Optimal Sizing and Locations of Multiple BESSs in Distribution Systems Using Crayfish Optimization Algorithm
In distribution systems, battery energy storage systems (BESSs) are the key to fully utilize energy generated from all installed distributed generations (DGs). Only one BESS might be inadequate for present distribution systems connected with several DGs. Thus, this work presents the optimal sizing a...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 94733 - 94752 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In distribution systems, battery energy storage systems (BESSs) are the key to fully utilize energy generated from all installed distributed generations (DGs). Only one BESS might be inadequate for present distribution systems connected with several DGs. Thus, this work presents the optimal sizing and locations of multiple BESSs in distribution systems connected with distributed generations (DGs) where more than one BESS is investigated. To solve the complicated problem with multiple BESSs, a newly proposed optimization algorithm named crayfish optimization algorithm (COA) is applied to solve the problem, and the results are compared with those generated from particle swarm optimization (PSO) and salp swarm algorithm (SSA). The optimization problem aims to minimize overall system costs while enhancing distribution system performance in three aspects including voltage regulation improvement, peak demand reduction, and power loss reduction. The IEEE 33- and 69-bus distribution systems connected with DGs are tested to verify the approach. The simulation results demonstrate that BESS installations can significantly improve the efficiency of the distribution systems where installing multiple BESSs proves to be more effective than a single BESS although it also increases the overall costs. It is found that in the case of multiple BESSs, %VDI, peak demand, and power loss could be improved from the base case by 43.43%, 50.00%, and 12.21%, respectively, in the IEEE 33-bus system and 42.32%, 45.74%, and 4.69%, respectively, for the IEEE 69-bus system. Furthermore, it is found that COA outperforms the compared algorithms in both systems. |
|---|---|
| AbstractList | In distribution systems, battery energy storage systems (BESSs) are the key to fully utilize energy generated from all installed distributed generations (DGs). Only one BESS might be inadequate for present distribution systems connected with several DGs. Thus, this work presents the optimal sizing and locations of multiple BESSs in distribution systems connected with distributed generations (DGs) where more than one BESS is investigated. To solve the complicated problem with multiple BESSs, a newly proposed optimization algorithm named crayfish optimization algorithm (COA) is applied to solve the problem, and the results are compared with those generated from particle swarm optimization (PSO) and salp swarm algorithm (SSA). The optimization problem aims to minimize overall system costs while enhancing distribution system performance in three aspects including voltage regulation improvement, peak demand reduction, and power loss reduction. The IEEE 33- and 69-bus distribution systems connected with DGs are tested to verify the approach. The simulation results demonstrate that BESS installations can significantly improve the efficiency of the distribution systems where installing multiple BESSs proves to be more effective than a single BESS although it also increases the overall costs. It is found that in the case of multiple BESSs, %VDI, peak demand, and power loss could be improved from the base case by 43.43%, 50.00%, and 12.21%, respectively, in the IEEE 33-bus system and 42.32%, 45.74%, and 4.69%, respectively, for the IEEE 69-bus system. Furthermore, it is found that COA outperforms the compared algorithms in both systems. |
| Author | Wichitkrailat, Krit Khunkitti, Sirote Premrudeepreechacharn, Suttichai Siritaratiwat, Apirat |
| Author_xml | – sequence: 1 givenname: Krit orcidid: 0009-0002-8883-0182 surname: Wichitkrailat fullname: Wichitkrailat, Krit organization: Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand – sequence: 2 givenname: Suttichai orcidid: 0000-0001-9902-7729 surname: Premrudeepreechacharn fullname: Premrudeepreechacharn, Suttichai organization: Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand – sequence: 3 givenname: Apirat orcidid: 0000-0001-6568-4675 surname: Siritaratiwat fullname: Siritaratiwat, Apirat organization: Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand – sequence: 4 givenname: Sirote orcidid: 0000-0001-8870-7307 surname: Khunkitti fullname: Khunkitti, Sirote email: sirote.khunkitti@cmu.ac.th organization: Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand |
| BookMark | eNp9kU9vGyEQxVGVSE2TfIL0gNSzXVhYdufobtM2kqscnJwRyx8Ha724gA_Opw_2JlKUQ7mARu_3mJn3BZ2NYbQI3VAyp5TA90XX3a5W84pUfM54VYNgn9BFRQXMWM3E2bv3Z3Sd0oaU05ZS3Vyg4X6X_VYNeOWf_bjGajR4GbTKPowJB4f_7ofsd4PFP8onCfsR__QpR9_vjxK8OqRstwk_piPdRXVwPj3hk6t_PtngxbAO0een7RU6d2pI9vr1vkSPv24fuj-z5f3vu26xnGlOIM-4IgCmEuBMXbWCgjANU5RqIFxQ1TLmWs2UIFbxntXC9ZWiPatU04LlpGeX6G7yNUFt5C6WAeNBBuXlqRDiWqqYvR6sbIyBplYNqVvGwWjQDpjW2hEDqtGieH2bvHYx_NvblOUm7ONY2pesbLEVZa28qGBS6RhSitZJ7fNp-hyVHyQl8piVnLKSx6zka1aFZR_Yt47_T32dKG-tfUfUQAEoewH2RKJ3 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3562124 crossref_primary_10_1016_j_energy_2025_135525 crossref_primary_10_1016_j_esr_2025_101683 crossref_primary_10_1016_j_energy_2025_136675 crossref_primary_10_1016_j_esr_2025_101720 crossref_primary_10_1016_j_nexus_2025_100486 crossref_primary_10_1016_j_energy_2025_134817 crossref_primary_10_3390_en18030474 crossref_primary_10_1016_j_jclepro_2025_145199 crossref_primary_10_1186_s40807_025_00193_9 crossref_primary_10_1016_j_apenergy_2025_125418 crossref_primary_10_1038_s41598_025_96341_8 crossref_primary_10_1038_s41598_025_89856_7 crossref_primary_10_1016_j_jclepro_2025_145260 crossref_primary_10_1016_j_ecmx_2025_101204 crossref_primary_10_1109_TTE_2025_3554651 crossref_primary_10_1016_j_est_2025_117223 crossref_primary_10_1016_j_measurement_2025_118337 crossref_primary_10_1016_j_epsr_2025_111467 crossref_primary_10_1016_j_jclepro_2025_146534 crossref_primary_10_1038_s41598_025_85484_3 crossref_primary_10_1016_j_epsr_2025_112056 crossref_primary_10_1155_2024_1992135 crossref_primary_10_1016_j_rineng_2025_107098 crossref_primary_10_1016_j_esd_2025_101675 |
| Cites_doi | 10.1007/s00500-022-06911-5 10.3390/electricity2040033 10.1016/j.est.2020.101368 10.3390/batteries10060212 10.1109/jsyst.2020.3009028 10.1007/s10462-023-10567-4 10.1109/ELECO.2015.7394582 10.1109/ISRITI51436.2020.9315446 10.1109/TSG.2020.3042186 10.1016/j.est.2021.103041 10.1016/j.epsr.2021.107170 10.1016/j.apenergy.2018.07.100 10.1016/j.est.2019.100847 10.1155/2022/6361243 10.1109/icnn.1995.488968 10.1109/ACCESS.2023.3291590 10.32479/ijeep.11027 10.1109/ICACCS.2017.8014596 10.1049/iet-rpg.2018.0089 10.1109/ISGTAsia54891.2023.10372655 10.3389/fenrg.2021.707718 10.1016/j.advengsoft.2017.07.002 10.3390/en12244817 10.1109/ECCE47101.2021.9595426 10.1007/s10584-023-03513-4 10.1109/ACCESS.2022.3148253 10.1109/INDISCON50162.2020.00033 10.1109/TSG.2018.2828991 10.1016/j.apenergy.2017.10.106 10.1016/j.eswa.2011.02.075 10.1109/ACCESS.2023.3239303 10.1109/access.2020.2981406 10.1016/j.est.2020.102158 10.1016/j.est.2019.02.027 10.1109/ACCESS.2020.2967435 10.1109/OJIES.2020.2981832 10.1016/j.est.2021.102264 10.1109/TSTE.2015.2487360 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3425963 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 94752 |
| ExternalDocumentID | oai_doaj_org_article_7dd975a7058349dc9cf93cccf0d9a7c6 10_1109_ACCESS_2024_3425963 10591991 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Provincial Electricity Authority-Graduate School, Chiang Mai University Program funderid: 10.13039/501100002842 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-4a099d269fd5286196d73a11c90461a833f8c3a60ea4b356fb2a1b32a789e40b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272162100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:37 EDT 2025 Mon Jun 30 13:15:23 EDT 2025 Sat Nov 29 04:26:56 EST 2025 Tue Nov 18 21:48:11 EST 2025 Wed Aug 27 02:03:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-4a099d269fd5286196d73a11c90461a833f8c3a60ea4b356fb2a1b32a789e40b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8870-7307 0000-0001-9902-7729 0009-0002-8883-0182 0000-0001-6568-4675 |
| OpenAccessLink | https://doaj.org/article/7dd975a7058349dc9cf93cccf0d9a7c6 |
| PQID | 3081865364 |
| PQPubID | 4845423 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2024_3425963 ieee_primary_10591991 proquest_journals_3081865364 crossref_primary_10_1109_ACCESS_2024_3425963 doaj_primary_oai_doaj_org_article_7dd975a7058349dc9cf93cccf0d9a7c6 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1007/s00500-022-06911-5 – ident: ref34 doi: 10.3390/electricity2040033 – ident: ref15 doi: 10.1016/j.est.2020.101368 – ident: ref23 doi: 10.3390/batteries10060212 – ident: ref5 doi: 10.1109/jsyst.2020.3009028 – ident: ref38 doi: 10.1007/s10462-023-10567-4 – ident: ref12 doi: 10.1109/ELECO.2015.7394582 – ident: ref17 doi: 10.1109/ISRITI51436.2020.9315446 – ident: ref7 doi: 10.1109/TSG.2020.3042186 – ident: ref2 doi: 10.1016/j.est.2021.103041 – ident: ref33 doi: 10.1016/j.epsr.2021.107170 – ident: ref31 doi: 10.1016/j.apenergy.2018.07.100 – ident: ref32 doi: 10.1016/j.est.2019.100847 – ident: ref21 doi: 10.1155/2022/6361243 – ident: ref35 doi: 10.1109/icnn.1995.488968 – ident: ref24 doi: 10.1109/ACCESS.2023.3291590 – ident: ref6 doi: 10.32479/ijeep.11027 – ident: ref13 doi: 10.1109/ICACCS.2017.8014596 – ident: ref10 doi: 10.1049/iet-rpg.2018.0089 – ident: ref27 doi: 10.1109/ISGTAsia54891.2023.10372655 – ident: ref28 doi: 10.3389/fenrg.2021.707718 – ident: ref37 doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref29 doi: 10.3390/en12244817 – ident: ref19 doi: 10.1109/ECCE47101.2021.9595426 – ident: ref1 doi: 10.1007/s10584-023-03513-4 – ident: ref25 doi: 10.1109/ACCESS.2022.3148253 – ident: ref3 doi: 10.1109/INDISCON50162.2020.00033 – ident: ref11 doi: 10.1109/TSG.2018.2828991 – ident: ref9 doi: 10.1016/j.apenergy.2017.10.106 – ident: ref36 doi: 10.1016/j.eswa.2011.02.075 – ident: ref26 doi: 10.1109/ACCESS.2023.3239303 – ident: ref4 doi: 10.1109/access.2020.2981406 – ident: ref8 doi: 10.1016/j.est.2020.102158 – ident: ref14 doi: 10.1016/j.est.2019.02.027 – ident: ref16 doi: 10.1109/ACCESS.2020.2967435 – ident: ref30 doi: 10.1109/OJIES.2020.2981832 – ident: ref18 doi: 10.1016/j.est.2021.102264 – ident: ref20 doi: 10.1109/TSTE.2015.2487360 |
| SSID | ssj0000816957 |
| Score | 2.4261158 |
| Snippet | In distribution systems, battery energy storage systems (BESSs) are the key to fully utilize energy generated from all installed distributed generations (DGs).... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 94733 |
| SubjectTerms | Algorithms Batteries Battery energy storage system Battery energy storage systems (BESSs) Costs Distributed generation distributed generations Distribution networks Electric power distribution Electric power loss Electricity Energy distribution Energy storage Loss reduction Maintenance metaheuristic algorithms Metaheuristics Optimization algorithms Particle swarm optimization Peak load Sizing Storage systems System performance Voltage control |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYAcWgPpbRUbAvIhx4b8NqxHR-XBcSBR6W2Ejdr_CqRlqTaXZDor6_tmBVV1Uq9RZad2Pn8mBnPfIPQR0-NMpbIShkXqloBVGA5rRgkNjfu4qFlc7IJeXXV3NyozyVYPcfCeO-z85k_TI_5Lt_19j6Zyo6SLJBcddbRupRiCNZaGVRSBgnFZWEWGhN1NJlO4yCiDkjrQxbnphLst9Mnk_SXrCp_bMX5fDnb-s-evUaviiCJJwPy22jNd2_Qy2f0gm_R7DruB3ex0pf2ZyzA0Dl80RcbHe4DvizehPg4jmCB2w6fJB7dkgILFzZznN0K8HQOj6Fd3OL81hK-iSez7_28Xd7e7aBvZ6dfp-dVya5Q2ajTLasaonDoqFDBcdpEPUo4yWA8tipxsEPDWGgsA0E81IZxEQyFsWEUZKN8TQx7hza6vvO7CFMiwVAeG5goAFrR-JpG6DkFRygENkL06a9rW6jHUwaMmc4qCFF6gEonqHSBaoQ-rRr9GJg3_l39OMG5qppos3NBxEmXVailc0pykIQ3rFbOKhsUs9YG4hRIK0ZoJ2H77HsDrCO09zQ7dFnjC80yGyBnon7_l2Yf0IvUxcFis4c2lvN7v4827cOyXcwP8vT9BY7e7mU priority: 102 providerName: IEEE |
| Title | Optimal Sizing and Locations of Multiple BESSs in Distribution Systems Using Crayfish Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/10591991 https://www.proquest.com/docview/3081865364 https://doaj.org/article/7dd975a7058349dc9cf93cccf0d9a7c6 |
| Volume | 12 |
| WOSCitedRecordID | wos001272162100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QxQEOiEcRC6XKgSNDM8lkMj5ul1YcaEECpN4iJ5nQkbazaHdBggO_HSeTVouQ4MJlDpEzSWwntiPnM2MveunAeWEqcCFWDSBW6LWsFCY0Nx3IaPlcbMKcn3cXF_B-p9RXygmb4IEnxh2ZEMBoNEJ3qoHgwUdQ3vsoAqDxGWxbGNgJpvIZ3NUtaFNghmoBR_PFglZEAaFsXilSVGjVb6YoI_aXEit_nMvZ2JzeZ_eKl8jn0-wesFv9-JDd3cEOfMSW72izXxHRh-EHNXAcA3-7KhdwfBX5WUkV5Mc0ow0fRv46geSW-la8QJXznDPAF2v8HofNJc9_LW8z-Xz5ebUetpdX--zT6cnHxZuqlE6oPAVs26pB8vyCbCEGLTsKktpgFNa1hwSwjp1SsfMKW9Fj45Ruo5NYOyXRdNA3wqnHbG9cjf0Txom76KSmDo68O992fSNJrlpiEBKjmjF5zUXrC654Km-xtDm-EGAn1tvEeltYP2Mvbzp9mWA1_k5-nMRzQ5owsXMDaYotmmL_pSkztp-EuzOehpT4NWMH19K2ZQNvrMpQf1q1zdP_MfYzdietZ7q7OWB72_XX_jm77b9th836MOsufc9-nhzmF4i_AIYb8_E |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPIu6UMAHjqT1-hHHx-1CVcR2QaJIvVl-tpG2SbW7RYJfj-24qyIEErfIshM7nx8z45lvAN56YqSxWFTSuFAxqXWlLScV1YnNjbt4aNmcbELM583pqfxSgtVzLIz3Pjuf-b30mO_yXW-vkqlsP8kCyVXnNtzhjBE8hGttTCoph4TkonALjbHcn0yncRhRCyRsj8bZKWv62_mTafpLXpU_NuN8whw--s--PYaHRZREkwH7J3DLd0_hwQ2CwWew-Bx3hItY6Wv7MxYg3Tk064uVDvUBHRd_QnQQR7BCbYfeJybdkgQLFT5zlB0L0HSpf4R2dY7yW0sAJ5oszvpluz6_2IZvhx9OpkdVya9Q2ajVrSumo3joSC2D46SJmlTtBNXjsZWJhV03lIbGUl1jr5mhvA6G6LGhRItGeoYNfQ5bXd_5HUAEC20Ijw1MFAFt3XhGIvicaIeJDnQE5PqvK1vIx1MOjIXKSgiWaoBKJahUgWoE7zaNLgfujX9XP0hwbqom4uxcEHFSZR0q4ZwUXAvMG8qks9IGSa21ATupha1HsJ2wvfG9AdYR7F7PDlVW-UrRzAfIac1e_KXZG7h3dHI8U7OP808v4X7q7mC_2YWt9fLKv4K79vu6XS1f56n8CxdI8aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Sizing+and+Locations+of+Multiple+BESSs+in+Distribution+Systems+Using+Crayfish+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Wichitkrailat%2C+Krit&rft.au=Premrudeepreechacharn%2C+Suttichai&rft.au=Siritaratiwat%2C+Apirat&rft.au=Khunkitti%2C+Sirote&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=94733&rft.epage=94752&rft_id=info:doi/10.1109%2FACCESS.2024.3425963&rft.externalDocID=10591991 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |