wu (ref66) 2019
ref19
ref18
Long (ref91) 2014
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref90
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
Chen (ref64) 2021
Simonyan (ref49) 2014
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref117
ref69
ref118
ref115
ref63
ref116
ref113
ref65
ref114
ref60
ref122
ref123
ref61
ref121
References_xml – ident: ref36
  doi: 10.1109/TSMC.2022.3166397
– ident: ref119
  doi: 10.1016/j.compag.2020.105968
– ident: ref28
  doi: 10.3390/jimaging5120089
– ident: ref52
  doi: 10.1109/CVPR.2014.81
– ident: ref132
  doi: 10.1016/j.jretconser.2020.102134
– ident: ref44
  doi: 10.3390/s21041492
– ident: ref102
  doi: 10.3390/agronomy12020356
– ident: ref118
  doi: 10.3390/su141912318
– ident: ref100
  doi: 10.3390/agronomy13010196
– ident: ref147
  doi: 10.1016/j.aiia.2022.11.001
– ident: ref142
  doi: 10.1016/j.sna.2022.114151
– ident: ref90
  doi: 10.1109/CVPR.2018.00907
– ident: ref133
  doi: 10.3390/app131810104
– ident: ref97
  doi: 10.1016/j.compag.2023.108219
– ident: ref13
  doi: 10.21273/hortsci16160-21
– ident: ref76
  doi: 10.1038/nature14539
– volume-title: Artificial Vision: Image Description, Recognition and Communication
  year: 1997
  ident: ref75
– ident: ref149
  doi: 10.1117/12.2686194
– ident: ref88
  doi: 10.1007/s00500-021-05867-2
– ident: ref31
  doi: 10.1109/ACCESS.2020.3012542
– ident: ref8
  doi: 10.3390/ijerph16214097
– ident: ref1
  doi: 10.1016/j.tifs.2020.06.013
– ident: ref48
  doi: 10.1109/CVPR.2016.90
– ident: ref57
  doi: 10.1109/ICCV.2017.324
– ident: ref104
  doi: 10.1016/j.compag.2020.105701
– ident: ref9
  doi: 10.1038/s41438-021-00560-9
– ident: ref143
  doi: 10.1186/s13007-022-00864-4
– ident: ref4
  doi: 10.4060/cc3017en
– ident: ref27
  doi: 10.1155/2022/7186687
– ident: ref55
  doi: 10.1109/CVPR.2016.91
– ident: ref116
  doi: 10.3390/agriculture12091290
– year: 2014
  ident: ref89
  article-title: Going deeper with convolutions
  publication-title: arXiv:1409.4842
– ident: ref83
  doi: 10.1371/journal.pone.0275702
– ident: ref61
  doi: 10.1007/978-3-030-00889-5_1
– ident: ref101
  doi: 10.3390/agronomy12071638
– ident: ref85
  doi: 10.1109/ACCESS.2022.3159339
– ident: ref152
  doi: 10.14569/IJACSA.2021.0120713
– year: 2018
  ident: ref62
  article-title: Attention U-Net: Learning where to look for the pancreas
  publication-title: arXiv:1804.03999
– ident: ref98
  doi: 10.3389/fpls.2021.630425
– ident: ref54
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref93
  doi: 10.3390/s22155499
– ident: ref60
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref69
  doi: 10.1109/TIP.2018.2859025
– ident: ref128
  doi: 10.25165/j.ijabe.20211402.5098
– ident: ref78
  doi: 10.1016/j.compag.2018.02.016
– ident: ref122
  doi: 10.1109/ICCVW60793.2023.00073
– ident: ref38
  doi: 10.3390/s20020342
– ident: ref92
  doi: 10.3390/s22072456
– ident: ref3
  doi: 10.4060/cc0639en
– ident: ref86
  doi: 10.3390/info12070272
– ident: ref2
  doi: 10.1109/TII.2020.3003910
– ident: ref80
  doi: 10.1109/TAI.2021.3053511
– ident: ref82
  doi: 10.3390/agriculture10050160
– ident: ref109
  doi: 10.3389/fpls.2022.834447
– ident: ref47
  doi: 10.1145/3065386
– ident: ref79
  doi: 10.1016/j.postharvbio.2018.02.013
– volume: 23
  start-page: 141
  issue: 2
  year: 2021
  ident: ref120
  article-title: Development of a smart machine vision based system to detect water stress in greenhouse tomato plants
  publication-title: Agricult. Eng. Int. CIGR J.
– ident: ref11
  doi: 10.3390/agronomy12112659
– ident: ref56
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref65
  doi: 10.1109/CVPR.2015.7298965
– ident: ref77
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref146
  doi: 10.1017/s0021859605005708
– ident: ref114
  doi: 10.1038/s41598-022-12732-1
– ident: ref24
  doi: 10.1109/JIOT.2020.2998584
– ident: ref84
  doi: 10.1016/j.jjimei.2020.100007
– ident: ref10
  doi: 10.1016/j.aiia.2022.09.007
– year: 2014
  ident: ref49
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref53
  doi: 10.1109/ICCV.2015.169
– ident: ref32
  doi: 10.3390/s23062938
– volume-title: Greenhouse Smart Application Project that Reduces Waste and Improves Workforce Efficiency at Farms in Spain
  year: 2023
  ident: ref14
– ident: ref99
  doi: 10.3389/fpls.2020.00559
– ident: ref137
  doi: 10.34133/2022/9753427
– ident: ref50
  doi: 10.1109/CVPR.2017.243
– ident: ref151
  doi: 10.13031/ja.15413
– ident: ref26
  doi: 10.1016/j.compag.2020.105672
– ident: ref45
  doi: 10.5121/csit.2022.121010
– ident: ref41
  doi: 10.1016/j.compag.2021.106255
– ident: ref148
  doi: 10.3389/fpls.2022.1053329
– ident: ref43
  doi: 10.1371/journal.pone.0229651
– ident: ref70
  doi: 10.1016/j.atech.2023.100259
– ident: ref107
  doi: 10.1007/s11554-022-01239-7
– year: 2016
  ident: ref67
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: arXiv:1606.00915
– ident: ref111
  doi: 10.3390/app10175887
– ident: ref153
  doi: 10.1016/j.compag.2020.105827
– ident: ref144
  doi: 10.3390/s21248184
– ident: ref35
  doi: 10.1007/s11263-022-01657-x
– ident: ref95
  doi: 10.3390/agriculture13010223
– ident: ref7
  doi: 10.1109/JRFID.2020.2984391
– ident: ref12
  doi: 10.1016/j.inpa.2019.09.006
– ident: ref68
  doi: 10.1007/978-3-319-10584-0_20
– ident: ref71
  doi: 10.3390/ijgi9050330
– ident: ref150
  doi: 10.1016/j.jafr.2022.100325
– ident: ref125
  doi: 10.1109/JETCAS.2021.3101740
– ident: ref46
  doi: 10.1016/j.mlwa.2021.100134
– ident: ref124
  doi: 10.3389/fpls.2023.1255719
– ident: ref131
  doi: 10.1016/j.compag.2021.106048
– ident: ref108
  doi: 10.1016/j.compag.2020.105652
– ident: ref33
  doi: 10.1016/j.imavis.2019.03.005
– ident: ref42
  doi: 10.1109/ICCCNT56998.2023.10307074
– ident: ref121
  doi: 10.1007/978-3-030-65414-6_20
– ident: ref103
  doi: 10.1016/j.compag.2020.105254
– ident: ref113
  doi: 10.3390/s22239270
– ident: ref96
  doi: 10.1016/j.atech.2023.100271
– ident: ref17
  doi: 10.1109/ISRITI51436.2020.9315487
– volume-title: TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
  year: 2021
  ident: ref64
– ident: ref145
  doi: 10.1186/s13007-019-0550-5
– ident: ref21
  doi: 10.3390/app13010014
– ident: ref106
  doi: 10.1016/j.compag.2022.107176
– ident: ref34
  doi: 10.1038/s41746-020-00376-2
– ident: ref29
  doi: 10.3390/rs13132486
– ident: ref16
  doi: 10.1109/ACCESS.2022.3166634
– ident: ref30
  doi: 10.1016/j.cub.2014.08.026
– ident: ref115
  doi: 10.3389/fpls.2022.889853
– ident: ref141
  doi: 10.1016/j.indcrop.2021.113378
– ident: ref112
  doi: 10.3390/agronomy11061210
– ident: ref15
  doi: 10.3390/atmos13081258
– ident: ref59
  doi: 10.1109/CVPR.2019.00326
– ident: ref94
  doi: 10.1038/s41438-020-00345-6
– ident: ref136
  doi: 10.3390/agriculture13020403
– ident: ref37
  doi: 10.1109/MCOM.2017.1601089
– ident: ref81
  doi: 10.14419/ijet.v7i1.1.9857
– ident: ref139
  doi: 10.1088/1742-6596/1781/1/012059
– year: 2019
  ident: ref66
  article-title: FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation
  publication-title: arXiv:1903.11816
– volume: 101
  start-page: 687
  issue: 4
  year: 2020
  ident: ref140
  article-title: Early detection and grading of apple fruit diseases using deep learning
  publication-title: J. Inst. Eng. India Ser. B
– ident: ref72
  doi: 10.3390/rs13214457
– ident: ref127
  doi: 10.1016/j.compag.2019.105200
– ident: ref6
  doi: 10.1007/s10669-022-09862-2
– ident: ref73
  doi: 10.1016/j.eaef.2018.02.005
– ident: ref87
  doi: 10.3390/computers11020026
– ident: ref110
  doi: 10.1016/j.compag.2022.107430
– ident: ref129
  doi: 10.1016/j.aiia.2021.01.003
– ident: ref58
  doi: 10.1109/ICCV.2017.322
– ident: ref20
  doi: 10.3390/agriculture12101745
– ident: ref51
  doi: 10.1007/978-3-319-10590-1_53
– ident: ref123
  doi: 10.1016/j.advengsoft.2022.103320
– ident: ref105
  doi: 10.3390/agriculture12111964
– ident: ref19
  doi: 10.12785/ijcds/140137
– ident: ref63
  doi: 10.1109/ISM46123.2019.00049
– ident: ref22
  doi: 10.1007/s11277-022-09528-x
– ident: ref39
  doi: 10.1109/ETCCE54784.2021.9689891
– ident: ref18
  doi: 10.1109/MCE.2021.3055930
– ident: ref117
  doi: 10.3389/fpls.2020.00402
– ident: ref5
  doi: 10.3390/s22207965
– ident: ref25
  doi: 10.1609/aaai.v36i11.21440
– ident: ref40
  doi: 10.1007/s00217-012-1844-2
– year: 2014
  ident: ref91
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: arXiv:1411.4038
– ident: ref130
  doi: 10.1080/01431161.2022.2155082
– ident: ref138
  doi: 10.1080/10942912.2021.1933024
– ident: ref134
  doi: 10.1109/ISCAIE54458.2022.9794557
– ident: ref126
  doi: 10.3390/engproc2021012046
– ident: ref135
  doi: 10.1088/1755-1315/924/1/012009
– ident: ref74
  doi: 10.1007/s41095-021-0250-8
– ident: ref23
  doi: 10.3390/app10113835
SSID ssj0000816957
Score 2.4708643
Snippet With the escalating global challenges of food security and resource sustainability, innovative solutions like deep learning and computer vision are...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agricultural automation
Agricultural practices
Agriculture
Air pollution
Computer vision
Controlled-environment agriculture (CEA)
Convolutional neural networks
Convolutional neural networks(CNN)
Crops
Deep learning
Farming
Green products
Greenhouse farming
Greenhouses
Image classification
Image segmentation
Object detection
Precision agriculture
Smart agriculture
Smart farming
State-of-the-art reviews
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMceBZ1oSAfOJI2Gzt2fFwWKg6oQqJUvVmOZ9wibXerffD7GTve1UoIJG6JZct2vpl4xvZ8A_A-KIM6spNDJuhKGU-sUiFUFgl7atjdzmTVV1_NxUV3fW2_lWD1HAtDRPnyGZ2mx3yWj4uwSVtlZymmjc1zcwAHxughWGu3oZIySNjWFGahcW3PJtMpT4J9wEadykTDkjJ77K0-maS_ZFX541ec15fzp_85smfwpBiSYjIg_xwe0PwFPJ7cLAuZBvHbHtngS5hNRFL-Jd0Od9bFcCwgFnPxieheFKbVG8GIJexRbDM-iKscgC4ut3yvK8Gmrvh-x2In8sWd28VmRWKv8yP4cf75cvqlKrkWqsAe3rpS2LNlFHxr214SslElVTuOnkuaXqJFo7XHzkYd6xatDl2UGhtUyqNEXglfweF8MadjEB61pKBINT5Fvo6t15FUHaLp6xhVGEGzxcCFQkSe8mHMXHZIausG4FwCzhXgRvBh1-h-4OH4d_WPCdxd1USinQsYNVd00nmrTTRjNsiIB9r1HXYyILKJxoLK32AERwnpvf4GkEdwspUVVzR-5Rqbch1Kdt9e_6XZG3iUhjjs35zA4Xq5obfwMPxa_1wt32Vh_g1ZGfRT
  priority: 102
  providerName: IEEE
Title A Comprehensive Review on Deep Learning Assisted Computer Vision Techniques for Smart Greenhouse Agriculture
URI https://ieeexplore.ieee.org/document/10379667
https://www.proquest.com/docview/2913513576
https://doaj.org/article/a967f71976e0468b8d83cdd439deded6
Volume 12
WOSCitedRecordID wos001142753300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLbQxAEOaIwhysbkA0dCk9ix42MprXYYExJj6s1y_J43pNFObceR386z406RJrHLLjlYThy_9-znz7K_j7GPXmpQgUAOaq8KqR3SkPK-MIDQYU1wO5FVX57p8_N2sTDfB1Jf8UxYTw_cG27sjNJBV5Q1kaBc27XQCg9AeZS-hpDItkttBmAqzcFtpUyjM81QVZrxZDqlHhEgrOVnETlZoszHIBUlxv4ssfJgXk7JZr7PXuVVIp_0f_eaPcPlAXs54A58w24mPI7lNV73R9B5v8vPV0v-FfGWZ-LUK04OiK4EvhNw4JfpPjm_2NG3bjitXPmP32QMns7hXK_uNsgnV-tMzIGH7Od8djE9LbJ0QuEJsG0LCR0tdLxrTNMJslJVCtlUwVFJ3QkwoJVy0JqgQtmAUb4NQkENUjoQQIntLdtbrpb4jnEHSqCXKGsXL7JWxqmAsvRBd2UI0o9YvbOi9ZlXPMpb3NiEL0pje9PbaHqbTT9in-5fuu1pNf5f_Ut0z33VyImdCihSbI4U-1ikjNhhdO6gPaEJ7OkRO9552-YBvLG1idKFgtDY-6do-4i9iP3p926O2d52fYcf2HP_Z_trsz5JsUvPb39nJ-kG4j8V3fTc
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELagIEEP5VVEoIAPHNl2s_ba62NIqYoIERKh6s3yesZtpZJUefT3M_Y6UaSKStx2LVu295tZz9iebxj75KUGFcjJQe1VIbVDUinvCwMILVbkbiey6rORHo-b83PzMwerp1gYREyXz_AwPqazfJj5VdwqO4oxbWSe64fsUS1lVXbhWpstlZhDwtQ6cwv1S3M0GA5pGuQFVvJQRCKWmNtja_1JNP05r8qdn3FaYU6e_efYnrO9bEryQYf9C_YApy_Z7uBinuk0kN626AZfsesBj-o_x8vu1jrvDgb4bMqPEW945lq94IRZRB_4OucDP0sh6HyyZnxdcDJ2-a8_JHg8Xd25nK0WyLc632e_T75OhqdFzrZQePLxloWElmwj72pTtwKBzCoh635wVFK1AgxopRw0JqhQ1mCUb4JQUIGUDgTQWvia7UxnU3zDuAMl0EuUlYuxr33jVEBZ-qDbMgTpe6xaY2B9piKPGTGubXJJSmM74GwEzmbgeuzzptFNx8Rxf_UvEdxN1UijnQoINZu10jqjdNB9MsmQBtq0DTTCA5CRRqJK36DH9iPSW_11IPfYwVpWbNb5ha1MzHYoyIF7-49mH9mT08mPkR19G39_x57G4Xa7OQdsZzlf4Xv22N8urxbzD0mw_wIt1_ea
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+on+Deep+Learning+Assisted+Computer+Vision+Techniques+for+Smart+Greenhouse+Agriculture&rft.jtitle=IEEE+access&rft.au=Jalal+Uddin+Md+Akbar&rft.au=Syafiq+Fauzi+Kamarulzaman&rft.au=Abu+Jafar+Md+Muzahid&rft.au=Md.+Arafatur+Rahman&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=4485&rft.epage=4522&rft_id=info:doi/10.1109%2FACCESS.2024.3349418&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a967f71976e0468b8d83cdd439deded6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon