Assessing physical activity and functional fitness level using convolutional neural networks

Older adults are related to a reduction in physical functionality, as a result of a musculoskeletal system degeneration. In that way, physical exercise has been stated as a suitable intervention to prevent such health problems. Therefore, an adequate assessment of the physical activity and functiona...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Knowledge-based systems Ročník 185; s. 104939
Hlavní autori: Galán-Mercant, Alejandro, Ortiz, Andrés, Herrera-Viedma, Enrique, Tomas, Maria Teresa, Fernandes, Beatriz, Moral-Munoz, Jose A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.12.2019
Elsevier Science Ltd
Predmet:
ISSN:0950-7051, 1872-7409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Older adults are related to a reduction in physical functionality, as a result of a musculoskeletal system degeneration. In that way, physical exercise has been stated as a suitable intervention to prevent such health problems. Therefore, an adequate assessment of the physical activity and functional fitness levels is needed to plan the individualized intervention. A broad test used to assess the functional fitness level is the 6-minutes walk test (6MWT). It has been previously measured using accelerometer sensors. In views of this background, the main aim of the present study is to use deep learning to extract automatically and to predict the physical activity and functional fitness levels of the older adults through the acceleration signals recorded by a smartphone during the 6MWT. A total of 17 participants were recruited. Anthropometric measurements (weight, height, and body mass index), physical activity, and functional fitness levels from each participant were recorded. Consecutively, two deep learning-based methods were applied to determine the prediction. According to the results, the proposed method can predict physical activity and functional fitness levels with high accuracy, even using only one cycle. Thus, the approach described in the present work could be implemented in future mobile health systems to identify the physical activity profile of older adults.
AbstractList Older adults are related to a reduction in physical functionality, as a result of a musculoskeletal system degeneration. In that way, physical exercise has been stated as a suitable intervention to prevent such health problems. Therefore, an adequate assessment of the physical activity and functional fitness levels is needed to plan the individualized intervention. A broad test used to assess the functional fitness level is the 6-minutes walk test (6MWT). It has been previously measured using accelerometer sensors. In views of this background, the main aim of the present study is to use deep learning to extract automatically and to predict the physical activity and functional fitness levels of the older adults through the acceleration signals recorded by a smartphone during the 6MWT. A total of 17 participants were recruited. Anthropometric measurements (weight, height, and body mass index), physical activity, and functional fitness levels from each participant were recorded. Consecutively, two deep learning-based methods were applied to determine the prediction. According to the results, the proposed method can predict physical activity and functional fitness levels with high accuracy, even using only one cycle. Thus, the approach described in the present work could be implemented in future mobile health systems to identify the physical activity profile of older adults.
ArticleNumber 104939
Author Ortiz, Andrés
Galán-Mercant, Alejandro
Herrera-Viedma, Enrique
Fernandes, Beatriz
Moral-Munoz, Jose A.
Tomas, Maria Teresa
Author_xml – sequence: 1
  givenname: Alejandro
  surname: Galán-Mercant
  fullname: Galán-Mercant, Alejandro
  email: alejandro.galan@uca.es
  organization: Department of Nursing and Physiotherapy, Universidad de Cádiz, Cádiz, Spain
– sequence: 2
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  email: aortiz@ic.uma.es
  organization: Communications Engineering Department, University of Málaga, Málaga, Spain
– sequence: 3
  givenname: Enrique
  surname: Herrera-Viedma
  fullname: Herrera-Viedma, Enrique
  email: viedma@decsai.ugr.es
  organization: Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), Spain
– sequence: 4
  givenname: Maria Teresa
  surname: Tomas
  fullname: Tomas, Maria Teresa
  email: teresa.tomas@estesl.ipl.pt
  organization: Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal
– sequence: 5
  givenname: Beatriz
  surname: Fernandes
  fullname: Fernandes, Beatriz
  email: beatriz.fernandes@estesl.ipl.pt
  organization: Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Instituto Politécnico de Lisboa, Lisboa, Portugal
– sequence: 6
  givenname: Jose A.
  surname: Moral-Munoz
  fullname: Moral-Munoz, Jose A.
  email: joseantonio.moral@uca.es
  organization: Department of Nursing and Physiotherapy, Universidad de Cádiz, Cádiz, Spain
BookMark eNqFkE1LxDAQhoOs4O7qP_BQ8Nw16VcSD8Ky-AULXvQmhDRNNd2arEla6b833e7Jg56GGZ5nmHkXYKaNlgBcIrhCEBXXzWqnjRvcKoGIhlFGU3oC5ojgJMYZpDMwhzSHMYY5OgML5xoIYZIgMgdva-ekc0q_R_uPwSnB24gLr3rlh4jrKqo7HVqjw7xWXgc2amUv26g7SMLo3rTdkdCys4fiv43duXNwWvPWyYtjXYLX-7uXzWO8fX542qy3sQjH-TgtM1xXCBFCEphLCrO8KiThhKZFiau6gJgXvKIwzXhOS5HyvJSckyIgaSmydAmupr17a7466TxrTGfDQY4lKcIEY5yNVDZRwhrnrKzZ3qpPbgeGIBtzZA2bcmRjjmzKMWg3vzShPB8f9par9j_5dpJleL9X0jInlNRCVspK4Vll1N8LfgA63pWI
CitedBy_id crossref_primary_10_1111_bjet_13445
crossref_primary_10_1080_10447318_2021_1926115
crossref_primary_10_7717_peerj_cs_2854
crossref_primary_10_1016_j_knosys_2022_109929
crossref_primary_10_3390_s20092660
crossref_primary_10_1002_widm_1557
crossref_primary_10_1016_j_comnet_2021_107859
crossref_primary_10_3390_s21092983
crossref_primary_10_3390_s24134203
crossref_primary_10_1016_j_knosys_2021_106970
Cites_doi 10.1016/j.neuroimage.2012.01.055
10.1371/journal.pone.0138102
10.1016/j.bone.2017.01.024
10.1016/j.jamda.2015.12.016
10.3390/s150613159
10.1186/s12877-018-0793-4
10.1080/02640414.2017.1409855
10.1007/s40520-016-0709-0
10.1016/S0031-3203(03)00175-4
10.1093/ageing/afv064
10.4108/icst.mobicase.2014.257786
10.1109/34.667881
10.1016/S0140-6736(12)62167-9
10.1109/CVPR.2016.319
10.1016/j.gaitpost.2015.06.008
10.1136/bjsports-2015-095947
10.1016/j.cmpb.2012.04.004
10.1371/journal.pone.0155984
10.1016/j.compbiomed.2017.04.009
10.1034/j.1399-3003.1999.14b06.x
10.1016/j.rmed.2018.02.016
10.1016/j.jamda.2015.02.004
10.1088/0967-3334/37/3/442
10.3390/s18041055
10.1007/s10916-018-0970-1
10.1186/1756-0500-7-100
10.1089/rej.2017.1921
10.1016/j.procs.2015.07.425
10.1186/s12938-018-0488-2
10.1561/2200000006
10.1007/s10654-017-0312-5
10.1186/1475-925X-13-156
10.1038/nature14539
10.1016/j.inffus.2017.10.006
10.1109/PIC.2010.5687572
10.2196/10718
10.3390/s17061321
10.1142/S0129065716500258
10.1164/ajrccm.166.1.at1102
10.1145/1922649.1922653
10.1007/s10439-018-2104-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 1, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 1, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.104939
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_104939
S0950705119303806
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-3b47fd11888205e9045d6e8a8936b7df607a6ad9034a59bc3a5beaa868a83bc43
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496871800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:50:35 EST 2025
Sat Nov 29 07:11:20 EST 2025
Tue Nov 18 21:34:46 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Inertial signal
Deep Convolutional Autoencoder/sep Convolutional Network
Physical activity
Functional fitness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-3b47fd11888205e9045d6e8a8936b7df607a6ad9034a59bc3a5beaa868a83bc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://hdl.handle.net/10630/28103
PQID 2317877744
PQPubID 2035257
ParticipantIDs proquest_journals_2317877744
crossref_primary_10_1016_j_knosys_2019_104939
crossref_citationtrail_10_1016_j_knosys_2019_104939
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_104939
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References W. Ross, M. Hebbelinck, R. Faulkner, in: Charles C. Thomas, Kinanthropometry terminology and landmarks physical fitness assessment. principles, practice and application Springfield, Illinois, 1978, pp. 44–50.
Cesari, Prince, Thiyagarajan, De Carvalho, Bernabei, Chan, Gutierrez-Robledo, Michel, Morley, Ong (b3) 2016; 17
Bullo, Gobbo, Vendramin, Duregon, Cugusi, Di Blasio, Bocalini, Zaccaria, Bergamin, Ermolao (b7) 2018; 21
American College of Sports Medicine (b39) 2013
Gaikwad, Bobade, Jadhav, Deokate (b14) 2016; 6
Zhang, Yang, Chen, Li (b31) 2018; 42
LeCun, Bengio, Hinton (b49) 2015; 521
Cho, Yoon (b34) 2018; 18
Ayachi, Nguyen, Lavigne-Pelletier, Goubault, Boissy, Duval (b18) 2016; 37
Drover, Howcroft, Kofman, Lemaire (b27) 2017; 17
van der Maaten, Hinton (b52) 2008; 9
Karinkanta, Kannus, Uusi-Rasi, Heinonen, Sievänen (b8) 2015; 44
Kittler, Hatef, Duin, Matas (b53) 1998; 20
Lockhart, Songra, Zhang, Wu (b19) 2013; 49
Galán-Mercant, Cuesta-Vargas (b42) 2014; 7
F. Chollet, et al. 2015, Keras
Choi, Ahn, Kim, Won (b2) 2015; 16
Liu, Zhang, Shen (b54) 2012; 60
Salazar, de Sola, Failde, Moral-Munoz (b15) 2018; 6
Burton, Hill, Lautenschlager, Thøgersen-Ntoumani, Lewin, Boyle, Howie (b21) 2018; 18
Bengio (b30) 2009; 2
Simonyan, Vedaldi, Zisserman (b58) 2013
Kim, Pang, Je, Kim, Bang (b55) 2003; 36
M. Zeng, L.T. Nguyen, B. Yu, O.J. Mengshoel, J. Zhu, P. Wu, J. Zhang, Convolutional neural networks for human activity recognition using mobile sensors, in: 6th International Conference on Mobile Computing, Applications and Services, 2014, pp. 197–205.
.
Vervoort, Vuillerme, Kosse, Hortobágyi, Lamoth (b29) 2016; 11
Galán-Mercant, Barón-López, Labajos-Manzanares, Cuesta-Vargas (b43) 2014; 13
Aggarwal, Ryoo (b17) 2011; 43
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921–2929.
Krizhevsky, Sutskever, Hinton (b45) 2012
Similä, Immonen, Ermes (b28) 2017; 85
Hong, Cheng, Zhu, Zhu, Li, Zhang, Zheng, Du, Tang, Xue (b5) 2015; 10
Wang, Chen, Hao, Peng, Hu (b33) 2018
Lima, de Andrade, Campos, Brandão, Mourato, de Britto (b11) 2018; 137
Galán-Mercant, Moral-Muñoz, Ortiz, Herrera-Viedma, Tomás (b20) 2018
Z. He, Activity recognition from accelerometer signals based on Wavelet-AR model, in: 2010 IEEE International Conference on Progress in Informatics and Computing, vol. 1, 2010, pp. 499–502.
Klambauer, Unterthiner, Mayr, Hochreiter (b51) 2017
Lagerros, Hantikainen, Michaëlsson, Ye, Adami, Bellocco (b9) 2017; 32
Ioffe, Szegedy (b48) 2015
Ortiz, Murcia, Munilla, Górriz, Ramírez (b47) 2018
Yang, Zheng, Wang, Mcclean, Newell (b23) 2012; 108
Moral-Munoz, Esteban-Moreno, Herrera-Viedma, Cobo, Pérez (b16) 2018; 42
Rikli, Jones (b40) 2013
Banos, Moral-Munoz, Diaz-Reyes, Arroyo-Morales, Damas, Herrera-Viedma, Hong, Lee, Pomares, Rojas, Villalonga (b13) 2015; 15
Clegg, Young, Iliffe, Rikkert, Rockwood (b1) 2013; 381
P. Baldi, Autoencoders, unsupervised learning and deep architectures, in: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, UTLW’11, JMLR.org, vol. 27, 2011, pp. 37–50.
Sabour, Frosst, Hinton (b46) 2017
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (b56) 2015
Curtis, Moon, Harvey, Cooper (b4) 2017; 104
Troosters, Gosselink, Decramer (b41) 1999; 14
Bertoli, Cereatti, Trojaniello, Avanzino, Pelosin, Del Din, Rochester, Ginis, Bekkers, Mirelman (b24) 2018; 17
Rovini, Maremmani, Moschetti, Esposito, Cavallo (b26) 2018; 46
Duncan, Wunderlich, Zhao, Faulkner (b22) 2018; 36
Montoye, Moore, Bowles, Korycinski, Pfeiffer (b12) 2018; 52
Trojaniello, Ravaschio, Hausdorff, Cereatti (b25) 2015; 42
Goodfellow, Bengio, Courville (b50) 2016
Vishwakarma, Rawat, Kapoor (b36) 2015; 57
Cruz-Jentoft, Kiesswetter, Drey, Sieber (b6) 2017; 29
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (b10) 2002; 166
Ortiz, Munilla, Górriz, Ramírez (b32) 2016; 26
Galán-Mercant (10.1016/j.knosys.2019.104939_b20) 2018
Lagerros (10.1016/j.knosys.2019.104939_b9) 2017; 32
Yang (10.1016/j.knosys.2019.104939_b23) 2012; 108
Trojaniello (10.1016/j.knosys.2019.104939_b25) 2015; 42
Vervoort (10.1016/j.knosys.2019.104939_b29) 2016; 11
Goodfellow (10.1016/j.knosys.2019.104939_b50) 2016
Clegg (10.1016/j.knosys.2019.104939_b1) 2013; 381
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (10.1016/j.knosys.2019.104939_b10) 2002; 166
Kim (10.1016/j.knosys.2019.104939_b55) 2003; 36
Duncan (10.1016/j.knosys.2019.104939_b22) 2018; 36
Drover (10.1016/j.knosys.2019.104939_b27) 2017; 17
Moral-Munoz (10.1016/j.knosys.2019.104939_b16) 2018; 42
LeCun (10.1016/j.knosys.2019.104939_b49) 2015; 521
Aggarwal (10.1016/j.knosys.2019.104939_b17) 2011; 43
Salazar (10.1016/j.knosys.2019.104939_b15) 2018; 6
Banos (10.1016/j.knosys.2019.104939_b13) 2015; 15
10.1016/j.knosys.2019.104939_b38
van der Maaten (10.1016/j.knosys.2019.104939_b52) 2008; 9
10.1016/j.knosys.2019.104939_b37
Kittler (10.1016/j.knosys.2019.104939_b53) 1998; 20
10.1016/j.knosys.2019.104939_b35
Gaikwad (10.1016/j.knosys.2019.104939_b14) 2016; 6
Rovini (10.1016/j.knosys.2019.104939_b26) 2018; 46
Wang (10.1016/j.knosys.2019.104939_b33) 2018
Troosters (10.1016/j.knosys.2019.104939_b41) 1999; 14
Hong (10.1016/j.knosys.2019.104939_b5) 2015; 10
Abadi (10.1016/j.knosys.2019.104939_b56) 2015
Simonyan (10.1016/j.knosys.2019.104939_b58) 2013
Klambauer (10.1016/j.knosys.2019.104939_b51) 2017
Galán-Mercant (10.1016/j.knosys.2019.104939_b42) 2014; 7
Montoye (10.1016/j.knosys.2019.104939_b12) 2018; 52
Choi (10.1016/j.knosys.2019.104939_b2) 2015; 16
Bullo (10.1016/j.knosys.2019.104939_b7) 2018; 21
Lockhart (10.1016/j.knosys.2019.104939_b19) 2013; 49
Cesari (10.1016/j.knosys.2019.104939_b3) 2016; 17
Vishwakarma (10.1016/j.knosys.2019.104939_b36) 2015; 57
Liu (10.1016/j.knosys.2019.104939_b54) 2012; 60
Cho (10.1016/j.knosys.2019.104939_b34) 2018; 18
10.1016/j.knosys.2019.104939_b44
Krizhevsky (10.1016/j.knosys.2019.104939_b45) 2012
Ioffe (10.1016/j.knosys.2019.104939_b48) 2015
Bertoli (10.1016/j.knosys.2019.104939_b24) 2018; 17
Curtis (10.1016/j.knosys.2019.104939_b4) 2017; 104
Cruz-Jentoft (10.1016/j.knosys.2019.104939_b6) 2017; 29
Similä (10.1016/j.knosys.2019.104939_b28) 2017; 85
Zhang (10.1016/j.knosys.2019.104939_b31) 2018; 42
Bengio (10.1016/j.knosys.2019.104939_b30) 2009; 2
Ortiz (10.1016/j.knosys.2019.104939_b47) 2018
Rikli (10.1016/j.knosys.2019.104939_b40) 2013
Sabour (10.1016/j.knosys.2019.104939_b46) 2017
10.1016/j.knosys.2019.104939_b59
10.1016/j.knosys.2019.104939_b57
Ortiz (10.1016/j.knosys.2019.104939_b32) 2016; 26
American College of Sports Medicine (10.1016/j.knosys.2019.104939_b39) 2013
Karinkanta (10.1016/j.knosys.2019.104939_b8) 2015; 44
Lima (10.1016/j.knosys.2019.104939_b11) 2018; 137
Ayachi (10.1016/j.knosys.2019.104939_b18) 2016; 37
Galán-Mercant (10.1016/j.knosys.2019.104939_b43) 2014; 13
Burton (10.1016/j.knosys.2019.104939_b21) 2018; 18
References_xml – reference: Z. He, Activity recognition from accelerometer signals based on Wavelet-AR model, in: 2010 IEEE International Conference on Progress in Informatics and Computing, vol. 1, 2010, pp. 499–502.
– volume: 10
  year: 2015
  ident: b5
  article-title: Prevalence of sarcopenia and its relationship with sites of fragility fractures in elderly chinese men and women
  publication-title: PLoS ONE
– start-page: 971
  year: 2017
  end-page: 980
  ident: b51
  article-title: Self-normalizing neural networks
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– volume: 20
  start-page: 226
  year: 1998
  end-page: 239
  ident: b53
  article-title: On combining classifiers
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: b40
  article-title: Senior Fitness Test Manual
– volume: 7
  start-page: 100
  year: 2014
  ident: b42
  article-title: Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks
  publication-title: BMC Res. Notes
– volume: 18
  year: 2018
  ident: b34
  article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening
  publication-title: Sensors
– year: 2015
  ident: b56
  article-title: Tensorflow: Large-scale machine learning on heterogeneous systems
– start-page: 954
  year: 2018
  end-page: 966
  ident: b20
  article-title: Predicting physical activity and functional fitness levels through inertial signals and EMD-based features in older adults
  publication-title: New Trends in Intelligent Software Methodologies, Tools and Techniques
– volume: 85
  start-page: 25
  year: 2017
  end-page: 32
  ident: b28
  article-title: Accelerometry-based assessment and detection of early signs of balance deficits
  publication-title: Comput. Biol. Med.
– volume: 29
  start-page: 43
  year: 2017
  end-page: 48
  ident: b6
  article-title: Nutrition, frailty, and sarcopenia
  publication-title: Aging Clin. Exp. Res.
– year: 2018
  ident: b47
  article-title: Label aided deep ranking for the automatic diagnosis of parkinsonian syndromes
  publication-title: Neurocomputing
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: b30
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 21
  start-page: 141
  year: 2018
  end-page: 161
  ident: b7
  article-title: Nordic walking Can be incorporated in the exercise prescription to increase aerobic Capacity, strength, and quality of life for elderly: A systematic review and meta-analysis
  publication-title: Rejuvenation Res.
– volume: 49
  start-page: 224
  year: 2013
  end-page: 233
  ident: b19
  article-title: Wavelet based automated postural event detection and activity classification with single IMU
  publication-title: Biomed. Sci. Instrum.
– year: 2013
  ident: b58
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b45
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Vol. 1
– volume: 32
  start-page: 983
  year: 2017
  end-page: 991
  ident: b9
  article-title: Physical activity and the risk of hip fracture in the elderly: a prospective cohort study
  publication-title: Eur. J. Epidemiol.
– volume: 137
  start-page: 83
  year: 2018
  end-page: 88
  ident: b11
  article-title: Six-minute walk test as a determinant of the functional capacity of children and adolescents with cystic fibrosis: A systematic review
  publication-title: Respir. Med.
– volume: 18
  start-page: 103
  year: 2018
  ident: b21
  article-title: Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people
  publication-title: BMC Geriatrics
– volume: 13
  start-page: 156
  year: 2014
  ident: b43
  article-title: Reliability and criterion-related validity with a smartphone used in timed-up-and-go test
  publication-title: Biomed. Eng. Online
– reference: B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2921–2929.
– year: 2013
  ident: b39
  article-title: ACSM’s Health-Related Physical Fitness Assessment Manual
– volume: 46
  start-page: 2057
  year: 2018
  end-page: 2068
  ident: b26
  article-title: Comparative motor pre-clinical assessment in Parkinson’s disease using supervised machine learning approaches
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 1695
  year: 2018
  end-page: 1704
  ident: b22
  article-title: Walk this way: validity evidence of iphone health application step count in laboratory and free-living conditions
  publication-title: J. Sports Sci.
– volume: 57
  start-page: 630
  year: 2015
  end-page: 636
  ident: b36
  article-title: Human activity recognition using gabor wavelet transform and ridgelet transform
  publication-title: Procedia Comput. Sci.
– volume: 42
  start-page: 146
  year: 2018
  end-page: 157
  ident: b31
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
– reference: P. Baldi, Autoencoders, unsupervised learning and deep architectures, in: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, UTLW’11, JMLR.org, vol. 27, 2011, pp. 37–50.
– volume: 43
  start-page: 16:1
  year: 2011
  end-page: 16:43
  ident: b17
  article-title: Human activity analysis: A review
  publication-title: ACM Comput. Surv.
– volume: 11
  year: 2016
  ident: b29
  article-title: Multivariate analyses and classification of inertial sensor data to identify aging effects on the timed-up-and-go test
  publication-title: PLoS ONE
– reference: M. Zeng, L.T. Nguyen, B. Yu, O.J. Mengshoel, J. Zhu, P. Wu, J. Zhang, Convolutional neural networks for human activity recognition using mobile sensors, in: 6th International Conference on Mobile Computing, Applications and Services, 2014, pp. 197–205.
– volume: 44
  start-page: 784
  year: 2015
  end-page: 789
  ident: b8
  article-title: Combined resistance and balance-jumping exercise reduces older women’s injurious falls and fractures: 5-year follow-up study
  publication-title: Age Ageing
– volume: 6
  start-page: 4569
  year: 2016
  end-page: 4571
  ident: b14
  article-title: Human mobility change of state detection using a smartphone based on accelerometer sensor
  publication-title: Int. J. Eng. Sci. Comput.
– volume: 37
  start-page: 442
  year: 2016
  ident: b18
  article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs)
  publication-title: Physiol. Meas.
– volume: 166
  start-page: 111
  year: 2002
  end-page: 117
  ident: b10
  article-title: ATS statement: guidelines for the six-minute walk test
  publication-title: Am. J. Respir. Crit. Care Med.
– reference: F. Chollet, et al. 2015, Keras,
– start-page: 448
  year: 2015
  end-page: 456
  ident: b48
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Vol. 37
– volume: 26
  year: 2016
  ident: b32
  article-title: Ensembles of deep learning architectures for the early Diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– volume: 42
  start-page: 119
  year: 2018
  ident: b16
  article-title: Smartphone applications to perform body balance assessment: a standardized review
  publication-title: J. Med. Syst.
– volume: 52
  start-page: 1507
  year: 2018
  end-page: 1516
  ident: b12
  article-title: Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors
  publication-title: Br. J. Sports Med.
– volume: 17
  start-page: 58
  year: 2018
  ident: b24
  article-title: Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults
  publication-title: Biomed. Eng. Online
– volume: 17
  start-page: 188
  year: 2016
  end-page: 192
  ident: b3
  article-title: Frailty: an emerging public health priority
  publication-title: J. Am. Med. Directors Assoc.
– volume: 17
  start-page: 1321
  year: 2017
  ident: b27
  article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features
  publication-title: Sensors
– volume: 14
  start-page: 270
  year: 1999
  end-page: 274
  ident: b41
  article-title: Six minute walking distance in healthy elderly subjects
  publication-title: Eur. Respir. J.
– volume: 381
  start-page: 752
  year: 2013
  end-page: 762
  ident: b1
  article-title: Frailty in elderly people
  publication-title: Lancet
– volume: 104
  start-page: 29
  year: 2017
  end-page: 38
  ident: b4
  article-title: The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide
  publication-title: Bone
– volume: 16
  start-page: 548
  year: 2015
  end-page: 550
  ident: b2
  article-title: Global prevalence of physical frailty by fried’s criteria in community-dwelling elderly with national population-based surveys
  publication-title: J. Am. Med. Directors Assoc.
– volume: 36
  start-page: 2757
  year: 2003
  end-page: 2767
  ident: b55
  article-title: Constructing support vector machine ensemble
  publication-title: Pattern Recognit.
– reference: .
– year: 2016
  ident: b50
  article-title: Deep Learning
– volume: 15
  start-page: 13159
  year: 2015
  end-page: 13183
  ident: b13
  article-title: MDurance: A novel mobile health system to support trunk endurance assessment
  publication-title: Sensors
– volume: 42
  start-page: 310
  year: 2015
  end-page: 316
  ident: b25
  article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects
  publication-title: Gait Posture
– reference: W. Ross, M. Hebbelinck, R. Faulkner, in: Charles C. Thomas, Kinanthropometry terminology and landmarks physical fitness assessment. principles, practice and application Springfield, Illinois, 1978, pp. 44–50.
– volume: 521
  year: 2015
  ident: b49
  article-title: Deep learning
  publication-title: Nature
– volume: 60
  start-page: 1106
  year: 2012
  end-page: 1116
  ident: b54
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: NeuroImage
– year: 2017
  ident: b46
  article-title: Dynamic routing between capsules
  publication-title: NIPS
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b52
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 6
  year: 2018
  ident: b15
  article-title: Measuring the quality of mobile apps for the management of pain: systematic search and evaluation using the mobile app rating scale
  publication-title: JMIR mHealth uHealth
– volume: 108
  start-page: 715
  year: 2012
  end-page: 723
  ident: b23
  article-title: Igait: An interactive accelerometer based gait analysis system
  publication-title: Comput. Methods Programs Biomed.
– year: 2018
  ident: b33
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
– volume: 60
  start-page: 1106
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2019.104939_b54
  article-title: Ensemble sparse classification of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.055
– volume: 10
  issue: 9
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b5
  article-title: Prevalence of sarcopenia and its relationship with sites of fragility fractures in elderly chinese men and women
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138102
– volume: 104
  start-page: 29
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b4
  article-title: The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide
  publication-title: Bone
  doi: 10.1016/j.bone.2017.01.024
– volume: 17
  start-page: 188
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2019.104939_b3
  article-title: Frailty: an emerging public health priority
  publication-title: J. Am. Med. Directors Assoc.
  doi: 10.1016/j.jamda.2015.12.016
– volume: 15
  start-page: 13159
  issue: 6
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b13
  article-title: MDurance: A novel mobile health system to support trunk endurance assessment
  publication-title: Sensors
  doi: 10.3390/s150613159
– volume: 18
  start-page: 103
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b21
  article-title: Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people
  publication-title: BMC Geriatrics
  doi: 10.1186/s12877-018-0793-4
– year: 2015
  ident: 10.1016/j.knosys.2019.104939_b56
– volume: 36
  start-page: 1695
  issue: 15
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b22
  article-title: Walk this way: validity evidence of iphone health application step count in laboratory and free-living conditions
  publication-title: J. Sports Sci.
  doi: 10.1080/02640414.2017.1409855
– volume: 29
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b6
  article-title: Nutrition, frailty, and sarcopenia
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-016-0709-0
– volume: 36
  start-page: 2757
  year: 2003
  ident: 10.1016/j.knosys.2019.104939_b55
  article-title: Constructing support vector machine ensemble
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00175-4
– start-page: 971
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b51
  article-title: Self-normalizing neural networks
– year: 2013
  ident: 10.1016/j.knosys.2019.104939_b58
– volume: 44
  start-page: 784
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b8
  article-title: Combined resistance and balance-jumping exercise reduces older women’s injurious falls and fractures: 5-year follow-up study
  publication-title: Age Ageing
  doi: 10.1093/ageing/afv064
– ident: 10.1016/j.knosys.2019.104939_b35
  doi: 10.4108/icst.mobicase.2014.257786
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 10.1016/j.knosys.2019.104939_b53
  article-title: On combining classifiers
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.667881
– volume: 381
  start-page: 752
  issue: 9868
  year: 2013
  ident: 10.1016/j.knosys.2019.104939_b1
  article-title: Frailty in elderly people
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)62167-9
– ident: 10.1016/j.knosys.2019.104939_b59
  doi: 10.1109/CVPR.2016.319
– start-page: 448
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b48
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 42
  start-page: 310
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b25
  article-title: Comparative assessment of different methods for the estimation of gait temporal parameters using a single inertial sensor: application to elderly, post-stroke, Parkinson’s disease and Huntington’s disease subjects
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.06.008
– volume: 52
  start-page: 1507
  issue: 23
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b12
  article-title: Reporting accelerometer methods in physical activity intervention studies: a systematic review and recommendations for authors
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2015-095947
– ident: 10.1016/j.knosys.2019.104939_b38
– volume: 108
  start-page: 715
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2019.104939_b23
  article-title: Igait: An interactive accelerometer based gait analysis system
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.04.004
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.knosys.2019.104939_b29
  article-title: Multivariate analyses and classification of inertial sensor data to identify aging effects on the timed-up-and-go test
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0155984
– ident: 10.1016/j.knosys.2019.104939_b44
– volume: 85
  start-page: 25
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b28
  article-title: Accelerometry-based assessment and detection of early signs of balance deficits
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.04.009
– volume: 14
  start-page: 270
  issue: 2
  year: 1999
  ident: 10.1016/j.knosys.2019.104939_b41
  article-title: Six minute walking distance in healthy elderly subjects
  publication-title: Eur. Respir. J.
  doi: 10.1034/j.1399-3003.1999.14b06.x
– volume: 137
  start-page: 83
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b11
  article-title: Six-minute walk test as a determinant of the functional capacity of children and adolescents with cystic fibrosis: A systematic review
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2018.02.016
– volume: 16
  start-page: 548
  issue: 7
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b2
  article-title: Global prevalence of physical frailty by fried’s criteria in community-dwelling elderly with national population-based surveys
  publication-title: J. Am. Med. Directors Assoc.
  doi: 10.1016/j.jamda.2015.02.004
– volume: 37
  start-page: 442
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2019.104939_b18
  article-title: Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs)
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/3/442
– volume: 18
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b34
  article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening
  publication-title: Sensors
  doi: 10.3390/s18041055
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.knosys.2019.104939_b52
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 42
  start-page: 119
  issue: 7
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b16
  article-title: Smartphone applications to perform body balance assessment: a standardized review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0970-1
– volume: 7
  start-page: 100
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2019.104939_b42
  article-title: Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks
  publication-title: BMC Res. Notes
  doi: 10.1186/1756-0500-7-100
– volume: 6
  start-page: 4569
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2019.104939_b14
  article-title: Human mobility change of state detection using a smartphone based on accelerometer sensor
  publication-title: Int. J. Eng. Sci. Comput.
– volume: 21
  start-page: 141
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b7
  article-title: Nordic walking Can be incorporated in the exercise prescription to increase aerobic Capacity, strength, and quality of life for elderly: A systematic review and meta-analysis
  publication-title: Rejuvenation Res.
  doi: 10.1089/rej.2017.1921
– start-page: 954
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b20
  article-title: Predicting physical activity and functional fitness levels through inertial signals and EMD-based features in older adults
– volume: 57
  start-page: 630
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b36
  article-title: Human activity recognition using gabor wavelet transform and ridgelet transform
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.07.425
– volume: 17
  start-page: 58
  issue: 1
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b24
  article-title: Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0488-2
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.knosys.2019.104939_b30
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 32
  start-page: 983
  issue: 11
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b9
  article-title: Physical activity and the risk of hip fracture in the elderly: a prospective cohort study
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-017-0312-5
– volume: 13
  start-page: 156
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2019.104939_b43
  article-title: Reliability and criterion-related validity with a smartphone used in timed-up-and-go test
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-156
– year: 2018
  ident: 10.1016/j.knosys.2019.104939_b33
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
– volume: 521
  issue: 7553
  year: 2015
  ident: 10.1016/j.knosys.2019.104939_b49
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 42
  start-page: 146
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b31
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– ident: 10.1016/j.knosys.2019.104939_b37
  doi: 10.1109/PIC.2010.5687572
– year: 2013
  ident: 10.1016/j.knosys.2019.104939_b39
– year: 2013
  ident: 10.1016/j.knosys.2019.104939_b40
– volume: 49
  start-page: 224
  year: 2013
  ident: 10.1016/j.knosys.2019.104939_b19
  article-title: Wavelet based automated postural event detection and activity classification with single IMU
  publication-title: Biomed. Sci. Instrum.
– year: 2018
  ident: 10.1016/j.knosys.2019.104939_b47
  article-title: Label aided deep ranking for the automatic diagnosis of parkinsonian syndromes
  publication-title: Neurocomputing
– volume: 6
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b15
  article-title: Measuring the quality of mobile apps for the management of pain: systematic search and evaluation using the mobile app rating scale
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/10718
– start-page: 1097
  year: 2012
  ident: 10.1016/j.knosys.2019.104939_b45
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 17
  start-page: 1321
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2019.104939_b27
  article-title: Faller classification in older adults using wearable sensors based on turn and straight-walking accelerometer-based features
  publication-title: Sensors
  doi: 10.3390/s17061321
– volume: 26
  issue: 07
  year: 2016
  ident: 10.1016/j.knosys.2019.104939_b32
  article-title: Ensembles of deep learning architectures for the early Diagnosis of the Alzheimer’s disease
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500258
– year: 2017
  ident: 10.1016/j.knosys.2019.104939_b46
  article-title: Dynamic routing between capsules
– volume: 166
  start-page: 111
  year: 2002
  ident: 10.1016/j.knosys.2019.104939_b10
  article-title: ATS statement: guidelines for the six-minute walk test
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/ajrccm.166.1.at1102
– ident: 10.1016/j.knosys.2019.104939_b57
– year: 2016
  ident: 10.1016/j.knosys.2019.104939_b50
– volume: 43
  start-page: 16:1
  issue: 3
  year: 2011
  ident: 10.1016/j.knosys.2019.104939_b17
  article-title: Human activity analysis: A review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1922649.1922653
– volume: 46
  start-page: 2057
  issue: 12
  year: 2018
  ident: 10.1016/j.knosys.2019.104939_b26
  article-title: Comparative motor pre-clinical assessment in Parkinson’s disease using supervised machine learning approaches
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2104-9
SSID ssj0002218
Score 2.3280337
Snippet Older adults are related to a reduction in physical functionality, as a result of a musculoskeletal system degeneration. In that way, physical exercise has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104939
SubjectTerms Acceleration
Accelerometers
Adults
Anthropometry
Artificial neural networks
Body height
Body mass index
Body size
Body weight
Deep Convolutional Autoencoder/sep Convolutional Network
Deep learning
Degeneration
Exercise
Functional fitness
Health problems
Health services
Inertial signal
Intervention
Learning
Machine learning
Musculoskeletal system
Neural networks
Older people
Physical ability
Physical activity
Physical exercise
Physical fitness
Title Assessing physical activity and functional fitness level using convolutional neural networks
URI https://dx.doi.org/10.1016/j.knosys.2019.104939
https://www.proquest.com/docview/2317877744
Volume 185
WOSCitedRecordID wos000496871800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlgMXdkQX0BwQl2qQ4xl7PMcKpRRoAwcX5YA0GttjKSF1g5NGFX-Mv8ebzUnKUjhwcSLvmfflzffevAWhF6xMNIdplhgyTZgqIiJUxEkVs6RfA0hi7ppN8OEwG43Ex17ve8iFWU5502RXV2L2X0UN-0DYJnX2H8Td3RR2wHcQOmxB7LD9K8G7ZVybZB5kYJIXbI8I4yU3M5l3ANbjhdV0UxM5dHDpE3CbpX8_OMOUu7QfNlh8vk5l3wdvHDEzYeVrQncU_Y2a2kX4fkNOdWsE6PNpJsrUSOicu_ADvoXISrdq393iWLetbhX5BDT53JLcQdOOXZS4d42fu3y0U7D41UGuWz1X636MvrgWE9Il2ASdtopqct7KiPDI16bVTldnHIwDFolNZZ6sqeP-LycJ56-YvPrSXMDQmPA-YZa6hauqtFmTe_hBHp2dnMh8MMpfzr4S067MLOv73i230HbMEwHqdPvw7WD0riMBcWxdy917h6xNG1r484N_x4qu8QNLevL76K63VvChQ9kD1NPNQ3QvdALBfhAfoc8d6HAAHQ6gwyBvvAId9qDDFnTYgg5vgA470OEAusfo7GiQvz4mvm8HKUEaC0ILxusKLFew3qJEC7AaqlRnCqhxWvCqTiOuUlWJiDKViKKkKim0UlkKp9CiZPQJ2mouGv0UYcrqWBUwb2RUM1YnQoPFT-u6EHGpRJ3uIBrGTZa-qL3prTKVIXpxIt1oSzPa0o32DiLdVTNX1OWG83kQifTE1BFOCZC64cr9IEHpdQQcB85uynAytvvnw3vozuqfso-2Fu2lfoZul8vFeN4-95D7AY2BvOE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+physical+activity+and+functional+fitness+level+using+convolutional+neural+networks&rft.jtitle=Knowledge-based+systems&rft.au=Gal%C3%A1n-Mercant%2C+Alejandro&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Herrera-Viedma%2C+Enrique&rft.au=Tomas%2C+Maria+Teresa&rft.date=2019-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=185&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.104939&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon