MMGANGuard: A Robust Approach for Detecting Fake Images Generated by GANs Using Multi-Model Techniques

Recent advances in Generative Adversarial Networks (GANs) have produced synthetic images with high visual fidelity, making them nearly indistinguishable from human-created images. These synthetic images referred to as deepfakes, have become a major source of misinformation due to social media. Techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 104153 - 104164
Hauptverfasser: Ali Raza, Syed, Habib, Usman, Usman, Muhammad, Ashraf Cheema, Adeel, Sajid Khan, Muhammad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!