Use of Ensemble Learning to Detect Buffer Overflow Exploitation
Software exploitation detection remains unresolved problem. Software exploits that target known and unknown vulnerabilities are constantly used in attacks. Signature-based detection techniques are limited to known exploits and susceptible to circumvention. Current research on the use of Machine Lear...
Saved in:
| Published in: | IEEE access Vol. 11; pp. 52009 - 52025 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Software exploitation detection remains unresolved problem. Software exploits that target known and unknown vulnerabilities are constantly used in attacks. Signature-based detection techniques are limited to known exploits and susceptible to circumvention. Current research on the use of Machine Learning (ML) for software exploitation detection is limited in quantity and use cases. Existing research lacks the use of public datasets, discussions of feature importance, and elaboration of parameters that affect data preparation and subsequently model performance. This paper presents ML models based on different ensemble algorithms to detect software exploitation using runtime traces. We focus on buffer overflow vulnerabilities in user-space applications within Windows Operating Systems (OS), given the prevalence of the type of vulnerability and the OS. We utilized a publicly available raw dataset of 11 Windows applications under exploitation. Multiple distinct models (based on Random Forest and XGBoost) are created and tested. Testing was performed several times using various aggregation parameters and different testing applications. Our results demonstrate that we can achieve up to 100% recall with 0% false positive rate. We report on the different parameters that must be addressed to curate runtime traces and demonstrate their impact on the performance of the ML models. We demonstrate that the proper training of models on a subset of exploitation techniques enables the model to detect techniques never seen before, such as return-oriented programming. Finally, we conclude with a discussion of the important features that had the highest impact on each of the models, along with the key takeaways. |
|---|---|
| AbstractList | Software exploitation detection remains unresolved problem. Software exploits that target known and unknown vulnerabilities are constantly used in attacks. Signature-based detection techniques are limited to known exploits and susceptible to circumvention. Current research on the use of Machine Learning (ML) for software exploitation detection is limited in quantity and use cases. Existing research lacks the use of public datasets, discussions of feature importance, and elaboration of parameters that affect data preparation and subsequently model performance. This paper presents ML models based on different ensemble algorithms to detect software exploitation using runtime traces. We focus on buffer overflow vulnerabilities in user-space applications within Windows Operating Systems (OS), given the prevalence of the type of vulnerability and the OS. We utilized a publicly available raw dataset of 11 Windows applications under exploitation. Multiple distinct models (based on Random Forest and XGBoost) are created and tested. Testing was performed several times using various aggregation parameters and different testing applications. Our results demonstrate that we can achieve up to 100% recall with 0% false positive rate. We report on the different parameters that must be addressed to curate runtime traces and demonstrate their impact on the performance of the ML models. We demonstrate that the proper training of models on a subset of exploitation techniques enables the model to detect techniques never seen before, such as return-oriented programming. Finally, we conclude with a discussion of the important features that had the highest impact on each of the models, along with the key takeaways. |
| Author | Karmakar, Chandan Youssef, Ayman Abdelrazek, Mohamed |
| Author_xml | – sequence: 1 givenname: Ayman orcidid: 0000-0002-0136-9534 surname: Youssef fullname: Youssef, Ayman email: ayman.youssef@research.deakin.edu.au organization: Faculty of Science, Engineering, and Built Environment, School of Information Technology, Deakin University, Melbourne, VIC, Australia – sequence: 2 givenname: Mohamed surname: Abdelrazek fullname: Abdelrazek, Mohamed organization: A2I2D, Applied Aritificial Intelligence Institute, Deakin University, Melbourne, VIC, Australia – sequence: 3 givenname: Chandan orcidid: 0000-0003-1814-0856 surname: Karmakar fullname: Karmakar, Chandan organization: Faculty of Science, Engineering, and Built Environment, School of Information Technology, Deakin University, Melbourne, VIC, Australia |
| BookMark | eNp9kF1PwjAYhRuDiYj8Ar1Y4vWwH9u6XhmcqCQkXCDXTVfekpGxYlf8-PcWhwnxwt60OXmf856eS9RrbAMIXRM8IgSLu3FRTBaLEcWUjRjlgub4DPUpyUTMUpb1Tt4XaNi2GxxOHqSU99H9soXImmjStLAta4hmoFxTNevI2-gRPGgfPeyNARfN38GZ2n5Ek89dbSuvfGWbK3RuVN3C8HgP0PJp8lq8xLP587QYz2KdYOFjZnjJk9xkkOUCa65KgkEnqoSSGpORnK4Yw2nQlE5XinAT4qU84VrlgqSaDdC0811ZtZE7V22V-5JWVfJHsG4tlfOVrkGmbGVUwnjYKBKluciFzkpsSFikOTHB67bz2jn7tofWy43duybElzSnhJOMUh6mRDelnW1bB0bq45-9U1UtCZaH-mVXvzzUL4_1B5b9YX8T_0_ddFQFACcEYUSEQN9JqJH_ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3450180 crossref_primary_10_3390_electronics12234741 |
| Cites_doi | 10.1109/AICCSA47632.2019.9035265 10.1109/ARES.2013.59 10.1109/iccet.2010.5485224 10.1109/ACCESS.2020.3034766 10.2991/ijcis.d.190905.001 10.1145/1866307.1866370 10.1109/ACCESS.2020.2967746 10.1109/DSC.2018.00030 10.1109/ICDSP.2016.7868617 10.1145/3029806.3029812 10.1016/j.jnca.2021.103009 10.1007/978-0-387-84927-0_15 10.1023/A:1010933404324 10.3390/electronics11203363 10.1186/s42400-019-0038-7 10.1109/ICSE.2009.5070546 10.23919/ICACT.2018.8323798 10.1145/2939672.2939785 10.5220/0006642503790385 10.1016/j.jnca.2017.03.018 10.1145/3214304 10.1109/SP.2015.50 10.1145/3203422.3203433 10.1109/access.2022.3207287 10.1007/s11416-017-0299-1 10.1007/978-3-642-41224-0_3 10.1109/TR.2018.2834476 10.1145/3133956.3134020 10.3390/info9070149 10.1145/3477314.3507108 10.1007/978-3-030-92708-0_22 10.1109/ACCESS.2018.2841987 10.1109/SPW.2018.00025 10.1145/3363824 10.1145/1646353.1646374 10.1145/1966913.1966920 10.1145/3344382 10.1145/2948618.2948620 10.1109/MilCIS.2015.7348942 10.3390/fi8030029 10.1049/iet-ifs.2017.0460 10.1145/3178582 10.5220/0006639801080116 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3279280 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 52025 |
| ExternalDocumentID | oai_doaj_org_article_53dfa4377b794ac7989c6b0f1ff6c71f 10_1109_ACCESS_2023_3279280 10131927 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-3f7b748f6e6890c7ab10ec4abeb2ff6182d33050ecac5da17f6955747ca8915c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001006035100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:13 EDT 2025 Sun Nov 30 05:18:23 EST 2025 Tue Nov 18 22:33:12 EST 2025 Sat Nov 29 04:02:40 EST 2025 Wed Aug 27 02:25:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-3f7b748f6e6890c7ab10ec4abeb2ff6182d33050ecac5da17f6955747ca8915c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1814-0856 0000-0002-0136-9534 |
| OpenAccessLink | https://doaj.org/article/53dfa4377b794ac7989c6b0f1ff6c71f |
| PQID | 2821716227 |
| PQPubID | 4845423 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_53dfa4377b794ac7989c6b0f1ff6c71f proquest_journals_2821716227 crossref_citationtrail_10_1109_ACCESS_2023_3279280 ieee_primary_10131927 crossref_primary_10_1109_ACCESS_2023_3279280 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 Li (ref20) 2018 ref59 Bhatkar (ref4) ref14 ref58 ref53 ref52 ref55 ref54 (ref6) 2023 (ref51) 1990 ref17 ref16 ref19 ref18 Martin (ref10) 2022 ref50 (ref27) 2022 (ref67) 2023 ref46 ref45 (ref42) 2023 ref48 ref47 Harer (ref56) 2018 ref41 ref43 (ref44) 2022 ref49 ref8 (ref1) 2022 ref7 ref3 Cheng (ref24) 2018 ref40 ref35 ref34 Creech (ref38) 2014 ref37 ref36 ref31 ref30 (ref28) 2022 ref33 ref32 (ref68) 2023 ref2 ref39 (ref11) 2015 (ref12) 2023 ref23 (ref29) 2022 Wang (ref22) 2021 ref26 (ref5) 2023 ref25 Pak (ref57) 2012 ref66 ref21 ref65 (ref69) 2023 Newsome (ref63) (ref9) 2023 ref60 Carlini (ref64) ref62 ref61 |
| References_xml | – start-page: 255 volume-title: Proc. 14th USENIX Secur. Symp. ident: ref4 article-title: Efficient techniques for comprehensive protection from memory error exploits – volume-title: CWE—2022 CWE Top 25 Most Dangerous Software Weaknesses year: 2022 ident: ref28 – ident: ref54 doi: 10.1109/AICCSA47632.2019.9035265 – volume-title: AV-TEST Seal of Approval |AV-TEST Institute year: 2023 ident: ref68 – ident: ref53 doi: 10.1109/ARES.2013.59 – ident: ref49 doi: 10.1109/iccet.2010.5485224 – ident: ref50 doi: 10.1109/ACCESS.2020.3034766 – ident: ref21 doi: 10.2991/ijcis.d.190905.001 – ident: ref65 doi: 10.1145/1866307.1866370 – ident: ref23 doi: 10.1109/ACCESS.2020.2967746 – ident: ref33 doi: 10.1109/DSC.2018.00030 – ident: ref43 doi: 10.1109/ICDSP.2016.7868617 – year: 2012 ident: ref57 article-title: Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic execution – ident: ref16 doi: 10.1145/3029806.3029812 – ident: ref52 doi: 10.1016/j.jnca.2021.103009 – year: 2018 ident: ref24 article-title: Program anomaly detection against data-oriented attacks – ident: ref18 doi: 10.1007/978-0-387-84927-0_15 – year: 2022 ident: ref27 publication-title: Desktop Operating System Market Share Worldwide |Statcounter Global Stats – year: 2023 ident: ref42 publication-title: Malware—Wikipedia – start-page: 1 volume-title: Gaining the Advantage—Applying Cyber Kill Chain Methodology to Network Defense year: 2015 ident: ref11 – ident: ref31 doi: 10.1023/A:1010933404324 – ident: ref19 doi: 10.3390/electronics11203363 – volume-title: Digital Security Unit year: 2022 ident: ref1 article-title: Special report: Ukraine – ident: ref45 doi: 10.1186/s42400-019-0038-7 – ident: ref61 doi: 10.1109/ICSE.2009.5070546 – start-page: 256 volume-title: Proc. 23rd USENIX Conf. Secur. Symp. ident: ref64 article-title: ROP is still dangerous: Breaking modern defenses – ident: ref26 doi: 10.23919/ICACT.2018.8323798 – volume-title: Summary Report 2022—AV-Comparatives year: 2023 ident: ref67 – year: 2014 ident: ref38 article-title: Developing a high-accuracy cross platform host-based intrusion detection system capable of reliably detecting zero-day attacks – ident: ref32 doi: 10.1145/2939672.2939785 – volume-title: What is the Cyber Kill Chain? Introduction Guide |CrowdStrike year: 2023 ident: ref9 – start-page: 1 volume-title: Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS) ident: ref63 article-title: Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software – ident: ref3 doi: 10.5220/0006642503790385 – ident: ref41 doi: 10.1016/j.jnca.2017.03.018 – ident: ref47 doi: 10.1145/3214304 – volume-title: What is an Exploit ?—Cisco year: 2023 ident: ref12 – volume-title: Bypassing DEP With VirtualProtect (x86). Vulndev year: 2023 ident: ref6 – ident: ref62 doi: 10.1109/SP.2015.50 – year: 2022 ident: ref44 publication-title: Generating Payloads—Metasploit Unleashed – ident: ref14 doi: 10.1145/3203422.3203433 – ident: ref66 doi: 10.1145/3203422.3203433 – ident: ref30 doi: 10.1109/access.2022.3207287 – ident: ref8 doi: 10.1007/s11416-017-0299-1 – ident: ref2 doi: 10.1007/978-3-642-41224-0_3 – ident: ref58 doi: 10.1109/TR.2018.2834476 – ident: ref60 doi: 10.1145/3133956.3134020 – volume-title: NVD—Search and Statistics year: 2022 ident: ref29 – ident: ref36 doi: 10.3390/info9070149 – ident: ref15 doi: 10.1145/3477314.3507108 – ident: ref48 doi: 10.1007/978-3-030-92708-0_22 – ident: ref34 doi: 10.1109/ACCESS.2018.2841987 – volume-title: Intel Ⓡ 64 and IA-32 Architectures Software Developer Manuals year: 2023 ident: ref69 – ident: ref17 doi: 10.1109/SPW.2018.00025 – volume-title: IEEE Standard Glossary of Software Engineering Terminology year: 1990 ident: ref51 – ident: ref59 doi: 10.1145/3363824 – year: 2018 ident: ref56 article-title: Automated software vulnerability detection with machine learning publication-title: arXiv:1803.04497 – volume-title: Data Execution Prevention—Win32 Apps |Microsoft Docs year: 2023 ident: ref5 – ident: ref55 doi: 10.1145/1646353.1646374 – ident: ref7 doi: 10.1145/1966913.1966920 – ident: ref46 doi: 10.1145/3344382 – ident: ref25 doi: 10.1145/2948618.2948620 – ident: ref39 doi: 10.1109/MilCIS.2015.7348942 – year: 2021 ident: ref22 article-title: Tackling imbalanced data in cybersecurity with transfer learning: A case with ROP payload detection publication-title: arXiv:2105.02996 – ident: ref37 doi: 10.3390/fi8030029 – ident: ref13 doi: 10.1049/iet-ifs.2017.0460 – ident: ref35 doi: 10.1145/3178582 – year: 2018 ident: ref20 article-title: ROPNN: Detection of ROP payloads using deep neural networks publication-title: arXiv:1807.11110 – ident: ref40 doi: 10.5220/0006639801080116 – volume-title: Cyber Kill Chain Ⓡ year: 2022 ident: ref10 |
| SSID | ssj0000816957 |
| Score | 2.285525 |
| Snippet | Software exploitation detection remains unresolved problem. Software exploits that target known and unknown vulnerabilities are constantly used in attacks.... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 52009 |
| SubjectTerms | Algorithms Buffer overflow Buffers Data models Datasets Ensemble learning Exploitation exploitation detection Machine learning Mathematical models Operating systems Parameters Random forests Run time (computers) Runtime Software Software algorithms Space applications XGBoost |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxEB3RigMc-CwipSAfOLJhnfXu2KeqDa04FQ5U6s3yjm2EFLKoSejf79jrRpGqInFbWbY8nvGsPbbnPYCPdR-1l9hV5PpYKWyp4l2-rmoM0jsKstMuk03gxYW-ujLfS7J6zoUJIeTHZ2GaPvNdvh9ok47K2MMlz5gZ7sEeYjcma20PVBKDhGmxIAvJ2nw-mc95ENNEED5tElBewn7cWX0ySH9hVbn3K87ry_nz_5TsBTwrG0lxMlr-JTwKy1fwdAde8DUcX66CGKI4W67C734RRAFT_SnWg_gS0vWBON0kghTxjWd0XAw3Ir_JK7jdB3B5fvZj_rUqhAkVcZi2rpqIPSodu9BpUxO6XtaBlOs5fI6x41DCN-zfXOao9U5iZI21HFCQ00a21LyB_eWwDG9BqM4Hx-unJ00Ko-qNI-UNGW4mfXQTmN0p0lKRKpFaLGyOKmpjR-3bpH1btD-BT9tGf0YwjX9XP00W2lZNSNi5gFVvi2PZtmFpVIM8cqMcodGGur6OkgdMKOMEDpK5dvobLTWBozuD2-K2K8vxZ4IPms3w8IFm7-BJEnE8hDmC_fX1JryHx_R3_Wt1_SHPyFssIt82 priority: 102 providerName: IEEE |
| Title | Use of Ensemble Learning to Detect Buffer Overflow Exploitation |
| URI | https://ieeexplore.ieee.org/document/10131927 https://www.proquest.com/docview/2821716227 https://doaj.org/article/53dfa4377b794ac7989c6b0f1ff6c71f |
| Volume | 11 |
| WOSCitedRecordID | wos001006035100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8SiiPCoPjATivGxPqC2tWHgMILFZzsVGSKVBbYGN387ZMVUkJFhYMli2bH93PvsS5_sIOYlLKyrGiwh0aaOM5xDhKV9EMTes0mBYIbQXm-A3N-LxUd61pL7cnbCGHrgB7jxPK6uzlPMSPUcDl0JCUcaWWVsAZ9ZF35jLVjLlY7Bghcx5oBlisTzvD4c4ozOnFn6WOtY8RwTZ2oo8Y3-QWPkRl_1mM94im-GUSPvN6LbJipnukI0Wd-AuuXiYG1pbOprOzUs5MTQwpT7RRU0vjfs2QAdvTv2E3qK72kn9Qf2Fu0DK3SEP49H98CoKaggRYA62iFKLEGTCFqYQMgauSxYbyHSJuTFigXlCleLixTINeaUZt4hAjtkCaCFZDukeWZ3WU7NPaFZURuPmWIGAjNuslBqySoLEZgzh7pLkGxgFYVROsWKifMoQS9WgqRyaKqDZJafLRq8NU8bv1QcO8WVVR3PtC9D4Khhf_WX8Luk4e7X6YxhSEt4lR98GVGFNzhUml44bKEn4wX_0fUjW3Xya1zFHZHUxezPHZA3eF8_zWc-7Iz6vP0c9_1PhF69X5H0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fbxQhEJ5oNbE--LONp1V58NE9l112gSfTXtvUWE8f2qRvhB2gMTlvTe9O_30Hll4uadrEtw2BMMwwCwPM9wF8KLugHJdtgbYLhZANFrTLV0UpPXcWPW-VTWQTcjpVFxf6R05WT7kw3vv0-MyP42e6y3c9ruJRGXk4pxlTyfvwoBGiKod0rfWRSuSQ0I3M2EK81J_2JxMaxjhShI_rCJUX0R831p8E0595VW78jNMKc_z0P2V7Bk_yVpLtD7Z_Dvf8_AU83gAYfAmfzxee9YEdzRf-VzfzLMOpXrJlzw59vEBgB6tIkcK-05wOs_4vS6_yMnL3DpwfH51NTopMmVAgBWrLog6yk0KF1rdKlyhtx0uPwnYUQIfQUjDhavJwKrPYOMtlII01FFKgVZo3WO_C1ryf-1fAROu8pRXUoUIhg-i0ReE0amrGXbAjqK4VaTBLFWktZibFFaU2g_ZN1L7J2h_Bx3Wj3wOcxt3VD6KF1lUjFnYqINWb7FqmqUkaUUsauRYWpVYa264MnAaMkocR7ERzbfQ3WGoEe9cGN9lxF4Yi0AggVFXy9S3N3sOjk7Nvp-b0y_TrG9iO4g5HMnuwtbxa-bfwEP8sfy6u3qXZ-Q_t3eJ9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Ensemble+Learning+to+Detect+Buffer+Overflow+Exploitation&rft.jtitle=IEEE+access&rft.au=Youssef%2C+Ayman&rft.au=Abdelrazek%2C+Mohamed&rft.au=Karmakar%2C+Chandan&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=52009&rft.epage=52025&rft_id=info:doi/10.1109%2FACCESS.2023.3279280&rft.externalDocID=10131927 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |