Weighted Multi-view Clustering with Feature Selection
In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the...
Saved in:
| Published in: | Pattern recognition Vol. 53; pp. 25 - 35 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.05.2016
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method.
•This paper proposes a new multi-view data clustering algorithm.•The new method considers both view weighting and feature weighting.•An EM-like method is designed to get the local optimum solution.•Extensive experiments have been conducted to show the effectiveness. |
|---|---|
| AbstractList | In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method. In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies mainly focus on the relationships between distinct data views, which would get some improvement over the single-view clustering. However, in the case of high-dimensional data, where each view of data is of high dimensionality, feature selection is also a necessity for further improving the clustering results. To overcome this problem, this paper proposes a novel algorithm termed Weighted Multi-view Clustering with Feature Selection (WMCFS) that can simultaneously perform multi-view data clustering and feature selection. Two weighting schemes are designed that respectively weight the views of data points and feature representations in each view, such that the best view and the most representative feature space in each view can be selected for clustering. Experimental results conducted on real-world datasets have validated the effectiveness of the proposed method. •This paper proposes a new multi-view data clustering algorithm.•The new method considers both view weighting and feature weighting.•An EM-like method is designed to get the local optimum solution.•Extensive experiments have been conducted to show the effectiveness. |
| Author | Wang, Chang-Dong Lai, Jian-Huang Xu, Yu-Meng |
| Author_xml | – sequence: 1 givenname: Yu-Meng surname: Xu fullname: Xu, Yu-Meng email: yumengxu@hotmail.com organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou, PR China – sequence: 2 givenname: Chang-Dong surname: Wang fullname: Wang, Chang-Dong email: changdongwang@hotmail.com organization: School of Mobile Information Engineering, Sun Yat-sen University, Zhuhai, PR China – sequence: 3 givenname: Jian-Huang surname: Lai fullname: Lai, Jian-Huang email: stsljh@mail.sysu.edu.cn organization: School of Information Science and Technology, Sun Yat-sen University, Guangzhou, PR China |
| BookMark | eNqFkLFOwzAURS1UJErhDxgysiT42XGdMCChigJSEQMgRst1XlpXaVJsh4q_x1WYGGB6w7vn6uqcklHbtUjIBdAMKEyvNtlOB9OtMkZBZMAySuURGUMheSogZyMyppRDyhnlJ-TU-w2lIONjTMQ72tU6YJU89U2w6afFfTJreh_Q2XaV7G1YJ3PUoXeYvGCDJtiuPSPHtW48nv_cCXmb373OHtLF8_3j7HaRmpyWIeWFNDVDobnIucBS6KrEablEXclpDULnlNUokQnJMU4yxlQ5R-C4rGomKz4hl0PvznUfPfqgttYbbBrdYtd7BQUtAEDwIkavh6hxnfcOa2Vs0IexwWnbKKDq4Ept1OBKHVwpYCq6inD-C945u9Xu6z_sZsAwOojmnPLGYmuwsi6KUlVn_y74Bmx_h70 |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2019_2944851 crossref_primary_10_1016_j_ins_2023_119366 crossref_primary_10_1016_j_ipl_2019_01_015 crossref_primary_10_1016_j_knosys_2023_110816 crossref_primary_10_1016_j_patcog_2019_107101 crossref_primary_10_1016_j_patcog_2017_01_035 crossref_primary_10_1109_TCYB_2020_3025636 crossref_primary_10_1016_j_patrec_2021_08_008 crossref_primary_10_1007_s00521_023_08975_2 crossref_primary_10_1109_TNNLS_2020_3026686 crossref_primary_10_1016_j_inffus_2021_09_009 crossref_primary_10_1016_j_neucom_2025_129754 crossref_primary_10_20965_jaciii_2020_p0065 crossref_primary_10_1016_j_ins_2016_04_027 crossref_primary_10_1016_j_neucom_2018_12_043 crossref_primary_10_1016_j_neunet_2025_108035 crossref_primary_10_1109_TNNLS_2021_3104846 crossref_primary_10_1016_j_apm_2025_116299 crossref_primary_10_1109_TAI_2021_3065894 crossref_primary_10_1016_j_knosys_2019_105459 crossref_primary_10_3390_e25020371 crossref_primary_10_1016_j_ins_2022_07_093 crossref_primary_10_1016_j_patrec_2020_07_037 crossref_primary_10_1109_TFUZZ_2024_3416537 crossref_primary_10_1016_j_neunet_2018_08_011 crossref_primary_10_1016_j_neucom_2020_04_120 crossref_primary_10_1016_j_ins_2024_121860 crossref_primary_10_1016_j_engappai_2021_104480 crossref_primary_10_1007_s11063_018_9845_1 crossref_primary_10_1007_s12559_024_10392_z crossref_primary_10_1109_ACCESS_2019_2905641 crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1016_j_jesit_2017_06_004 crossref_primary_10_1186_s12859_020_03810_0 crossref_primary_10_1007_s00521_020_04854_2 crossref_primary_10_1016_j_patcog_2023_109523 crossref_primary_10_1109_TSMC_2023_3260100 crossref_primary_10_1109_ACCESS_2019_2892175 crossref_primary_10_1109_TKDE_2024_3392209 crossref_primary_10_1007_s10044_020_00863_y crossref_primary_10_1109_TBDATA_2024_3371357 crossref_primary_10_1186_s12859_020_03681_5 crossref_primary_10_1016_j_eswa_2023_122507 crossref_primary_10_1016_j_neucom_2016_12_102 crossref_primary_10_1016_j_ins_2024_121395 crossref_primary_10_1007_s10489_021_02405_3 crossref_primary_10_1016_j_patcog_2019_01_014 crossref_primary_10_1016_j_sigpro_2021_108362 crossref_primary_10_1016_j_neunet_2024_106197 crossref_primary_10_1016_j_eswa_2017_05_076 crossref_primary_10_1016_j_patcog_2020_107748 crossref_primary_10_1016_j_neucom_2018_05_072 crossref_primary_10_1109_TFUZZ_2021_3058572 crossref_primary_10_1016_j_neucom_2022_02_005 crossref_primary_10_1007_s11042_020_09617_8 crossref_primary_10_1007_s11042_016_4121_8 crossref_primary_10_1016_j_aci_2017_10_004 crossref_primary_10_1016_j_knosys_2020_106567 crossref_primary_10_1016_j_patcog_2019_05_004 crossref_primary_10_1016_j_csbj_2021_04_060 crossref_primary_10_1109_TCYB_2020_3035043 crossref_primary_10_1016_j_knosys_2018_03_009 crossref_primary_10_1016_j_neunet_2021_02_022 crossref_primary_10_1016_j_compchemeng_2025_109118 crossref_primary_10_1016_j_patcog_2021_108108 crossref_primary_10_1109_TPAMI_2024_3521022 crossref_primary_10_1016_j_neucom_2019_09_009 crossref_primary_10_1016_j_eswa_2018_12_053 crossref_primary_10_1109_ACCESS_2021_3057427 crossref_primary_10_1016_j_physa_2018_09_086 crossref_primary_10_1016_j_ins_2021_09_009 crossref_primary_10_1007_s00521_018_3654_3 crossref_primary_10_1109_ACCESS_2023_3243133 crossref_primary_10_1109_TNNLS_2024_3373532 crossref_primary_10_1007_s10462_023_10616_y crossref_primary_10_1007_s13042_024_02280_7 crossref_primary_10_1016_j_knosys_2022_108250 crossref_primary_10_1016_j_knosys_2019_07_027 crossref_primary_10_1016_j_patcog_2018_11_007 crossref_primary_10_1016_j_patcog_2018_05_012 crossref_primary_10_1016_j_knosys_2019_105126 crossref_primary_10_1016_j_neucom_2023_126320 crossref_primary_10_1016_j_patcog_2020_107207 crossref_primary_10_20965_jaciii_2021_p0478 crossref_primary_10_1007_s00500_019_04572_5 crossref_primary_10_1109_TKDE_2020_3025759 crossref_primary_10_1007_s13042_021_01295_8 crossref_primary_10_1109_TKDE_2020_3035695 crossref_primary_10_1016_j_ipm_2024_103735 crossref_primary_10_3390_electronics14142845 crossref_primary_10_1016_j_patcog_2017_02_035 crossref_primary_10_1109_TNNLS_2021_3121246 crossref_primary_10_1007_s11063_018_9874_9 crossref_primary_10_1109_TNNLS_2017_2786743 crossref_primary_10_1016_j_engappai_2024_108336 crossref_primary_10_3390_sym16121646 crossref_primary_10_1007_s11063_019_10037_5 crossref_primary_10_4018_IJITWE_2019100104 crossref_primary_10_1016_j_knosys_2021_107331 crossref_primary_10_3390_electronics14112129 crossref_primary_10_1109_ACCESS_2018_2874891 crossref_primary_10_1109_TCYB_2019_2955388 crossref_primary_10_3390_app10228137 crossref_primary_10_1016_j_knosys_2020_106615 crossref_primary_10_1145_3645108 crossref_primary_10_1109_TKDE_2020_2973981 crossref_primary_10_1016_j_patcog_2024_110675 crossref_primary_10_1016_j_ins_2018_03_009 crossref_primary_10_1109_TIP_2023_3340609 crossref_primary_10_1016_j_ins_2023_120012 crossref_primary_10_1109_TPAMI_2024_3520708 crossref_primary_10_1007_s42979_021_00957_2 crossref_primary_10_1109_TCYB_2020_3000947 crossref_primary_10_1109_TBDATA_2024_3426277 crossref_primary_10_1016_j_patcog_2018_09_016 crossref_primary_10_1109_ACCESS_2019_2934179 crossref_primary_10_1049_iet_ipr_2019_0253 crossref_primary_10_1016_j_patcog_2022_108955 crossref_primary_10_1007_s11042_018_6937_x crossref_primary_10_1016_j_jhydrol_2019_05_015 crossref_primary_10_1134_S1054661820010034 crossref_primary_10_1016_j_eswa_2023_121298 crossref_primary_10_1109_JSTARS_2017_2700058 crossref_primary_10_1109_TNNLS_2020_3009209 crossref_primary_10_1016_j_ins_2022_01_017 crossref_primary_10_3390_sym17020161 crossref_primary_10_1016_j_knosys_2024_112902 crossref_primary_10_1016_j_eswa_2022_119484 crossref_primary_10_1016_j_image_2020_116044 crossref_primary_10_1109_TSMC_2021_3129261 crossref_primary_10_1109_TETCI_2023_3306233 crossref_primary_10_1016_j_patcog_2021_108386 crossref_primary_10_1109_ACCESS_2019_2954559 crossref_primary_10_1088_1757_899X_466_1_012111 crossref_primary_10_1016_j_patcog_2021_108429 crossref_primary_10_1016_j_neucom_2019_08_002 crossref_primary_10_1016_j_neucom_2024_128138 crossref_primary_10_3233_JIFS_190380 crossref_primary_10_1016_j_knosys_2019_04_024 crossref_primary_10_1109_TKDE_2022_3151861 crossref_primary_10_1109_TNNLS_2024_3442435 crossref_primary_10_1007_s13748_023_00312_x |
| Cites_doi | 10.1109/TNN.2005.845141 10.1016/j.patcog.2014.06.012 10.1109/TPAMI.2010.215 10.1109/34.244673 10.1137/1.9781611972832.26 10.1016/j.patrec.2013.12.003 10.1109/LSP.2014.2319817 10.1109/ICDM.2004.10095 10.1109/ICDM.2010.57 10.1109/ICDM.2012.43 10.1016/j.patcog.2014.06.019 10.1016/j.patrec.2014.06.017 10.1109/34.868688 10.1007/s10115-012-0577-7 10.1016/j.patrec.2014.08.011 10.1145/2487575.2487594 10.3115/1626355.1626379 10.1109/TPAMI.2013.28 10.1006/jagm.2000.1090 10.1109/ICCV.2011.6126462 10.1145/2396761.2396844 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2015.12.007 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 35 |
| ExternalDocumentID | 10_1016_j_patcog_2015_12_007 S0031320315004665 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-387cf2e5a35435e95ad9e69bead76f15a402fe7e2573e001cccd43e13ebdf27d3 |
| ISICitedReferencesCount | 170 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370885700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Thu Oct 02 10:41:00 EDT 2025 Sat Nov 29 03:52:17 EST 2025 Tue Nov 18 21:44:55 EST 2025 Fri Feb 23 02:25:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection Weighting Multi-view Data clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-387cf2e5a35435e95ad9e69bead76f15a402fe7e2573e001cccd43e13ebdf27d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1808111538 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1808111538 crossref_citationtrail_10_1016_j_patcog_2015_12_007 crossref_primary_10_1016_j_patcog_2015_12_007 elsevier_sciencedirect_doi_10_1016_j_patcog_2015_12_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Xiong, Fang, Li, Wang, Zou (bib16) 2014; 49 H. Wang, F. Nie, H. Huang, Multi-view clustering and feature learning via structured sparsity, in: Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 352–360. S. Xiang, L. Yuan, W. Fan, Y. Wang, P.M. Thompson, J. Ye, Multi-source learning with block-wise missing data for Alzheimer׳s disease prediction, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 185–193. Strehl, Ghosh (bib31) 2002; 3 V.R. de Sa, Spectral clustering with two views, in: ICML Workshop on Learning with Multiple Views, 2005, pp. 20–27. Wang, Lai, Suen, Zhu (bib30) 2013; 35 Zeng, Cheung (bib33) 2011; 33 Shi, Malik (bib3) 2000; 22 Chen, Xu, Huang, Ye (bib25) 2013; 25 A. Kumar, H. Daumé, A co-training approach for multi-view spectral clustering, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 393–400. Zhao, Evans, Dugelay (bib11) 2014; 41 A. Asuncion, D. Newman, UCI machine learning repository Sáez, Derrac, Luengo, Herrera (bib15) 2014; 47 2007. A. Kumar, P. Rai, H. Daumé III, Co-regularized multi-view spectral clustering, in: Neural Information Processing Systems (NIPS), 2011, pp. 1413–1421. G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, in: Proceedings of the 12th International Conference on Data Mining, 2012, pp. 675–684. J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. N. Ueffing, M. Simard, S. Larkin, J.H. Johnson, NRC׳s PORTAGE system for WMT 2007, in: ACL-2007 Second Workshop on SMT, 2007, pp. 185–188. Dempster, Laird, Rubin (bib32) 1977 Fang, Guo, Zhang, Li (bib12) 2014; 51 Xu, Wunsch (bib1) 2005; 16 X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, AAAI Press, 2013, pp. 2598–2604. X. Wang, B. Qian, J. Ye, I. Davidson, Multi-objective multi-view spectral clustering via Pareto optimization, in: SIAM International Conference on Data Mining (SDM), 2013, pp. 234–242. Huang, Lu, Tan (bib9) 2014; 21 Wang, Wang, Zheng, Deller, Peng, Zhu, Chen, Li, Liu, Bao (bib13) 2014; 47 Wu, Leahy (bib5) 1993; 15 Zhao, Evans, Dugelay (bib23) 2014; 41 S. Bickel, T. Scheffer, Multi-view clustering, in: Proceedings of the 4th International Conference on Data Mining, 2004, pp. 19–26. Dahlhaus (bib6) 2000; 36 C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: Proceedings of the 10th International Conference on Data Mining, 2010, pp. 531–540. E. Taralova, F. De la Torre, M. Hebert, Source constrained clustering, in: Proceedings of the 2011 IEEE International Conference on Computer Vision, 2011, pp. 1927–1934. M.-R. Amini, N. Usunier, C. Goutte, Learning from multiple partially observed views—an application to multilingual text categorization, in: Neural Information Processing Systems (NIPS), 2009, pp. 28–36. Eaton, EsJardins, Jacob (bib7) 2014; 38 X. Wang, B. Qian, I. Davidson, Improving document clustering using automated machine translation, in: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 645–653. Huang (10.1016/j.patcog.2015.12.007_bib9) 2014; 21 10.1016/j.patcog.2015.12.007_bib17 Chen (10.1016/j.patcog.2015.12.007_bib25) 2013; 25 Zhao (10.1016/j.patcog.2015.12.007_bib11) 2014; 41 10.1016/j.patcog.2015.12.007_bib18 10.1016/j.patcog.2015.12.007_bib19 10.1016/j.patcog.2015.12.007_bib20 Dempster (10.1016/j.patcog.2015.12.007_bib32) 1977 10.1016/j.patcog.2015.12.007_bib21 10.1016/j.patcog.2015.12.007_bib4 Dahlhaus (10.1016/j.patcog.2015.12.007_bib6) 2000; 36 10.1016/j.patcog.2015.12.007_bib24 Strehl (10.1016/j.patcog.2015.12.007_bib31) 2002; 3 10.1016/j.patcog.2015.12.007_bib8 10.1016/j.patcog.2015.12.007_bib22 Wu (10.1016/j.patcog.2015.12.007_bib5) 1993; 15 Eaton (10.1016/j.patcog.2015.12.007_bib7) 2014; 38 10.1016/j.patcog.2015.12.007_bib2 Wang (10.1016/j.patcog.2015.12.007_bib13) 2014; 47 Wang (10.1016/j.patcog.2015.12.007_bib30) 2013; 35 Chen (10.1016/j.patcog.2015.12.007_bib16) 2014; 49 10.1016/j.patcog.2015.12.007_bib28 Shi (10.1016/j.patcog.2015.12.007_bib3) 2000; 22 10.1016/j.patcog.2015.12.007_bib29 10.1016/j.patcog.2015.12.007_bib26 Xu (10.1016/j.patcog.2015.12.007_bib1) 2005; 16 10.1016/j.patcog.2015.12.007_bib27 Zeng (10.1016/j.patcog.2015.12.007_bib33) 2011; 33 10.1016/j.patcog.2015.12.007_bib10 10.1016/j.patcog.2015.12.007_bib14 Zhao (10.1016/j.patcog.2015.12.007_bib23) 2014; 41 Sáez (10.1016/j.patcog.2015.12.007_bib15) 2014; 47 Fang (10.1016/j.patcog.2015.12.007_bib12) 2014; 51 |
| References_xml | – reference: G. Tzortzis, A. Likas, Kernel-based weighted multi-view clustering, in: Proceedings of the 12th International Conference on Data Mining, 2012, pp. 675–684. – volume: 33 start-page: 1532 year: 2011 end-page: 1547 ident: bib33 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 1977 end-page: 38 ident: bib32 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. Ser. B (Methodological) – volume: 51 start-page: 101 year: 2014 end-page: 106 ident: bib12 article-title: Multi-source transfer learning based on label shared subspace publication-title: Pattern Recognit. Lett. – reference: X. Wang, B. Qian, J. Ye, I. Davidson, Multi-objective multi-view spectral clustering via Pareto optimization, in: SIAM International Conference on Data Mining (SDM), 2013, pp. 234–242. – volume: 36 start-page: 205 year: 2000 end-page: 240 ident: bib6 article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition publication-title: J. Algorithms – reference: A. Asuncion, D. Newman, UCI machine learning repository, 〈 – reference: 〉, 2007. – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib1 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. – reference: E. Taralova, F. De la Torre, M. Hebert, Source constrained clustering, in: Proceedings of the 2011 IEEE International Conference on Computer Vision, 2011, pp. 1927–1934. – volume: 35 start-page: 2223 year: 2013 end-page: 2237 ident: bib30 article-title: Multi-exemplar affinity propagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 49 start-page: 107 year: 2014 end-page: 113 ident: bib16 article-title: A kernel support vector machine-based feature selection approach for recognizing Flying Apsaras׳ streamers in the Dunhuang Grotto Murals, China publication-title: Pattern Recognit. Lett. – volume: 25 start-page: 932 year: 2013 end-page: 944 ident: bib25 article-title: Tw-( publication-title: IEEE Trans. Knowl. Data Eng. – reference: J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. – volume: 41 start-page: 73 year: 2014 end-page: 82 ident: bib11 article-title: A subspace co-training framework for multi-view clustering publication-title: Pattern Recognit. Lett. – reference: S. Bickel, T. Scheffer, Multi-view clustering, in: Proceedings of the 4th International Conference on Data Mining, 2004, pp. 19–26. – reference: M.-R. Amini, N. Usunier, C. Goutte, Learning from multiple partially observed views—an application to multilingual text categorization, in: Neural Information Processing Systems (NIPS), 2009, pp. 28–36. – volume: 21 start-page: 875 year: 2014 end-page: 879 ident: bib9 article-title: Co-learned multi-view spectral clustering for face recognition based on image sets publication-title: IEEE Signal Process. Lett. – volume: 3 start-page: 583 year: 2002 end-page: 617 ident: bib31 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: bib3 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S. Xiang, L. Yuan, W. Fan, Y. Wang, P.M. Thompson, J. Ye, Multi-source learning with block-wise missing data for Alzheimer׳s disease prediction, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 185–193. – reference: C.-D. Wang, J.-H. Lai, J.-Y. Zhu, A conscience on-line learning approach for kernel-based clustering, in: Proceedings of the 10th International Conference on Data Mining, 2010, pp. 531–540. – volume: 38 start-page: 231 year: 2014 end-page: 257 ident: bib7 article-title: Multi-view constrained clustering with an incomplete mapping between views publication-title: Knowl. Inf. Syst. – reference: X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, AAAI Press, 2013, pp. 2598–2604. – reference: H. Wang, F. Nie, H. Huang, Multi-view clustering and feature learning via structured sparsity, in: Proceedings of the 30th International Conference on Machine Learning, 2013, pp. 352–360. – volume: 47 start-page: 3841 year: 2014 end-page: 3851 ident: bib13 article-title: Video object matching across multiple non-overlapping camera views based on multi-feature fusion and incremental learning publication-title: Pattern Recognit. – reference: A. Kumar, P. Rai, H. Daumé III, Co-regularized multi-view spectral clustering, in: Neural Information Processing Systems (NIPS), 2011, pp. 1413–1421. – volume: 41 start-page: 73 year: 2014 end-page: 82 ident: bib23 article-title: A subspace co-training framework for multi-view clustering publication-title: Pattern Recognit. Lett. – reference: X. Wang, B. Qian, I. Davidson, Improving document clustering using automated machine translation, in: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, pp. 645–653. – reference: N. Ueffing, M. Simard, S. Larkin, J.H. Johnson, NRC׳s PORTAGE system for WMT 2007, in: ACL-2007 Second Workshop on SMT, 2007, pp. 185–188. – volume: 47 start-page: 3941 year: 2014 end-page: 3948 ident: bib15 article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers publication-title: Pattern Recognit. – volume: 15 start-page: 1101 year: 1993 end-page: 1113 ident: bib5 article-title: An optimal graph theoretic approach to data clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: A. Kumar, H. Daumé, A co-training approach for multi-view spectral clustering, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 393–400. – reference: V.R. de Sa, Spectral clustering with two views, in: ICML Workshop on Learning with Multiple Views, 2005, pp. 20–27. – volume: 16 start-page: 645 year: 2005 ident: 10.1016/j.patcog.2015.12.007_bib1 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 – volume: 47 start-page: 3941 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib15 article-title: Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.06.012 – ident: 10.1016/j.patcog.2015.12.007_bib20 – volume: 33 start-page: 1532 year: 2011 ident: 10.1016/j.patcog.2015.12.007_bib33 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.215 – volume: 15 start-page: 1101 year: 1993 ident: 10.1016/j.patcog.2015.12.007_bib5 article-title: An optimal graph theoretic approach to data clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.244673 – ident: 10.1016/j.patcog.2015.12.007_bib21 doi: 10.1137/1.9781611972832.26 – volume: 41 start-page: 73 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib11 article-title: A subspace co-training framework for multi-view clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.12.003 – ident: 10.1016/j.patcog.2015.12.007_bib18 – volume: 21 start-page: 875 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib9 article-title: Co-learned multi-view spectral clustering for face recognition based on image sets publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2319817 – volume: 25 start-page: 932 year: 2013 ident: 10.1016/j.patcog.2015.12.007_bib25 article-title: Tw-(k)-means publication-title: IEEE Trans. Knowl. Data Eng. – ident: 10.1016/j.patcog.2015.12.007_bib17 doi: 10.1109/ICDM.2004.10095 – start-page: 1 year: 1977 ident: 10.1016/j.patcog.2015.12.007_bib32 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. Ser. B (Methodological) – ident: 10.1016/j.patcog.2015.12.007_bib28 – ident: 10.1016/j.patcog.2015.12.007_bib2 – ident: 10.1016/j.patcog.2015.12.007_bib4 doi: 10.1109/ICDM.2010.57 – ident: 10.1016/j.patcog.2015.12.007_bib22 doi: 10.1109/ICDM.2012.43 – volume: 47 start-page: 3841 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib13 article-title: Video object matching across multiple non-overlapping camera views based on multi-feature fusion and incremental learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.06.019 – volume: 49 start-page: 107 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib16 article-title: A kernel support vector machine-based feature selection approach for recognizing Flying Apsaras׳ streamers in the Dunhuang Grotto Murals, China publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.06.017 – volume: 22 start-page: 888 year: 2000 ident: 10.1016/j.patcog.2015.12.007_bib3 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – volume: 3 start-page: 583 year: 2002 ident: 10.1016/j.patcog.2015.12.007_bib31 article-title: Cluster ensembles—a knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.patcog.2015.12.007_bib24 – ident: 10.1016/j.patcog.2015.12.007_bib26 – volume: 38 start-page: 231 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib7 article-title: Multi-view constrained clustering with an incomplete mapping between views publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0577-7 – volume: 51 start-page: 101 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib12 article-title: Multi-source transfer learning based on label shared subspace publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.08.011 – ident: 10.1016/j.patcog.2015.12.007_bib14 doi: 10.1145/2487575.2487594 – ident: 10.1016/j.patcog.2015.12.007_bib19 – ident: 10.1016/j.patcog.2015.12.007_bib29 doi: 10.3115/1626355.1626379 – volume: 41 start-page: 73 year: 2014 ident: 10.1016/j.patcog.2015.12.007_bib23 article-title: A subspace co-training framework for multi-view clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.12.003 – volume: 35 start-page: 2223 year: 2013 ident: 10.1016/j.patcog.2015.12.007_bib30 article-title: Multi-exemplar affinity propagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.28 – volume: 36 start-page: 205 year: 2000 ident: 10.1016/j.patcog.2015.12.007_bib6 article-title: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition publication-title: J. Algorithms doi: 10.1006/jagm.2000.1090 – ident: 10.1016/j.patcog.2015.12.007_bib8 doi: 10.1109/ICCV.2011.6126462 – ident: 10.1016/j.patcog.2015.12.007_bib10 doi: 10.1145/2396761.2396844 – ident: 10.1016/j.patcog.2015.12.007_bib27 |
| SSID | ssj0017142 |
| Score | 2.5630965 |
| Snippet | In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25 |
| SubjectTerms | Algorithms Clustering Data clustering Data points Feature selection Multi-view Pattern recognition Representations Weighting |
| Title | Weighted Multi-view Clustering with Feature Selection |
| URI | https://dx.doi.org/10.1016/j.patcog.2015.12.007 https://www.proquest.com/docview/1808111538 |
| Volume | 53 |
| WOSCitedRecordID | wos000370885700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLZY2cNeYFdxG8qkaW-e6jiOm8cKigBVBWlly5vlJPY0hNJCG8TP5_iWdKAJeNhLFOXW6nzW5-Pjc86H0FeiYehWWuOSDzROUslxkSQM66xKC5j-pLa99H6O-WQyyPPs3CvTLaycAK_rwd1dNv-vUMM1ANuUzr4A7vajcAHOAXQ4AuxwfBbwv2ywE_xIW1uLbWXKwVVjGiK0gVfj-Jmdgx9WBSdA433Uc9ty05S5-Nyibqc-byxlN9gkw3axeMcXtlABH866O2OndX0KQxAfN9Lf8DEGknYZfYE3KcE07tNV3mR0lfjYyhTqGpA8ImcXJ7j8PodJZvbbpNUxG4p1srd_98KenImji_FYTEf59Nv8GhuZMLOd7jVTXqH1mLMMmHh9eDLKT9uNI04S1yDe_-FQLWlT-h7_8L-8kQfzsnU2pm_Rhl8lREOH7ju0pur3aDMocESekD8gFsCOOrCjDuzIgB15sKMW7I_o4mg0PTjGXggDl7D8Xpr-x6WOFZOUgXerMiarTKVZASzAU02YTPqxVlwB_VIFRijLskqoIlQVlY55RT-hXj2r1RaKCMmKPi-quIKFsOrrgaRKJpoVOoGlPS22EQ0GEaXvEm_ESq5ESAe8FM6MwphRkFiAGbcRbt-auy4pTzzPg62F9_ScBydgrDzx5pcAjQAiNLtbslazZiGI0ZAhZgLfecYzu-hNN9D3UG9506jP6HV5u_yzuNn3o-oe-j-AhQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Multi-view+Clustering+with+Feature+Selection&rft.jtitle=Pattern+recognition&rft.au=Xu%2C+Yu-Meng&rft.au=Wang%2C+Chang-Dong&rft.au=Lai%2C+Jian-Huang&rft.date=2016-05-01&rft.issn=0031-3203&rft.volume=53&rft.spage=25&rft.epage=35&rft_id=info:doi/10.1016%2Fj.patcog.2015.12.007&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |