Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms
Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 79750 - 79776 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features' effectiveness in classification problems. Results: The achieved results demonstrate the algorithm's superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon's rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method's significance, superiority, and statistical difference. |
|---|---|
| AbstractList | Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features’ effectiveness in classification problems. Results: The achieved results demonstrate the algorithm’s superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon’s rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method’s significance, superiority, and statistical difference. |
| Author | Alhussan, Amel Ali Ibrahim, Abdelhameed Lim, Wei Hong Shams, Mahmoud Y. Abdelhamid, Abdelaziz A. Khafaga, Doaa Sami Khodadadi, Nima El-Kenawy, El-Sayed M. Mirjalili, Seyedali Eid, Marwa Metwally |
| Author_xml | – sequence: 1 givenname: Abdelaziz A. orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz A. organization: Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt – sequence: 2 givenname: El-Sayed M. orcidid: 0000-0002-9221-7658 surname: El-Kenawy fullname: El-Kenawy, El-Sayed M. email: skenawy@ieee.org organization: Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura, Egypt – sequence: 3 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed organization: Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt – sequence: 4 givenname: Marwa Metwally surname: Eid fullname: Eid, Marwa Metwally organization: Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt – sequence: 5 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami email: dskhafga@pnu.edu.sa organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia – sequence: 6 givenname: Amel Ali orcidid: 0000-0001-7530-7961 surname: Alhussan fullname: Alhussan, Amel Ali organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia – sequence: 7 givenname: Seyedali surname: Mirjalili fullname: Mirjalili, Seyedali organization: Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, QLD, Australia – sequence: 8 givenname: Nima surname: Khodadadi fullname: Khodadadi, Nima organization: Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, USA – sequence: 9 givenname: Wei Hong surname: Lim fullname: Lim, Wei Hong organization: Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia – sequence: 10 givenname: Mahmoud Y. surname: Shams fullname: Shams, Mahmoud Y. organization: Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt |
| BookMark | eNp9kU9v1DAQxSNUJErpJ4BDJM67xH9jH5fQ0pWKethytibOpOslGwfbW6n99Hg3Rao4YB_GM3q_p7He--Js9CMWxUdSLQmp9JdV01xtNktaUbZkVCstxJvinBKpF0wwefbq_a64jHFX5aPySNTnxa_1OPpHSO4Ry2uEdAhYbnBAm5wfyx-Ytr4rv0LErsz9zVMbXFdu3Ihl4-OxwNiV39w0YSjvt8FDysq7Kbm9e4aTx2p48MGl7T5-KN72MES8fKkXxc_rq_vmZnF7933drG4Xllc6LZgSreDYt7ntW0mkUDbfTkrLeC-h7kTdVwxbgpRby1XXK6ooESg7KwHYRbGefTsPOzMFt4fwZDw4cxr48GAgJGcHNApZxYimyChwIgQoWbWtZAC1IFaq7PV59pqC_33AmMzOH8KY1zdUcVELySTLKj2rbPAxBuyNden0_RTADYZU5hiVmaMyx6jMS1SZZf-wfzf-P_VpphwiviKI5ppy9gdmrKH8 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124882 crossref_primary_10_1007_s12652_025_04951_x crossref_primary_10_3233_AIS_230626 crossref_primary_10_32604_cmc_2024_053627 crossref_primary_10_1016_j_aei_2025_103875 crossref_primary_10_1002_suco_70195 crossref_primary_10_7717_peerj_cs_1828 crossref_primary_10_1016_j_cose_2025_104512 crossref_primary_10_1016_j_aei_2025_103757 crossref_primary_10_1109_ACCESS_2023_3312022 crossref_primary_10_1016_j_jenvman_2024_120091 crossref_primary_10_3390_biomimetics9110701 crossref_primary_10_1007_s11227_024_06384_3 crossref_primary_10_1186_s40537_024_00985_8 crossref_primary_10_1016_j_asoc_2024_112638 crossref_primary_10_1016_j_eswa_2024_126186 crossref_primary_10_1016_j_rineng_2025_107285 crossref_primary_10_1007_s13369_024_09113_3 crossref_primary_10_1007_s11227_024_06606_8 crossref_primary_10_1016_j_knosys_2024_112781 crossref_primary_10_1109_ACCESS_2024_3411612 crossref_primary_10_1145_3689428 crossref_primary_10_1016_j_jestch_2024_101935 crossref_primary_10_1016_j_bspc_2025_108561 crossref_primary_10_1177_18724981241295927 crossref_primary_10_1007_s13042_024_02187_3 crossref_primary_10_1016_j_mex_2025_103591 crossref_primary_10_1016_j_measurement_2025_118636 crossref_primary_10_1007_s40745_025_00599_8 crossref_primary_10_1016_j_aei_2025_103868 crossref_primary_10_1109_ACCESS_2024_3432639 crossref_primary_10_1109_ACCESS_2023_3342698 crossref_primary_10_1109_ACCESS_2024_3453970 crossref_primary_10_1016_j_eswa_2025_127124 |
| Cites_doi | 10.1109/ACCESS.2021.3124710 10.1016/j.asoc.2016.01.044 10.1108/COMPEL-10-2021-0399 10.3233/IDA-1997-1302 10.3390/math10203845 10.1109/INISTA.2016.7571853 10.1109/ComPE49325.2020.9200173 10.32604/cmc.2022.026026 10.3390/sym13101816 10.1109/ICNN.1995.488968 10.1109/TEVC.2015.2504420 10.1007/s00521-022-07705-4 10.54216/JAIM.020204 10.1109/ACCESS.2023.3274696 10.1109/ACCESS.2022.3153038 10.1016/j.neucom.2015.06.083 10.1109/ACCESS.2023.3274490 10.1016/j.engappai.2017.01.006 10.1007/s00521-020-04839-1 10.1016/j.patcog.2021.108079 10.1109/ACCESS.2019.2909945 10.32604/cmc.2022.030447 10.54216/JAIM.010101 10.1007/s12065-022-00705-2 10.1007/s10586-021-03254-y 10.1007/978-1-4615-5689-3 10.54216/JAIM.010102 10.2991/ijcis.d.210616.001 10.1109/TCYB.2020.3042243 10.1007/s10489-018-1334-8 10.1007/978-3-030-82196-8_15 10.3390/math10173144 10.3390/math10162912 10.1109/ACCESS.2022.3196660 10.32604/cmc.2023.033042 10.1007/s11047-019-09769-z 10.1016/j.eij.2018.03.002 10.5539/mas.v14n6p75 10.1142/S2047684119500210 10.1007/s44196-021-00009-w 10.54216/JAIM.010103 10.1109/ICSMC.1997.637339 10.1109/ACCESS.2020.2992752 10.1007/s00521-018-3796-3 10.1016/j.asoc.2021.107302 10.1016/B978-0-12-821986-7.00016-0 10.54216/JAIM.010104 10.3390/s22155669 10.54216/JAIM.020103 10.1109/ACCESS.2019.2897325 10.1109/ACCESS.2022.3166901 10.1109/TCYB.2016.2549639 10.1007/978-3-030-11196-0_28 10.1016/j.eswa.2019.113103 10.32604/cmc.2022.029605 10.1007/s10115-017-1059-8 10.1007/s11042-018-6155-6 10.1109/ACCESS.2022.3190508 10.1109/ICCES45898.2019.9002372 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3298955 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 79776 |
| ExternalDocumentID | oai_doaj_org_article_8e303192e32a4155a860bb63aa751c68 10_1109_ACCESS_2023_3298955 10194924 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, through Researchers Supporting grantid: PNURSP2023R 308 funderid: 10.13039/501100004242 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-385b54efbc40fb61658c8c8d66c34f6a7d57f03eb1e24cc48df828215e6dc6aa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001043109000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:03 EDT 2025 Sun Nov 30 04:52:04 EST 2025 Tue Nov 18 20:49:28 EST 2025 Sat Nov 29 04:02:53 EST 2025 Wed Aug 27 02:21:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-385b54efbc40fb61658c8c8d66c34f6a7d57f03eb1e24cc48df828215e6dc6aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7080-1979 0000-0002-9843-6392 0000-0002-8352-6731 0000-0002-9221-7658 0000-0001-7530-7961 |
| OpenAccessLink | https://doaj.org/article/8e303192e32a4155a860bb63aa751c68 |
| PQID | 2845756363 |
| PQPubID | 4845423 |
| PageCount | 27 |
| ParticipantIDs | ieee_primary_10194924 crossref_citationtrail_10_1109_ACCESS_2023_3298955 proquest_journals_2845756363 doaj_primary_oai_doaj_org_article_8e303192e32a4155a860bb63aa751c68 crossref_primary_10_1109_ACCESS_2023_3298955 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 al-nuaimi (ref44) 2022; 2 ref41 khan (ref28) 2021; 19 ref43 blake (ref62) 1998 ref8 guyon (ref22) 2003; 3 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 awange (ref49) 2018 ref24 ref26 ref25 ref20 ref63 ref21 sanghoun (ref23) 2023; 11 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref5 doi: 10.1109/ACCESS.2021.3124710 – ident: ref15 doi: 10.1016/j.asoc.2016.01.044 – ident: ref31 doi: 10.1108/COMPEL-10-2021-0399 – ident: ref21 doi: 10.3233/IDA-1997-1302 – ident: ref36 doi: 10.3390/math10203845 – ident: ref56 doi: 10.1109/INISTA.2016.7571853 – ident: ref13 doi: 10.1109/ComPE49325.2020.9200173 – volume: 3 start-page: 1157 year: 2003 ident: ref22 article-title: An introduction to variable and feature selection publication-title: J Mach Learn Res – ident: ref46 doi: 10.32604/cmc.2022.026026 – ident: ref30 doi: 10.3390/sym13101816 – volume: 19 start-page: 518 year: 2021 ident: ref28 article-title: Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities publication-title: Appl Anal Int J – start-page: 167 year: 2018 ident: ref49 article-title: Particle swarm optimization publication-title: Mathematical Geosciences Hybrid Symbolic-Numeric Methods – ident: ref14 doi: 10.1109/ICNN.1995.488968 – ident: ref18 doi: 10.1109/TEVC.2015.2504420 – ident: ref1 doi: 10.1007/s00521-022-07705-4 – volume: 2 start-page: 39 year: 2022 ident: ref44 article-title: Weather forecasting over Iraq using machine learning publication-title: J Artif Intell Metaheuristics doi: 10.54216/JAIM.020204 – ident: ref20 doi: 10.1109/ACCESS.2023.3274696 – ident: ref3 doi: 10.1109/ACCESS.2022.3153038 – ident: ref63 doi: 10.1016/j.neucom.2015.06.083 – volume: 11 start-page: 46604 year: 2023 ident: ref23 article-title: Evolutionary approach for interpretable feature selection algorithm in manufacturing industry publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3274490 – ident: ref52 doi: 10.1016/j.engappai.2017.01.006 – ident: ref55 doi: 10.1007/s00521-020-04839-1 – ident: ref24 doi: 10.1016/j.patcog.2021.108079 – ident: ref42 doi: 10.1109/ACCESS.2019.2909945 – ident: ref38 doi: 10.32604/cmc.2022.030447 – ident: ref39 doi: 10.54216/JAIM.010101 – ident: ref51 doi: 10.1007/s12065-022-00705-2 – ident: ref48 doi: 10.1007/s10586-021-03254-y – ident: ref4 doi: 10.1007/978-1-4615-5689-3 – ident: ref17 doi: 10.54216/JAIM.010102 – ident: ref26 doi: 10.2991/ijcis.d.210616.001 – ident: ref25 doi: 10.1109/TCYB.2020.3042243 – ident: ref11 doi: 10.1007/s10489-018-1334-8 – ident: ref12 doi: 10.1007/978-3-030-82196-8_15 – ident: ref61 doi: 10.3390/math10173144 – ident: ref60 doi: 10.3390/math10162912 – ident: ref59 doi: 10.1109/ACCESS.2022.3196660 – year: 1998 ident: ref62 publication-title: UCI repository of machine learning databases – ident: ref7 doi: 10.32604/cmc.2023.033042 – ident: ref33 doi: 10.1007/s11047-019-09769-z – ident: ref2 doi: 10.1016/j.eij.2018.03.002 – ident: ref6 doi: 10.5539/mas.v14n6p75 – ident: ref35 doi: 10.1142/S2047684119500210 – ident: ref29 doi: 10.1007/s44196-021-00009-w – ident: ref27 doi: 10.54216/JAIM.010103 – ident: ref19 doi: 10.1109/ICSMC.1997.637339 – ident: ref9 doi: 10.1109/ACCESS.2020.2992752 – ident: ref50 doi: 10.1007/s00521-018-3796-3 – ident: ref10 doi: 10.1016/j.asoc.2021.107302 – ident: ref54 doi: 10.1016/B978-0-12-821986-7.00016-0 – ident: ref34 doi: 10.54216/JAIM.010104 – ident: ref47 doi: 10.3390/s22155669 – ident: ref43 doi: 10.54216/JAIM.020103 – ident: ref41 doi: 10.1109/ACCESS.2019.2897325 – ident: ref57 doi: 10.1109/ACCESS.2022.3166901 – ident: ref16 doi: 10.1109/TCYB.2016.2549639 – ident: ref37 doi: 10.1007/978-3-030-11196-0_28 – ident: ref32 doi: 10.1016/j.eswa.2019.113103 – ident: ref45 doi: 10.32604/cmc.2022.029605 – ident: ref8 doi: 10.1007/s10115-017-1059-8 – ident: ref40 doi: 10.1007/s11042-018-6155-6 – ident: ref58 doi: 10.1109/ACCESS.2022.3190508 – ident: ref53 doi: 10.1109/ICCES45898.2019.9002372 |
| SSID | ssj0000816957 |
| Score | 2.5340064 |
| Snippet | Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 79750 |
| SubjectTerms | Classification algorithms Data mining dipper throated optimization algorithm Feature extraction Feature selection Genetic algorithms Heuristic methods K-nearest neighbors algorithm Machine learning Mathematical models meta-heuristic optimization Metaheuristics Optimization Optimization algorithms Particle swarm optimization Pattern recognition Sine cosine optimization algorithm Stability analysis Trigonometric functions |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMceBaxUJAPHMmSxIntPW4XqnKgILVIvVl-0hXtZpXdrdR_3xnHXa2EQEK5xJGdOPk8nhnHMx_AB89ltKqOKGkRHRTnfWGibQocXFzFqjayjIlsQp6eqouLyY8crJ5iYUIIafNZGNNp-pfvO7ehpTKUcHS50WHYgz0p5RCstV1QIQaJSStzZqGqnHyazmb4EmMiCB9zyjRO8Xw72icl6c-sKn9MxUm_HD_9z549gyfZkGTTAfnn8CAsXsDjnfSCL-H310x5ehMYmXqbPrCzxHuDYLBviTuaHaEa8wzLJ7cUvMXOsD2bdbQdnpmFZ5_ny2Xo2fll36FZ6tl3nGOuc_Amm1796vr5-vJ6dQA_j7-cz06KTK5QOHTp1gVXrW2bEC0WoxUVWiIODy-E400URvpWxpLjVB7qxrlG-YjOGRoIQXgnjOGvYH_RLcJrYFE0raKIVlM2jalqawPewfISvfY2cjGC-v6ja5czjxMBxpVOHkg50QNSmpDSGakRfNw2Wg6JN_5d_YjQ3FalrNnpAsKksxBqFTgFbdWB14YMKaNEaa3gxsi2ckKN4ICg3XnegOoIDu8Hh84ivtKo19HUFVzwN39p9hYeUReHBZtD2F_3m_AOHrqb9XzVv0-j9w7blu2Q priority: 102 providerName: IEEE |
| Title | Innovative Feature Selection Method Based on Hybrid Sine Cosine and Dipper Throated Optimization Algorithms |
| URI | https://ieeexplore.ieee.org/document/10194924 https://www.proquest.com/docview/2845756363 https://doaj.org/article/8e303192e32a4155a860bb63aa751c68 |
| Volume | 11 |
| WOSCitedRecordID | wos001043109000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF1lRw8Wm2bNE2Pu6uiBx-ggreQpy7q7tJdBS_-didplIKgFykUUpKmmUwyMyXzfQjtG1I6xXMHK81BgKKNSaRTNAHlItxluSxTF8gmystLfn9fXbeovvyZsAYeuBHcEbfEJ9rkluTSGz_JWaoUI1KWRaZZSPMFr6cVTIU9mGesKsoIM5Sl1VFvMIARHXq28EPiYcd9cl_LFAXE_kix8mNfDsbmdAUtRy8R95qvW0VzdrSGllrYgevo6Tzymb5Z7P2419rim0BqA5LGF4EYGvfBRhkM5bN3n5mFb6A9Hoz9WXcsRwYfDycTW-Pbx3oMPqfBV7CBvMTMTNx7fhjXw9njy3QD3Z2e3A7OksickGiI12YJ4YUqqHUKik6xDNwMDZdhTBPqmCxNUbqUwD5tc6o15cZB5AXW3zKjmZRkE82PxiO7hbBjtOA-XVWmlMosV8rCGxRJISQvHGEdlH8JUegIK-7ZLZ5FCC_SSjSSF17yIkq-gw6-G00aVI3fq_f97HxX9ZDY4QEoioiKIv5SlA7a8HPb6i-rKESfHdT9mmwR1-9UgNEGP5YRRrb_o-8dtOjH0_y66aL5Wf1qd9GCfpsNp_VeUF24X3yc7IUExE9NG_D2 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BQAIe-NxEYYAfeCQliR3HfezKpk5sBWlF2pvlz63a1lRpO4n_nrPjVZUQSFNe4shOnPx8vjvHdz-Az5bWXovSo6R5dFCMtZnymmU4uKjwRanq3EeyiXoyEefng58pWD3Gwjjn4uYz1w-n8V--bcw6LJWhhKPLjQ7DQ3hUMVYWXbjWZkklcEgMqjrlFirywdfhaISv0Q8U4X0aco2HiL4t_RPT9Cdelb8m46hhjl7cs28v4XkyJcmww_4VPHDz1_BsK8HgG7g6TqSnt44EY2_dOnIWmW8QDnIa2aPJASoyS7A8_h3Ct8gZtiejJmyIJ2puybfZYuFaMr1sGzRMLfmBs8xNCt8kw-uLpp2tLm-Wu_Dr6HA6GmeJXiEz6NStMioqXTHnNRa95gXaIgYPy7mhzHNV26r2OcXJ3JXMGCasR_cMTQTHreFK0T3YmTdz9xaI56wSIaZV5YypotTa4R00zdFvrzzlPSjvPro0Kfd4oMC4ltEHyQeyQ0oGpGRCqgdfNo0WXeqN_1c_CGhuqoa82fECwiSTGErhaAjbKh0tVTCllOC51pwqVVeF4aIHuwHared1qPZg_25wyCTkS4maHY1dTjl9949mn-DJeHp6Ik-OJ9_fw9PQ3W75Zh92Vu3afYDH5nY1W7Yf40j-A1mz8Nc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Feature+Selection+Method+Based+on+Hybrid+Sine+Cosine+and+Dipper+Throated+Optimization+Algorithms&rft.jtitle=IEEE+access&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.au=El-Kenawy%2C+El-Sayed+M.&rft.au=Ibrahim%2C+Abdelhameed&rft.au=Eid%2C+Marwa+Metwally&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=79750&rft.epage=79776&rft_id=info:doi/10.1109%2FACCESS.2023.3298955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3298955 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |