Land Use and Land Cover Classification using River Formation Dynamics Algorithm with Deep Learning on Remote Sensing Images
Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC)...
Saved in:
| Published in: | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC) classification utilizing deep learning (DL) is a common and efficient manner in remote sensing and geospatial study. It is very important in land planning, environmental monitoring, mapping, and land management. But, one of the recent approaches is problems like vulnerability to noise interference, low classification accuracy, and worse generalization ability. DL approaches, mostly Convolutional Neural Networks (CNNs) revealed impressive performance in image recognition tasks, making them appropriate for LULC classification in RSIs. Therefore, this study introduces a novel Land Use and Land Cover Classification employing the River Formation Dynamics Algorithm with Deep Learning (LULCC-RFDADL) technique on RSIs. The main objective of the LULCC-RFDADL methodology is to recognize the diverse types of LC on RSIs. In the presented LULCC-RFDADL technique, the dense EfficientNet approach is applied for feature extraction. Furthermore, the hyperparameter tuning of the Dense EfficientNet method was implemented using the RFDA technique. For the classification process, the LULCC-RFDADL technique uses the Multi-Scale Convolutional Autoencoder (MSCAE) model. At last, the seeker optimization algorithm (SOA) has been exploited for the parameter choice of the MSCAE system. The achieved outcomes of the LULCC-RFDADL algorithm were examined on benchmark databases. The simulation values show the better result of the LULCC-RFDADL methods with other approaches in terms of different metrics. |
|---|---|
| AbstractList | Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority of RSI is high-resolution and contains wide and varied data, proper interpretation of RSIs is most important. Land use and land cover (LULC) classification utilizing deep learning (DL) is a common and efficient manner in remote sensing and geospatial study. It is very important in land planning, environmental monitoring, mapping, and land management. But, one of the recent approaches is problems like vulnerability to noise interference, low classification accuracy, and worse generalization ability. DL approaches, mostly Convolutional Neural Networks (CNNs) revealed impressive performance in image recognition tasks, making them appropriate for LULC classification in RSIs. Therefore, this study introduces a novel Land Use and Land Cover Classification employing the River Formation Dynamics Algorithm with Deep Learning (LULCC-RFDADL) technique on RSIs. The main objective of the LULCC-RFDADL methodology is to recognize the diverse types of LC on RSIs. In the presented LULCC-RFDADL technique, the dense EfficientNet approach is applied for feature extraction. Furthermore, the hyperparameter tuning of the Dense EfficientNet method was implemented using the RFDA technique. For the classification process, the LULCC-RFDADL technique uses the Multi-Scale Convolutional Autoencoder (MSCAE) model. At last, the seeker optimization algorithm (SOA) has been exploited for the parameter choice of the MSCAE system. The achieved outcomes of the LULCC-RFDADL algorithm were examined on benchmark databases. The simulation values show the better result of the LULCC-RFDADL methods with other approaches in terms of different metrics. |
| Author | Hamza, Manar Ahmed Alamgeer, Mohammad Aljebreen, Mohammed Mengash, Hanan Abdullah Alotaibi, Saud S. Salama, Ahmed S. |
| Author_xml | – sequence: 1 givenname: Mohammed surname: Aljebreen fullname: Aljebreen, Mohammed organization: Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh, Saudi Arabia – sequence: 2 givenname: Hanan Abdullah orcidid: 0000-0002-4103-2434 surname: Mengash fullname: Mengash, Hanan Abdullah organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 3 givenname: Mohammad orcidid: 0000-0003-2575-4493 surname: Alamgeer fullname: Alamgeer, Mohammad organization: Department of Information Systems, College of Science & Art at Mahayil, King Khalid University, Saudi Arabia – sequence: 4 givenname: Saud S. orcidid: 0000-0003-1082-513X surname: Alotaibi fullname: Alotaibi, Saud S. organization: Department of Information Systems, College of Computing and Information Systems, Umm Al-Qura University, Saudi Arabia – sequence: 5 givenname: Ahmed S. orcidid: 0000-0002-1066-8261 surname: Salama fullname: Salama, Ahmed S. organization: Department of Electrical Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt – sequence: 6 givenname: Manar Ahmed orcidid: 0000-0002-8743-1174 surname: Hamza fullname: Hamza, Manar Ahmed organization: Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, AlKharj, Saudi Arabia |
| BookMark | eNqFUU1v3CAQtapEaprkF7QHpJ53y4eN4bhyPrrSSpWyzRkBHm9Z2bAFb6uofz54HUVRLuXADI95b2Dep-LMBw9F8ZngJSFYfls1ze12u6SYsiVjpaSi-lBcUMLlglWMn73JPxbXKe1xXiJDVX1R_Nto36LHBGiKp0MT_kBETa9Tcp2zenTBo2Nyfoce3HR1F-IwozdPXg_OJrTqdyG68deA_uYd3QAc0AZ09BMrFz7AEEZAW_AnnfWgd5CuivNO9wmuX-Jl8Xh3-7P5vtj8uF83q83ClliOC2YwaStMTC2tqGUnuNW8LEvIaFcDMbyE1nRgBBOSYGYkJwSkMPmPxgrNLov1rNsGvVeH6AYdn1TQTp2AEHdKx9HZHpS2pqKVJbxtbUnBGiPr0rIWk67lNbZZ6-usdYjh9xHSqPbhGH1-vqKSCEwl5SRXsbnKxpBShO61K8FqMk3NpqnJNPViWmbJdyzrxtOgx6hd_x_ul5nrAOBNN1bnaVD2DHiHp9w |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3522197 crossref_primary_10_1109_JSTARS_2025_3586324 crossref_primary_10_1016_j_ecoinf_2025_103078 crossref_primary_10_1016_j_jag_2025_104839 crossref_primary_10_3390_su17198526 crossref_primary_10_1016_j_ecolind_2025_113776 crossref_primary_10_1007_s12665_024_11957_9 crossref_primary_10_1109_JSTARS_2024_3426950 crossref_primary_10_1061_JUPDDM_UPENG_5838 |
| Cites_doi | 10.1109/ACCESS.2020.3041873 10.1007/s12524-019-01064-9 10.1109/ACCESS.2021.3128607 10.1109/TCSVT.2022.3214430 10.1080/23729333.2023.2166252 10.1109/IHCSP56702.2023.10127126 10.3390/ijgi9040227 10.3390/rs12152495 10.3390/rs12071135 10.1145/3581783.3611744 10.1109/ACCESS.2023.3293108 10.1016/j.scitotenv.2022.153559 10.1109/TGRS.2023.3284671 10.3390/axioms11010034 10.3390/rs12122010 10.3390/mi14071417 10.3390/rs12020213 10.1109/ICRITO48877.2020.9197824 10.1016/j.rse.2019.111322 10.1109/ACCESS.2021.3052791 10.3390/app12115747 10.1038/s41598-023-30480-8 10.1109/LGRS.2023.3251652 10.3390/s21238083 10.1007/s12517-022-10246-8 10.1155/2023/8110588 10.1007/s00521-019-04349-9 10.1016/j.ecoinf.2021.101412 10.3390/jimaging9080153 10.3390/rs14194837 10.1080/17538947.2021.1980125 10.1016/j.ejrs.2023.04.005 10.1002/cpe.6143 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3349285 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_acb525c16ddc42ecbb974c3d01fd670c 10_1109_ACCESS_2023_3349285 10379612 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-3b01d501b79c879f86ca6444e1d5f7e1b64edbfeb8389103b9611e98b816bc8a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001150326900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:14 EDT 2025 Mon Jun 30 06:25:02 EDT 2025 Sat Nov 29 06:25:21 EST 2025 Tue Nov 18 20:56:27 EST 2025 Wed Aug 27 02:24:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-3b01d501b79c879f86ca6444e1d5f7e1b64edbfeb8389103b9611e98b816bc8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4103-2434 0000-0002-8743-1174 0000-0002-1066-8261 0000-0003-1082-513X 0000-0003-2575-4493 |
| OpenAccessLink | https://doaj.org/article/acb525c16ddc42ecbb974c3d01fd670c |
| PQID | 2918029261 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3349285 crossref_citationtrail_10_1109_ACCESS_2023_3349285 proquest_journals_2918029261 doaj_primary_oai_doaj_org_article_acb525c16ddc42ecbb974c3d01fd670c ieee_primary_10379612 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 Aidantausta (ref1) 2023 ref16 ref19 ref18 ref23 ref26 ref25 ref20 ref22 ref21 Jeyavathana (ref24) 2022; 2452 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref27 doi: 10.1109/ACCESS.2020.3041873 – ident: ref20 doi: 10.1007/s12524-019-01064-9 – ident: ref28 doi: 10.1109/ACCESS.2021.3128607 – ident: ref16 doi: 10.1109/TCSVT.2022.3214430 – ident: ref5 doi: 10.1080/23729333.2023.2166252 – ident: ref6 doi: 10.1109/IHCSP56702.2023.10127126 – ident: ref8 doi: 10.3390/ijgi9040227 – ident: ref4 doi: 10.3390/rs12152495 – ident: ref14 doi: 10.3390/rs12071135 – ident: ref17 doi: 10.1145/3581783.3611744 – ident: ref11 doi: 10.1109/ACCESS.2023.3293108 – ident: ref15 doi: 10.1016/j.scitotenv.2022.153559 – ident: ref3 doi: 10.1109/TGRS.2023.3284671 – ident: ref30 doi: 10.3390/axioms11010034 – ident: ref21 doi: 10.3390/rs12122010 – ident: ref33 doi: 10.3390/mi14071417 – ident: ref35 doi: 10.3390/rs12020213 – ident: ref7 doi: 10.1109/ICRITO48877.2020.9197824 – ident: ref22 doi: 10.1016/j.rse.2019.111322 – volume: 2452 issue: 1 year: 2022 ident: ref24 article-title: Land use and land cover classification using Landsat-8 multispectral remote sensing images and long short-term memory-recurrent neural network publication-title: AIP Conf. – ident: ref29 doi: 10.1109/ACCESS.2021.3052791 – ident: ref32 doi: 10.3390/app12115747 – ident: ref10 doi: 10.1038/s41598-023-30480-8 – ident: ref19 doi: 10.1109/LGRS.2023.3251652 – ident: ref13 doi: 10.3390/s21238083 – ident: ref2 doi: 10.1007/s12517-022-10246-8 – ident: ref31 doi: 10.1155/2023/8110588 – ident: ref26 doi: 10.1007/s00521-019-04349-9 – ident: ref25 doi: 10.1016/j.ecoinf.2021.101412 – ident: ref18 doi: 10.3390/jimaging9080153 – ident: ref36 doi: 10.3390/rs14194837 – ident: ref23 doi: 10.1080/17538947.2021.1980125 – ident: ref12 doi: 10.1016/j.ejrs.2023.04.005 – ident: ref9 doi: 10.1002/cpe.6143 – year: 2023 ident: ref1 article-title: Land use/land cover classification from satellite remote sensing images over urban areas in Sweden: An investigative multiclass, multimodal and spectral transformation, deep learning semantic image segmentation study |
| SSID | ssj0000816957 |
| Score | 2.3669229 |
| Snippet | Currently, remote sensing images (RSIs) are often exploited in the explanation of urban and rural areas, change recognition, and other domains. As the majority... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Classification Classification algorithms Deep learning Environmental monitoring Feature extraction Heuristic algorithms Land cover Land management Land use Land use classification Land use planning Machine learning Metaheuristics Remote sensing Remote sensing images Satellite images |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZg4gAHfg6tbCAfOJLOjhM7PpZuFUhoQoNJu1mx_VImbe3UdFz45_ee41aVJpA4JbFsxclnO34v730fYx_bUgVdlmid4O64qLpaFB5ELMA2UcdYkSMyiU2Ys7Pm8tJ-z8nqKRcGAFLwGYzpNP3Lj8twR66yY8pps5o0hR8bo4dkra1DhRQkbG0ys5AU9ngyneJDjEkgfKyIhY8Ek3e-PomkP6uqPFiK0_dl9uI_e_aSPc8bST4ZkH_FHsHiNXu2Qy_4hv351i4iv-iB0zFdTClikyclTIoRSrBwin2f83OK0OCzTTIjPxm06ns-uZ4vV1frXzecnLb8BOCWZ1rWOceK54BwA_9BofBY8vUGl6h-n13MTn9OvxRZbKEIaOKtC-WFjLWQ3tjQGNs1OrS4V6oASzsD0usKou_AN_RnUyiPjysRUY-v3YemVW_Z3mK5gAPGlW5VJaApVacrGUyrpY-NiZ1WweIKPGLlBgQXMhM5CWJcu2SRCOsG5Bwh5zJyI_Zp2-h2IOL4d_XPhO62KrFopwKEzeVJ6drg67IOEgdlqEoI3qN1FVQUsovaiDBi-wT1zv0GlEfsaDNYXJ7yvSstkelZtEjf_aXZIXuKXawGB84R21uv7uA9exJ-r6_61Yc0mu8BuMnybg priority: 102 providerName: IEEE |
| Title | Land Use and Land Cover Classification using River Formation Dynamics Algorithm with Deep Learning on Remote Sensing Images |
| URI | https://ieeexplore.ieee.org/document/10379612 https://www.proquest.com/docview/2918029261 https://doaj.org/article/acb525c16ddc42ecbb974c3d01fd670c |
| Volume | 12 |
| WOSCitedRecordID | wos001150326900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4kAPVXlUXQrIhx4J2HHix3FZWFGpRRUtKjcrfoQiwYI2C5dK_e3MOF4UqRK99OIolq3EM5Oxxxl_HyGfmlJ4WZYQncDquKjamhUuslBEo4MMocKNyEQ2oc7P9dWV-Tag-sKcsB4euBfcUeNdXdaeQ0dfldE7BytgLwLjbZCKefS-TJlBMJV8sObS1CrDDHFmjsaTCYzoENnCDwVC8iF78mAqSoj9mWLlL7-cJpvpO_I2rxLpuH-7DbISZ5vkzQA7cIv8_tLMAr3sIsVruplgOiZNNJeYAJRkTlNOAL3A9As6XZ5UpCc9EX1Hx7fX9_Obxa87-hNKehLjA82Yq9cUGl5E0GWk3zHPHWo-34H_6bbJ5fT0x-SsyEwKhYf4bVEIx3ioGXfKeK1Mq6VvYCFURahtVeROVjG4NjqNvy2ZcEZyDupyIEbndSPek9XZ_Sx-IFTIRlQs6lK0suJeNZK7oFVopfAG3OuIlEuhWp9hxpHt4tamcIMZ22vCoiZs1sSIHLx0euhRNl5vfozaemmKENmpAgzHZsOx_zKcEdlGXQ-eJxQMGwawu1S-zd9zZ0uDSHkGws2d__Hsj2QdxlP1Wzm7ZHUxf4x7ZM0_LW66-X4yZSi__jndTwcSnwFPJvg6 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLbQQAIO_ByiMMAHjqRzYseJj6Wj2kSp0Nik3azYfukmbe3UdFz453nPcatKCCROSSxbcfLZjt_Le9_H2MemkF4XBVonuDvOVFuKzIEIGZg66BAUOSKj2EQ1m9UXF-Z7SlaPuTAAEIPPYEin8V9-WPo7cpUdUk6b0aQpfL9UqhB9utbWpUIaEqasErdQLszhaDzGxxiSRPhQEg8fSSbvfH8iTX_SVfljMY5fmMnT_-zbM_YkbSX5qMf-ObsHixfs8Q7B4Ev2a9osAj_vgNMxXowpZpNHLUyKEorAcIp-n_NTitHgk006Iz_q1eo7PrqeL1dX68sbTm5bfgRwyxMx65xjxVNAwIH_oGB4LDm5wUWq22fnky9n4-MsyS1kHo28dSadyEMpclcZX1emrbVvcLekAEvbCnKnFQTXgqvp36aQDh83R0wdvnbn60a-YnuL5QJeMy51I5WAupCtVrmvGp27UFeh1dIbXIMHrNiAYH3iIidJjGsbbRJhbI-cJeRsQm7APm0b3fZUHP-u_pnQ3VYlHu1YgLDZNC1t411ZlD7HYelVAd45tK-8DCJvg66EH7B9gnrnfj3KA3awGSw2TfrOFobo9AzapG_-0uwDe3h89m1qpyezr2_ZI-yu6t05B2xvvbqDd-yB_7m-6lbv48j-DXV49bU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land+Use+and+Land+Cover+Classification+Using+River+Formation+Dynamics+Algorithm+With+Deep+Learning+on+Remote+Sensing+Images&rft.jtitle=IEEE+access&rft.au=Aljebreen%2C+Mohammed&rft.au=Hanan+Abdullah+Mengash&rft.au=Alamgeer%2C+Mohammad&rft.au=Alotaibi%2C+Saud+S&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=11147&rft_id=info:doi/10.1109%2FACCESS.2023.3349285&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |