Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms

Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 79750 - 79776
Hlavní autoři: Abdelhamid, Abdelaziz A., El-Kenawy, El-Sayed M., Ibrahim, Abdelhameed, Eid, Marwa Metwally, Khafaga, Doaa Sami, Alhussan, Amel Ali, Mirjalili, Seyedali, Khodadadi, Nima, Lim, Wei Hong, Shams, Mahmoud Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features' effectiveness in classification problems. Results: The achieved results demonstrate the algorithm's superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon's rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method's significance, superiority, and statistical difference.
AbstractList Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features’ effectiveness in classification problems. Results: The achieved results demonstrate the algorithm’s superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon’s rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method’s significance, superiority, and statistical difference.
Author Alhussan, Amel Ali
Ibrahim, Abdelhameed
Lim, Wei Hong
Shams, Mahmoud Y.
Abdelhamid, Abdelaziz A.
Khafaga, Doaa Sami
Khodadadi, Nima
El-Kenawy, El-Sayed M.
Mirjalili, Seyedali
Eid, Marwa Metwally
Author_xml – sequence: 1
  givenname: Abdelaziz A.
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
  organization: Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
– sequence: 2
  givenname: El-Sayed M.
  orcidid: 0000-0002-9221-7658
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed M.
  email: skenawy@ieee.org
  organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, Egypt
– sequence: 3
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
  organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
– sequence: 4
  givenname: Marwa Metwally
  surname: Eid
  fullname: Eid, Marwa Metwally
  organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt
– sequence: 5
  givenname: Doaa Sami
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
  email: dskhafga@pnu.edu.sa
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
– sequence: 6
  givenname: Amel Ali
  orcidid: 0000-0001-7530-7961
  surname: Alhussan
  fullname: Alhussan, Amel Ali
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
– sequence: 7
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia
– sequence: 8
  givenname: Nima
  surname: Khodadadi
  fullname: Khodadadi, Nima
  organization: Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, USA
– sequence: 9
  givenname: Wei Hong
  surname: Lim
  fullname: Lim, Wei Hong
  organization: Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
– sequence: 10
  givenname: Mahmoud Y.
  surname: Shams
  fullname: Shams, Mahmoud Y.
  organization: Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt
BookMark eNp9kU9v1DAQxSNUJErpJ4BDJM67xH9jH5fQ0pWKethytibOpOslGwfbW6n99Hg3Rao4YB_GM3q_p7He--Js9CMWxUdSLQmp9JdV01xtNktaUbZkVCstxJvinBKpF0wwefbq_a64jHFX5aPySNTnxa_1OPpHSO4Ry2uEdAhYbnBAm5wfyx-Ytr4rv0LErsz9zVMbXFdu3Ihl4-OxwNiV39w0YSjvt8FDysq7Kbm9e4aTx2p48MGl7T5-KN72MES8fKkXxc_rq_vmZnF7933drG4Xllc6LZgSreDYt7ntW0mkUDbfTkrLeC-h7kTdVwxbgpRby1XXK6ooESg7KwHYRbGefTsPOzMFt4fwZDw4cxr48GAgJGcHNApZxYimyChwIgQoWbWtZAC1IFaq7PV59pqC_33AmMzOH8KY1zdUcVELySTLKj2rbPAxBuyNden0_RTADYZU5hiVmaMyx6jMS1SZZf-wfzf-P_VpphwiviKI5ppy9gdmrKH8
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1007_s12652_025_04951_x
crossref_primary_10_3233_AIS_230626
crossref_primary_10_32604_cmc_2024_053627
crossref_primary_10_1016_j_aei_2025_103875
crossref_primary_10_1002_suco_70195
crossref_primary_10_7717_peerj_cs_1828
crossref_primary_10_1016_j_cose_2025_104512
crossref_primary_10_1016_j_aei_2025_103757
crossref_primary_10_1109_ACCESS_2023_3312022
crossref_primary_10_1016_j_jenvman_2024_120091
crossref_primary_10_3390_biomimetics9110701
crossref_primary_10_1007_s11227_024_06384_3
crossref_primary_10_1186_s40537_024_00985_8
crossref_primary_10_1016_j_asoc_2024_112638
crossref_primary_10_1016_j_eswa_2024_126186
crossref_primary_10_1016_j_rineng_2025_107285
crossref_primary_10_1007_s13369_024_09113_3
crossref_primary_10_1007_s11227_024_06606_8
crossref_primary_10_1016_j_knosys_2024_112781
crossref_primary_10_1109_ACCESS_2024_3411612
crossref_primary_10_1145_3689428
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1016_j_bspc_2025_108561
crossref_primary_10_1177_18724981241295927
crossref_primary_10_1007_s13042_024_02187_3
crossref_primary_10_1016_j_mex_2025_103591
crossref_primary_10_1016_j_measurement_2025_118636
crossref_primary_10_1007_s40745_025_00599_8
crossref_primary_10_1016_j_aei_2025_103868
crossref_primary_10_1109_ACCESS_2024_3432639
crossref_primary_10_1109_ACCESS_2023_3342698
crossref_primary_10_1109_ACCESS_2024_3453970
crossref_primary_10_1016_j_eswa_2025_127124
Cites_doi 10.1109/ACCESS.2021.3124710
10.1016/j.asoc.2016.01.044
10.1108/COMPEL-10-2021-0399
10.3233/IDA-1997-1302
10.3390/math10203845
10.1109/INISTA.2016.7571853
10.1109/ComPE49325.2020.9200173
10.32604/cmc.2022.026026
10.3390/sym13101816
10.1109/ICNN.1995.488968
10.1109/TEVC.2015.2504420
10.1007/s00521-022-07705-4
10.54216/JAIM.020204
10.1109/ACCESS.2023.3274696
10.1109/ACCESS.2022.3153038
10.1016/j.neucom.2015.06.083
10.1109/ACCESS.2023.3274490
10.1016/j.engappai.2017.01.006
10.1007/s00521-020-04839-1
10.1016/j.patcog.2021.108079
10.1109/ACCESS.2019.2909945
10.32604/cmc.2022.030447
10.54216/JAIM.010101
10.1007/s12065-022-00705-2
10.1007/s10586-021-03254-y
10.1007/978-1-4615-5689-3
10.54216/JAIM.010102
10.2991/ijcis.d.210616.001
10.1109/TCYB.2020.3042243
10.1007/s10489-018-1334-8
10.1007/978-3-030-82196-8_15
10.3390/math10173144
10.3390/math10162912
10.1109/ACCESS.2022.3196660
10.32604/cmc.2023.033042
10.1007/s11047-019-09769-z
10.1016/j.eij.2018.03.002
10.5539/mas.v14n6p75
10.1142/S2047684119500210
10.1007/s44196-021-00009-w
10.54216/JAIM.010103
10.1109/ICSMC.1997.637339
10.1109/ACCESS.2020.2992752
10.1007/s00521-018-3796-3
10.1016/j.asoc.2021.107302
10.1016/B978-0-12-821986-7.00016-0
10.54216/JAIM.010104
10.3390/s22155669
10.54216/JAIM.020103
10.1109/ACCESS.2019.2897325
10.1109/ACCESS.2022.3166901
10.1109/TCYB.2016.2549639
10.1007/978-3-030-11196-0_28
10.1016/j.eswa.2019.113103
10.32604/cmc.2022.029605
10.1007/s10115-017-1059-8
10.1007/s11042-018-6155-6
10.1109/ACCESS.2022.3190508
10.1109/ICCES45898.2019.9002372
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3298955
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 79776
ExternalDocumentID oai_doaj_org_article_8e303192e32a4155a860bb63aa751c68
10_1109_ACCESS_2023_3298955
10194924
Genre orig-research
GrantInformation_xml – fundername: Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, through Researchers Supporting
  grantid: PNURSP2023R 308
  funderid: 10.13039/501100004242
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-385b54efbc40fb61658c8c8d66c34f6a7d57f03eb1e24cc48df828215e6dc6aa3
IEDL.DBID DOA
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001043109000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:03 EDT 2025
Sun Nov 30 04:52:04 EST 2025
Tue Nov 18 20:49:28 EST 2025
Sat Nov 29 04:02:53 EST 2025
Wed Aug 27 02:21:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-385b54efbc40fb61658c8c8d66c34f6a7d57f03eb1e24cc48df828215e6dc6aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7080-1979
0000-0002-9843-6392
0000-0002-8352-6731
0000-0002-9221-7658
0000-0001-7530-7961
OpenAccessLink https://doaj.org/article/8e303192e32a4155a860bb63aa751c68
PQID 2845756363
PQPubID 4845423
PageCount 27
ParticipantIDs ieee_primary_10194924
crossref_citationtrail_10_1109_ACCESS_2023_3298955
proquest_journals_2845756363
doaj_primary_oai_doaj_org_article_8e303192e32a4155a860bb63aa751c68
crossref_primary_10_1109_ACCESS_2023_3298955
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
al-nuaimi (ref44) 2022; 2
ref41
khan (ref28) 2021; 19
ref43
blake (ref62) 1998
ref8
guyon (ref22) 2003; 3
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
awange (ref49) 2018
ref24
ref26
ref25
ref20
ref63
ref21
sanghoun (ref23) 2023; 11
ref27
ref29
ref60
ref61
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2021.3124710
– ident: ref15
  doi: 10.1016/j.asoc.2016.01.044
– ident: ref31
  doi: 10.1108/COMPEL-10-2021-0399
– ident: ref21
  doi: 10.3233/IDA-1997-1302
– ident: ref36
  doi: 10.3390/math10203845
– ident: ref56
  doi: 10.1109/INISTA.2016.7571853
– ident: ref13
  doi: 10.1109/ComPE49325.2020.9200173
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref22
  article-title: An introduction to variable and feature selection
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.32604/cmc.2022.026026
– ident: ref30
  doi: 10.3390/sym13101816
– volume: 19
  start-page: 518
  year: 2021
  ident: ref28
  article-title: Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities
  publication-title: Appl Anal Int J
– start-page: 167
  year: 2018
  ident: ref49
  article-title: Particle swarm optimization
  publication-title: Mathematical Geosciences Hybrid Symbolic-Numeric Methods
– ident: ref14
  doi: 10.1109/ICNN.1995.488968
– ident: ref18
  doi: 10.1109/TEVC.2015.2504420
– ident: ref1
  doi: 10.1007/s00521-022-07705-4
– volume: 2
  start-page: 39
  year: 2022
  ident: ref44
  article-title: Weather forecasting over Iraq using machine learning
  publication-title: J Artif Intell Metaheuristics
  doi: 10.54216/JAIM.020204
– ident: ref20
  doi: 10.1109/ACCESS.2023.3274696
– ident: ref3
  doi: 10.1109/ACCESS.2022.3153038
– ident: ref63
  doi: 10.1016/j.neucom.2015.06.083
– volume: 11
  start-page: 46604
  year: 2023
  ident: ref23
  article-title: Evolutionary approach for interpretable feature selection algorithm in manufacturing industry
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3274490
– ident: ref52
  doi: 10.1016/j.engappai.2017.01.006
– ident: ref55
  doi: 10.1007/s00521-020-04839-1
– ident: ref24
  doi: 10.1016/j.patcog.2021.108079
– ident: ref42
  doi: 10.1109/ACCESS.2019.2909945
– ident: ref38
  doi: 10.32604/cmc.2022.030447
– ident: ref39
  doi: 10.54216/JAIM.010101
– ident: ref51
  doi: 10.1007/s12065-022-00705-2
– ident: ref48
  doi: 10.1007/s10586-021-03254-y
– ident: ref4
  doi: 10.1007/978-1-4615-5689-3
– ident: ref17
  doi: 10.54216/JAIM.010102
– ident: ref26
  doi: 10.2991/ijcis.d.210616.001
– ident: ref25
  doi: 10.1109/TCYB.2020.3042243
– ident: ref11
  doi: 10.1007/s10489-018-1334-8
– ident: ref12
  doi: 10.1007/978-3-030-82196-8_15
– ident: ref61
  doi: 10.3390/math10173144
– ident: ref60
  doi: 10.3390/math10162912
– ident: ref59
  doi: 10.1109/ACCESS.2022.3196660
– year: 1998
  ident: ref62
  publication-title: UCI repository of machine learning databases
– ident: ref7
  doi: 10.32604/cmc.2023.033042
– ident: ref33
  doi: 10.1007/s11047-019-09769-z
– ident: ref2
  doi: 10.1016/j.eij.2018.03.002
– ident: ref6
  doi: 10.5539/mas.v14n6p75
– ident: ref35
  doi: 10.1142/S2047684119500210
– ident: ref29
  doi: 10.1007/s44196-021-00009-w
– ident: ref27
  doi: 10.54216/JAIM.010103
– ident: ref19
  doi: 10.1109/ICSMC.1997.637339
– ident: ref9
  doi: 10.1109/ACCESS.2020.2992752
– ident: ref50
  doi: 10.1007/s00521-018-3796-3
– ident: ref10
  doi: 10.1016/j.asoc.2021.107302
– ident: ref54
  doi: 10.1016/B978-0-12-821986-7.00016-0
– ident: ref34
  doi: 10.54216/JAIM.010104
– ident: ref47
  doi: 10.3390/s22155669
– ident: ref43
  doi: 10.54216/JAIM.020103
– ident: ref41
  doi: 10.1109/ACCESS.2019.2897325
– ident: ref57
  doi: 10.1109/ACCESS.2022.3166901
– ident: ref16
  doi: 10.1109/TCYB.2016.2549639
– ident: ref37
  doi: 10.1007/978-3-030-11196-0_28
– ident: ref32
  doi: 10.1016/j.eswa.2019.113103
– ident: ref45
  doi: 10.32604/cmc.2022.029605
– ident: ref8
  doi: 10.1007/s10115-017-1059-8
– ident: ref40
  doi: 10.1007/s11042-018-6155-6
– ident: ref58
  doi: 10.1109/ACCESS.2022.3190508
– ident: ref53
  doi: 10.1109/ICCES45898.2019.9002372
SSID ssj0000816957
Score 2.5340064
Snippet Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79750
SubjectTerms Classification algorithms
Data mining
dipper throated optimization algorithm
Feature extraction
Feature selection
Genetic algorithms
Heuristic methods
K-nearest neighbors algorithm
Machine learning
Mathematical models
meta-heuristic optimization
Metaheuristics
Optimization
Optimization algorithms
Particle swarm optimization
Pattern recognition
Sine cosine optimization algorithm
Stability analysis
Trigonometric functions
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMceBaxUJAPHMmSxIntPW4XqnKgILVIvVl-0hXtZpXdrdR_3xnHXa2EQEK5xJGdOPk8nhnHMx_AB89ltKqOKGkRHRTnfWGibQocXFzFqjayjIlsQp6eqouLyY8crJ5iYUIIafNZGNNp-pfvO7ehpTKUcHS50WHYgz0p5RCstV1QIQaJSStzZqGqnHyazmb4EmMiCB9zyjRO8Xw72icl6c-sKn9MxUm_HD_9z549gyfZkGTTAfnn8CAsXsDjnfSCL-H310x5ehMYmXqbPrCzxHuDYLBviTuaHaEa8wzLJ7cUvMXOsD2bdbQdnpmFZ5_ny2Xo2fll36FZ6tl3nGOuc_Amm1796vr5-vJ6dQA_j7-cz06KTK5QOHTp1gVXrW2bEC0WoxUVWiIODy-E400URvpWxpLjVB7qxrlG-YjOGRoIQXgnjOGvYH_RLcJrYFE0raKIVlM2jalqawPewfISvfY2cjGC-v6ja5czjxMBxpVOHkg50QNSmpDSGakRfNw2Wg6JN_5d_YjQ3FalrNnpAsKksxBqFTgFbdWB14YMKaNEaa3gxsi2ckKN4ICg3XnegOoIDu8Hh84ivtKo19HUFVzwN39p9hYeUReHBZtD2F_3m_AOHrqb9XzVv0-j9w7blu2Q
  priority: 102
  providerName: IEEE
Title Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms
URI https://ieeexplore.ieee.org/document/10194924
https://www.proquest.com/docview/2845756363
https://doaj.org/article/8e303192e32a4155a860bb63aa751c68
Volume 11
WOSCitedRecordID wos001043109000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF1lRw8Wm2bNE2Pu6uiBx-ggreQpy7q7tJdBS_-didplIKgFykUUpKmmUwyMyXzfQjtG1I6xXMHK81BgKKNSaRTNAHlItxluSxTF8gmystLfn9fXbeovvyZsAYeuBHcEbfEJ9rkluTSGz_JWaoUI1KWRaZZSPMFr6cVTIU9mGesKsoIM5Sl1VFvMIARHXq28EPiYcd9cl_LFAXE_kix8mNfDsbmdAUtRy8R95qvW0VzdrSGllrYgevo6Tzymb5Z7P2419rim0BqA5LGF4EYGvfBRhkM5bN3n5mFb6A9Hoz9WXcsRwYfDycTW-Pbx3oMPqfBV7CBvMTMTNx7fhjXw9njy3QD3Z2e3A7OksickGiI12YJ4YUqqHUKik6xDNwMDZdhTBPqmCxNUbqUwD5tc6o15cZB5AXW3zKjmZRkE82PxiO7hbBjtOA-XVWmlMosV8rCGxRJISQvHGEdlH8JUegIK-7ZLZ5FCC_SSjSSF17yIkq-gw6-G00aVI3fq_f97HxX9ZDY4QEoioiKIv5SlA7a8HPb6i-rKESfHdT9mmwR1-9UgNEGP5YRRrb_o-8dtOjH0_y66aL5Wf1qd9GCfpsNp_VeUF24X3yc7IUExE9NG_D2
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BQAIe-NxEYYAfeCQliR3HfezKpk5sBWlF2pvlz63a1lRpO4n_nrPjVZUQSFNe4shOnPx8vjvHdz-Az5bWXovSo6R5dFCMtZnymmU4uKjwRanq3EeyiXoyEefng58pWD3Gwjjn4uYz1w-n8V--bcw6LJWhhKPLjQ7DQ3hUMVYWXbjWZkklcEgMqjrlFirywdfhaISv0Q8U4X0aco2HiL4t_RPT9Cdelb8m46hhjl7cs28v4XkyJcmww_4VPHDz1_BsK8HgG7g6TqSnt44EY2_dOnIWmW8QDnIa2aPJASoyS7A8_h3Ct8gZtiejJmyIJ2puybfZYuFaMr1sGzRMLfmBs8xNCt8kw-uLpp2tLm-Wu_Dr6HA6GmeJXiEz6NStMioqXTHnNRa95gXaIgYPy7mhzHNV26r2OcXJ3JXMGCasR_cMTQTHreFK0T3YmTdz9xaI56wSIaZV5YypotTa4R00zdFvrzzlPSjvPro0Kfd4oMC4ltEHyQeyQ0oGpGRCqgdfNo0WXeqN_1c_CGhuqoa82fECwiSTGErhaAjbKh0tVTCllOC51pwqVVeF4aIHuwHared1qPZg_25wyCTkS4maHY1dTjl9949mn-DJeHp6Ik-OJ9_fw9PQ3W75Zh92Vu3afYDH5nY1W7Yf40j-A1mz8Nc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Feature+Selection+Method+Based+on+Hybrid+Sine+Cosine+and+Dipper+Throated+Optimization+Algorithms&rft.jtitle=IEEE+access&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Ibrahim%2C+Abdelhameed&rft.au=Eid%2C+Marwa+Metwally&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=79750&rft.epage=79776&rft_id=info:doi/10.1109%2FACCESS.2023.3298955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3298955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon