Weighted Multi-view Clustering with Feature Selection

In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 53; pp. 25 - 35
Main Authors: Xu, Yu-Meng, Wang, Chang-Dong, Lai, Jian-Huang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2016
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method. •This paper proposes a new multi-view data clustering algorithm.•The new method considers both view weighting and feature weighting.•An EM-like method is designed to get the local optimum solution.•Extensive experiments have been conducted to show the effectiveness.
AbstractList In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method.
In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method. •This paper proposes a new multi-view data clustering algorithm.•The new method considers both view weighting and feature weighting.•An EM-like method is designed to get the local optimum solution.•Extensive experiments have been conducted to show the effectiveness.
Author Wang, Chang-Dong
Lai, Jian-Huang
Xu, Yu-Meng
Author_xml – sequence: 1
  givenname: Yu-Meng
  surname: Xu
  fullname: Xu, Yu-Meng
  email: yumengxu@hotmail.com
  organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou, PR China
– sequence: 2
  givenname: Chang-Dong
  surname: Wang
  fullname: Wang, Chang-Dong
  email: changdongwang@hotmail.com
  organization: School of Mobile Information Engineering, Sun Yat-sen University, Zhuhai, PR China
– sequence: 3
  givenname: Jian-Huang
  surname: Lai
  fullname: Lai, Jian-Huang
  email: stsljh@mail.sysu.edu.cn
  organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou, PR China
BookMark eNqFkLFOwzAURS1UJErhDxgysiT42XGdMCChigJSEQMgRst1XlpXaVJsh4q_x1WYGGB6w7vn6uqcklHbtUjIBdAMKEyvNtlOB9OtMkZBZMAySuURGUMheSogZyMyppRDyhnlJ-TU-w2lIONjTMQ72tU6YJU89U2w6afFfTJreh_Q2XaV7G1YJ3PUoXeYvGCDJtiuPSPHtW48nv_cCXmb373OHtLF8_3j7HaRmpyWIeWFNDVDobnIucBS6KrEablEXclpDULnlNUokQnJMU4yxlQ5R-C4rGomKz4hl0PvznUfPfqgttYbbBrdYtd7BQUtAEDwIkavh6hxnfcOa2Vs0IexwWnbKKDq4Ept1OBKHVwpYCq6inD-C945u9Xu6z_sZsAwOojmnPLGYmuwsi6KUlVn_y74Bmx_h70
CitedBy_id crossref_primary_10_1109_TNNLS_2019_2944851
crossref_primary_10_1016_j_ins_2023_119366
crossref_primary_10_1016_j_ipl_2019_01_015
crossref_primary_10_1016_j_knosys_2023_110816
crossref_primary_10_1016_j_patcog_2019_107101
crossref_primary_10_1016_j_patcog_2017_01_035
crossref_primary_10_1109_TCYB_2020_3025636
crossref_primary_10_1016_j_patrec_2021_08_008
crossref_primary_10_1007_s00521_023_08975_2
crossref_primary_10_1109_TNNLS_2020_3026686
crossref_primary_10_1016_j_inffus_2021_09_009
crossref_primary_10_1016_j_neucom_2025_129754
crossref_primary_10_20965_jaciii_2020_p0065
crossref_primary_10_1016_j_ins_2016_04_027
crossref_primary_10_1016_j_neucom_2018_12_043
crossref_primary_10_1016_j_neunet_2025_108035
crossref_primary_10_1109_TNNLS_2021_3104846
crossref_primary_10_1016_j_apm_2025_116299
crossref_primary_10_1109_TAI_2021_3065894
crossref_primary_10_1016_j_knosys_2019_105459
crossref_primary_10_3390_e25020371
crossref_primary_10_1016_j_ins_2022_07_093
crossref_primary_10_1016_j_patrec_2020_07_037
crossref_primary_10_1109_TFUZZ_2024_3416537
crossref_primary_10_1016_j_neunet_2018_08_011
crossref_primary_10_1016_j_neucom_2020_04_120
crossref_primary_10_1016_j_ins_2024_121860
crossref_primary_10_1016_j_engappai_2021_104480
crossref_primary_10_1007_s11063_018_9845_1
crossref_primary_10_1007_s12559_024_10392_z
crossref_primary_10_1109_ACCESS_2019_2905641
crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1016_j_jesit_2017_06_004
crossref_primary_10_1186_s12859_020_03810_0
crossref_primary_10_1007_s00521_020_04854_2
crossref_primary_10_1016_j_patcog_2023_109523
crossref_primary_10_1109_TSMC_2023_3260100
crossref_primary_10_1109_ACCESS_2019_2892175
crossref_primary_10_1109_TKDE_2024_3392209
crossref_primary_10_1007_s10044_020_00863_y
crossref_primary_10_1109_TBDATA_2024_3371357
crossref_primary_10_1186_s12859_020_03681_5
crossref_primary_10_1016_j_eswa_2023_122507
crossref_primary_10_1016_j_neucom_2016_12_102
crossref_primary_10_1016_j_ins_2024_121395
crossref_primary_10_1007_s10489_021_02405_3
crossref_primary_10_1016_j_patcog_2019_01_014
crossref_primary_10_1016_j_sigpro_2021_108362
crossref_primary_10_1016_j_neunet_2024_106197
crossref_primary_10_1016_j_eswa_2017_05_076
crossref_primary_10_1016_j_patcog_2020_107748
crossref_primary_10_1016_j_neucom_2018_05_072
crossref_primary_10_1109_TFUZZ_2021_3058572
crossref_primary_10_1016_j_neucom_2022_02_005
crossref_primary_10_1007_s11042_020_09617_8
crossref_primary_10_1007_s11042_016_4121_8
crossref_primary_10_1016_j_aci_2017_10_004
crossref_primary_10_1016_j_knosys_2020_106567
crossref_primary_10_1016_j_patcog_2019_05_004
crossref_primary_10_1016_j_csbj_2021_04_060
crossref_primary_10_1109_TCYB_2020_3035043
crossref_primary_10_1016_j_knosys_2018_03_009
crossref_primary_10_1016_j_neunet_2021_02_022
crossref_primary_10_1016_j_compchemeng_2025_109118
crossref_primary_10_1016_j_patcog_2021_108108
crossref_primary_10_1109_TPAMI_2024_3521022
crossref_primary_10_1016_j_neucom_2019_09_009
crossref_primary_10_1016_j_eswa_2018_12_053
crossref_primary_10_1109_ACCESS_2021_3057427
crossref_primary_10_1016_j_physa_2018_09_086
crossref_primary_10_1016_j_ins_2021_09_009
crossref_primary_10_1007_s00521_018_3654_3
crossref_primary_10_1109_ACCESS_2023_3243133
crossref_primary_10_1109_TNNLS_2024_3373532
crossref_primary_10_1007_s10462_023_10616_y
crossref_primary_10_1007_s13042_024_02280_7
crossref_primary_10_1016_j_knosys_2022_108250
crossref_primary_10_1016_j_knosys_2019_07_027
crossref_primary_10_1016_j_patcog_2018_11_007
crossref_primary_10_1016_j_patcog_2018_05_012
crossref_primary_10_1016_j_knosys_2019_105126
crossref_primary_10_1016_j_neucom_2023_126320
crossref_primary_10_1016_j_patcog_2020_107207
crossref_primary_10_20965_jaciii_2021_p0478
crossref_primary_10_1007_s00500_019_04572_5
crossref_primary_10_1109_TKDE_2020_3025759
crossref_primary_10_1007_s13042_021_01295_8
crossref_primary_10_1109_TKDE_2020_3035695
crossref_primary_10_1016_j_ipm_2024_103735
crossref_primary_10_3390_electronics14142845
crossref_primary_10_1016_j_patcog_2017_02_035
crossref_primary_10_1109_TNNLS_2021_3121246
crossref_primary_10_1007_s11063_018_9874_9
crossref_primary_10_1109_TNNLS_2017_2786743
crossref_primary_10_1016_j_engappai_2024_108336
crossref_primary_10_3390_sym16121646
crossref_primary_10_1007_s11063_019_10037_5
crossref_primary_10_4018_IJITWE_2019100104
crossref_primary_10_1016_j_knosys_2021_107331
crossref_primary_10_3390_electronics14112129
crossref_primary_10_1109_ACCESS_2018_2874891
crossref_primary_10_1109_TCYB_2019_2955388
crossref_primary_10_3390_app10228137
crossref_primary_10_1016_j_knosys_2020_106615
crossref_primary_10_1145_3645108
crossref_primary_10_1109_TKDE_2020_2973981
crossref_primary_10_1016_j_patcog_2024_110675
crossref_primary_10_1016_j_ins_2018_03_009
crossref_primary_10_1109_TIP_2023_3340609
crossref_primary_10_1016_j_ins_2023_120012
crossref_primary_10_1109_TPAMI_2024_3520708
crossref_primary_10_1007_s42979_021_00957_2
crossref_primary_10_1109_TCYB_2020_3000947
crossref_primary_10_1109_TBDATA_2024_3426277
crossref_primary_10_1016_j_patcog_2018_09_016
crossref_primary_10_1109_ACCESS_2019_2934179
crossref_primary_10_1049_iet_ipr_2019_0253
crossref_primary_10_1016_j_patcog_2022_108955
crossref_primary_10_1007_s11042_018_6937_x
crossref_primary_10_1016_j_jhydrol_2019_05_015
crossref_primary_10_1134_S1054661820010034
crossref_primary_10_1016_j_eswa_2023_121298
crossref_primary_10_1109_JSTARS_2017_2700058
crossref_primary_10_1109_TNNLS_2020_3009209
crossref_primary_10_1016_j_ins_2022_01_017
crossref_primary_10_3390_sym17020161
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_1016_j_eswa_2022_119484
crossref_primary_10_1016_j_image_2020_116044
crossref_primary_10_1109_TSMC_2021_3129261
crossref_primary_10_1109_TETCI_2023_3306233
crossref_primary_10_1016_j_patcog_2021_108386
crossref_primary_10_1109_ACCESS_2019_2954559
crossref_primary_10_1088_1757_899X_466_1_012111
crossref_primary_10_1016_j_patcog_2021_108429
crossref_primary_10_1016_j_neucom_2019_08_002
crossref_primary_10_1016_j_neucom_2024_128138
crossref_primary_10_3233_JIFS_190380
crossref_primary_10_1016_j_knosys_2019_04_024
crossref_primary_10_1109_TKDE_2022_3151861
crossref_primary_10_1109_TNNLS_2024_3442435
crossref_primary_10_1007_s13748_023_00312_x
Cites_doi 10.1109/TNN.2005.845141
10.1016/j.patcog.2014.06.012
10.1109/TPAMI.2010.215
10.1109/34.244673
10.1137/1.9781611972832.26
10.1016/j.patrec.2013.12.003
10.1109/LSP.2014.2319817
10.1109/ICDM.2004.10095
10.1109/ICDM.2010.57
10.1109/ICDM.2012.43
10.1016/j.patcog.2014.06.019
10.1016/j.patrec.2014.06.017
10.1109/34.868688
10.1007/s10115-012-0577-7
10.1016/j.patrec.2014.08.011
10.1145/2487575.2487594
10.3115/1626355.1626379
10.1109/TPAMI.2013.28
10.1006/jagm.2000.1090
10.1109/ICCV.2011.6126462
10.1145/2396761.2396844
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2015.12.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 35
ExternalDocumentID 10_1016_j_patcog_2015_12_007
S0031320315004665
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-387cf2e5a35435e95ad9e69bead76f15a402fe7e2573e001cccd43e13ebdf27d3
ISICitedReferencesCount 170
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370885700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Thu Oct 02 10:41:00 EDT 2025
Sat Nov 29 03:52:17 EST 2025
Tue Nov 18 21:44:55 EST 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Weighting
Multi-view
Data clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-387cf2e5a35435e95ad9e69bead76f15a402fe7e2573e001cccd43e13ebdf27d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808111538
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1808111538
crossref_citationtrail_10_1016_j_patcog_2015_12_007
crossref_primary_10_1016_j_patcog_2015_12_007
elsevier_sciencedirect_doi_10_1016_j_patcog_2015_12_007
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Xiong, Fang, Li, Wang, Zou (bib16) 2014; 49
H. Wang, F. Nie, H. Huang, Multi-view clustering and feature learning via structured sparsity, in: Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 352–360.
S. Xiang, L. Yuan, W. Fan, Y. Wang, P.M. Thompson, J. Ye, Multi-source learning with block-wise missing data for Alzheimer׳s disease prediction, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 185–193.
Strehl, Ghosh (bib31) 2002; 3
V.R. de Sa, Spectral clustering with two views, in: ICML Workshop on Learning with Multiple Views, 2005, pp. 20–27.
Wang, Lai, Suen, Zhu (bib30) 2013; 35
Zeng, Cheung (bib33) 2011; 33
Shi, Malik (bib3) 2000; 22
Chen, Xu, Huang, Ye (bib25) 2013; 25
A. Kumar, H. Daumé, A co-training approach for multi-view spectral clustering, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 393–400.
Zhao, Evans, Dugelay (bib11) 2014; 41
A. Asuncion, D. Newman, UCI machine learning repository
Sáez, Derrac, Luengo, Herrera (bib15) 2014; 47
2007.
A. Kumar, P. Rai, H. Daumé III, Co-regularized multi-view spectral clustering, in: Neural Information Processing Systems (NIPS), 2011, pp. 1413–1421.
G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, in: Proceedings of the 12th International Conference on Data Mining, 2012, pp. 675–684.
J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
N. Ueffing, M. Simard, S. Larkin, J.H. Johnson, NRC׳s PORTAGE system for WMT 2007, in: ACL-2007 Second Workshop on SMT, 2007, pp. 185–188.
Dempster, Laird, Rubin (bib32) 1977
Fang, Guo, Zhang, Li (bib12) 2014; 51
Xu, Wunsch (bib1) 2005; 16
X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, AAAI Press, 2013, pp. 2598–2604.
X. Wang, B. Qian, J. Ye, I. Davidson, Multi-objective multi-view spectral clustering via Pareto optimization, in: SIAM International Conference on Data Mining (SDM), 2013, pp. 234–242.
Huang, Lu, Tan (bib9) 2014; 21
Wang, Wang, Zheng, Deller, Peng, Zhu, Chen, Li, Liu, Bao (bib13) 2014; 47
Wu, Leahy (bib5) 1993; 15
Zhao, Evans, Dugelay (bib23) 2014; 41
S. Bickel, T. Scheffer, Multi-view clustering, in: Proceedings of the 4th International Conference on Data Mining, 2004, pp. 19–26.
Dahlhaus (bib6) 2000; 36
C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: Proceedings of the 10th International Conference on Data Mining, 2010, pp. 531–540.
E. Taralova, F. De la Torre, M. Hebert, Source constrained clustering, in: Proceedings of the 2011 IEEE International Conference on Computer Vision, 2011, pp. 1927–1934.
M.-R. Amini, N. Usunier, C. Goutte, Learning from multiple partially observed views—an application to multilingual text categorization, in: Neural Information Processing Systems (NIPS), 2009, pp. 28–36.
Eaton, EsJardins, Jacob (bib7) 2014; 38
X. Wang, B. Qian, I. Davidson, Improving document clustering using automated machine translation, in: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 645–653.
Huang (10.1016/j.patcog.2015.12.007_bib9) 2014; 21
10.1016/j.patcog.2015.12.007_bib17
Chen (10.1016/j.patcog.2015.12.007_bib25) 2013; 25
Zhao (10.1016/j.patcog.2015.12.007_bib11) 2014; 41
10.1016/j.patcog.2015.12.007_bib18
10.1016/j.patcog.2015.12.007_bib19
10.1016/j.patcog.2015.12.007_bib20
Dempster (10.1016/j.patcog.2015.12.007_bib32) 1977
10.1016/j.patcog.2015.12.007_bib21
10.1016/j.patcog.2015.12.007_bib4
Dahlhaus (10.1016/j.patcog.2015.12.007_bib6) 2000; 36
10.1016/j.patcog.2015.12.007_bib24
Strehl (10.1016/j.patcog.2015.12.007_bib31) 2002; 3
10.1016/j.patcog.2015.12.007_bib8
10.1016/j.patcog.2015.12.007_bib22
Wu (10.1016/j.patcog.2015.12.007_bib5) 1993; 15
Eaton (10.1016/j.patcog.2015.12.007_bib7) 2014; 38
10.1016/j.patcog.2015.12.007_bib2
Wang (10.1016/j.patcog.2015.12.007_bib13) 2014; 47
Wang (10.1016/j.patcog.2015.12.007_bib30) 2013; 35
Chen (10.1016/j.patcog.2015.12.007_bib16) 2014; 49
10.1016/j.patcog.2015.12.007_bib28
Shi (10.1016/j.patcog.2015.12.007_bib3) 2000; 22
10.1016/j.patcog.2015.12.007_bib29
10.1016/j.patcog.2015.12.007_bib26
Xu (10.1016/j.patcog.2015.12.007_bib1) 2005; 16
10.1016/j.patcog.2015.12.007_bib27
Zeng (10.1016/j.patcog.2015.12.007_bib33) 2011; 33
10.1016/j.patcog.2015.12.007_bib10
10.1016/j.patcog.2015.12.007_bib14
Zhao (10.1016/j.patcog.2015.12.007_bib23) 2014; 41
Sáez (10.1016/j.patcog.2015.12.007_bib15) 2014; 47
Fang (10.1016/j.patcog.2015.12.007_bib12) 2014; 51
References_xml – reference: G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, in: Proceedings of the 12th International Conference on Data Mining, 2012, pp. 675–684.
– volume: 33
  start-page: 1532
  year: 2011
  end-page: 1547
  ident: bib33
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 1977
  end-page: 38
  ident: bib32
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– volume: 51
  start-page: 101
  year: 2014
  end-page: 106
  ident: bib12
  article-title: Multi-source transfer learning based on label shared subspace
  publication-title: Pattern Recognit. Lett.
– reference: X. Wang, B. Qian, J. Ye, I. Davidson, Multi-objective multi-view spectral clustering via Pareto optimization, in: SIAM International Conference on Data Mining (SDM), 2013, pp. 234–242.
– volume: 36
  start-page: 205
  year: 2000
  end-page: 240
  ident: bib6
  article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition
  publication-title: J. Algorithms
– reference: A. Asuncion, D. Newman, UCI machine learning repository, 〈
– reference: 〉, 2007.
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
– reference: E. Taralova, F. De la Torre, M. Hebert, Source constrained clustering, in: Proceedings of the 2011 IEEE International Conference on Computer Vision, 2011, pp. 1927–1934.
– volume: 35
  start-page: 2223
  year: 2013
  end-page: 2237
  ident: bib30
  article-title: Multi-exemplar affinity propagation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 49
  start-page: 107
  year: 2014
  end-page: 113
  ident: bib16
  article-title: A kernel support vector machine-based feature selection approach for recognizing Flying Apsaras׳ streamers in the Dunhuang Grotto Murals, China
  publication-title: Pattern Recognit. Lett.
– volume: 25
  start-page: 932
  year: 2013
  end-page: 944
  ident: bib25
  article-title: Tw-(
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
– volume: 41
  start-page: 73
  year: 2014
  end-page: 82
  ident: bib11
  article-title: A subspace co-training framework for multi-view clustering
  publication-title: Pattern Recognit. Lett.
– reference: S. Bickel, T. Scheffer, Multi-view clustering, in: Proceedings of the 4th International Conference on Data Mining, 2004, pp. 19–26.
– reference: M.-R. Amini, N. Usunier, C. Goutte, Learning from multiple partially observed views—an application to multilingual text categorization, in: Neural Information Processing Systems (NIPS), 2009, pp. 28–36.
– volume: 21
  start-page: 875
  year: 2014
  end-page: 879
  ident: bib9
  article-title: Co-learned multi-view spectral clustering for face recognition based on image sets
  publication-title: IEEE Signal Process. Lett.
– volume: 3
  start-page: 583
  year: 2002
  end-page: 617
  ident: bib31
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib3
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Xiang, L. Yuan, W. Fan, Y. Wang, P.M. Thompson, J. Ye, Multi-source learning with block-wise missing data for Alzheimer׳s disease prediction, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 185–193.
– reference: C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: Proceedings of the 10th International Conference on Data Mining, 2010, pp. 531–540.
– volume: 38
  start-page: 231
  year: 2014
  end-page: 257
  ident: bib7
  article-title: Multi-view constrained clustering with an incomplete mapping between views
  publication-title: Knowl. Inf. Syst.
– reference: X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, AAAI Press, 2013, pp. 2598–2604.
– reference: H. Wang, F. Nie, H. Huang, Multi-view clustering and feature learning via structured sparsity, in: Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 352–360.
– volume: 47
  start-page: 3841
  year: 2014
  end-page: 3851
  ident: bib13
  article-title: Video object matching across multiple non-overlapping camera views based on multi-feature fusion and incremental learning
  publication-title: Pattern Recognit.
– reference: A. Kumar, P. Rai, H. Daumé III, Co-regularized multi-view spectral clustering, in: Neural Information Processing Systems (NIPS), 2011, pp. 1413–1421.
– volume: 41
  start-page: 73
  year: 2014
  end-page: 82
  ident: bib23
  article-title: A subspace co-training framework for multi-view clustering
  publication-title: Pattern Recognit. Lett.
– reference: X. Wang, B. Qian, I. Davidson, Improving document clustering using automated machine translation, in: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 645–653.
– reference: N. Ueffing, M. Simard, S. Larkin, J.H. Johnson, NRC׳s PORTAGE system for WMT 2007, in: ACL-2007 Second Workshop on SMT, 2007, pp. 185–188.
– volume: 47
  start-page: 3941
  year: 2014
  end-page: 3948
  ident: bib15
  article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers
  publication-title: Pattern Recognit.
– volume: 15
  start-page: 1101
  year: 1993
  end-page: 1113
  ident: bib5
  article-title: An optimal graph theoretic approach to data clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: A. Kumar, H. Daumé, A co-training approach for multi-view spectral clustering, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 393–400.
– reference: V.R. de Sa, Spectral clustering with two views, in: ICML Workshop on Learning with Multiple Views, 2005, pp. 20–27.
– volume: 16
  start-page: 645
  year: 2005
  ident: 10.1016/j.patcog.2015.12.007_bib1
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
– volume: 47
  start-page: 3941
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib15
  article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.06.012
– ident: 10.1016/j.patcog.2015.12.007_bib20
– volume: 33
  start-page: 1532
  year: 2011
  ident: 10.1016/j.patcog.2015.12.007_bib33
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.215
– volume: 15
  start-page: 1101
  year: 1993
  ident: 10.1016/j.patcog.2015.12.007_bib5
  article-title: An optimal graph theoretic approach to data clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.244673
– ident: 10.1016/j.patcog.2015.12.007_bib21
  doi: 10.1137/1.9781611972832.26
– volume: 41
  start-page: 73
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib11
  article-title: A subspace co-training framework for multi-view clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.12.003
– ident: 10.1016/j.patcog.2015.12.007_bib18
– volume: 21
  start-page: 875
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib9
  article-title: Co-learned multi-view spectral clustering for face recognition based on image sets
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2319817
– volume: 25
  start-page: 932
  year: 2013
  ident: 10.1016/j.patcog.2015.12.007_bib25
  article-title: Tw-(k)-means
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 10.1016/j.patcog.2015.12.007_bib17
  doi: 10.1109/ICDM.2004.10095
– start-page: 1
  year: 1977
  ident: 10.1016/j.patcog.2015.12.007_bib32
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– ident: 10.1016/j.patcog.2015.12.007_bib28
– ident: 10.1016/j.patcog.2015.12.007_bib2
– ident: 10.1016/j.patcog.2015.12.007_bib4
  doi: 10.1109/ICDM.2010.57
– ident: 10.1016/j.patcog.2015.12.007_bib22
  doi: 10.1109/ICDM.2012.43
– volume: 47
  start-page: 3841
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib13
  article-title: Video object matching across multiple non-overlapping camera views based on multi-feature fusion and incremental learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.06.019
– volume: 49
  start-page: 107
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib16
  article-title: A kernel support vector machine-based feature selection approach for recognizing Flying Apsaras׳ streamers in the Dunhuang Grotto Murals, China
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.06.017
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.patcog.2015.12.007_bib3
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 3
  start-page: 583
  year: 2002
  ident: 10.1016/j.patcog.2015.12.007_bib31
  article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.patcog.2015.12.007_bib24
– ident: 10.1016/j.patcog.2015.12.007_bib26
– volume: 38
  start-page: 231
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib7
  article-title: Multi-view constrained clustering with an incomplete mapping between views
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0577-7
– volume: 51
  start-page: 101
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib12
  article-title: Multi-source transfer learning based on label shared subspace
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.08.011
– ident: 10.1016/j.patcog.2015.12.007_bib14
  doi: 10.1145/2487575.2487594
– ident: 10.1016/j.patcog.2015.12.007_bib19
– ident: 10.1016/j.patcog.2015.12.007_bib29
  doi: 10.3115/1626355.1626379
– volume: 41
  start-page: 73
  year: 2014
  ident: 10.1016/j.patcog.2015.12.007_bib23
  article-title: A subspace co-training framework for multi-view clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2013.12.003
– volume: 35
  start-page: 2223
  year: 2013
  ident: 10.1016/j.patcog.2015.12.007_bib30
  article-title: Multi-exemplar affinity propagation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.28
– volume: 36
  start-page: 205
  year: 2000
  ident: 10.1016/j.patcog.2015.12.007_bib6
  article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition
  publication-title: J. Algorithms
  doi: 10.1006/jagm.2000.1090
– ident: 10.1016/j.patcog.2015.12.007_bib8
  doi: 10.1109/ICCV.2011.6126462
– ident: 10.1016/j.patcog.2015.12.007_bib10
  doi: 10.1145/2396761.2396844
– ident: 10.1016/j.patcog.2015.12.007_bib27
SSID ssj0017142
Score 2.5630965
Snippet In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Algorithms
Clustering
Data clustering
Data points
Feature selection
Multi-view
Pattern recognition
Representations
Weighting
Title Weighted Multi-view Clustering with Feature Selection
URI https://dx.doi.org/10.1016/j.patcog.2015.12.007
https://www.proquest.com/docview/1808111538
Volume 53
WOSCitedRecordID wos000370885700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLZY2cNeYFdxG8qkaW-e6jiOm8cKigBVBWlly5vlJPY0hNJCG8TP5_iWdKAJeNhLFOXW6nzW5-Pjc86H0FeiYehWWuOSDzROUslxkSQM66xKC5j-pLa99H6O-WQyyPPs3CvTLaycAK_rwd1dNv-vUMM1ANuUzr4A7vajcAHOAXQ4AuxwfBbwv2ywE_xIW1uLbWXKwVVjGiK0gVfj-Jmdgx9WBSdA433Uc9ty05S5-Nyibqc-byxlN9gkw3axeMcXtlABH866O2OndX0KQxAfN9Lf8DEGknYZfYE3KcE07tNV3mR0lfjYyhTqGpA8ImcXJ7j8PodJZvbbpNUxG4p1srd_98KenImji_FYTEf59Nv8GhuZMLOd7jVTXqH1mLMMmHh9eDLKT9uNI04S1yDe_-FQLWlT-h7_8L-8kQfzsnU2pm_Rhl8lREOH7ju0pur3aDMocESekD8gFsCOOrCjDuzIgB15sKMW7I_o4mg0PTjGXggDl7D8Xpr-x6WOFZOUgXerMiarTKVZASzAU02YTPqxVlwB_VIFRijLskqoIlQVlY55RT-hXj2r1RaKCMmKPi-quIKFsOrrgaRKJpoVOoGlPS22EQ0GEaXvEm_ESq5ESAe8FM6MwphRkFiAGbcRbt-auy4pTzzPg62F9_ScBydgrDzx5pcAjQAiNLtbslazZiGI0ZAhZgLfecYzu-hNN9D3UG9506jP6HV5u_yzuNn3o-oe-j-AhQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Multi-view+Clustering+with+Feature+Selection&rft.jtitle=Pattern+recognition&rft.au=Xu%2C+Yu-Meng&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2016-05-01&rft.issn=0031-3203&rft.volume=53&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1016%2Fj.patcog.2015.12.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon