Solar Irradiation Prediction Hybrid Framework Using Regularized Convolutional BiLSTM-Based Autoencoder Approach

Solar irradiance prediction is an essential subject in renewable energy generation. Prediction enhances the planning and management of solar installations and provides several economic benefits to energy companies. Solar irradiation, being highly volatile and unpredictable makes the forecasting task...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 11; s. 131362 - 131375
Hlavní autori: Chiranjeevi, Madderla, Karlamangal, Skandha, Moger, Tukaram, Jena, Debashisha
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Solar irradiance prediction is an essential subject in renewable energy generation. Prediction enhances the planning and management of solar installations and provides several economic benefits to energy companies. Solar irradiation, being highly volatile and unpredictable makes the forecasting task complex and difficult. To address the shortcomings of the traditional approaches, this research developed a hybrid resilient architecture for an enhanced solar irradiation forecast by employing a long short-term memory (LSTM) autoencoder, convolutional neural network (CNN), and the Bi-directional Long Short Term Memory (BiLSTM) model with grid search optimization. The suggested hybrid technique is comprised of two parts: feature encoding and dimensionality reduction using an LSTM autoencoder, followed by a regularized convolutional BiLSTM. The encoder is tasked with extracting the key features in order to deduce the input into a compact latent representation. The decoder network then predicts solar irradiance by analyzing the encoded representation's attributes. The experiments are conducted on three publicly available data sets collected from Desert Knowledge Australia Solar Centre (DKASC), National Solar Radiation Database (NSRDB), and Hawaii Space Exploration Analog and Simulation (HI-SEAS) Habitat. The analysis of univariate and multivariate-multi step ahead forecasting performed independently and it is compared with the conventional approaches. Several benchmark forecasting models and three performance metrics are utilized to validate the hybrid approach's prediction performance. The results show that the proposed architecture outperforms benchmark models in accuracy.
AbstractList Solar irradiance prediction is an essential subject in renewable energy generation. Prediction enhances the planning and management of solar installations and provides several economic benefits to energy companies. Solar irradiation, being highly volatile and unpredictable makes the forecasting task complex and difficult. To address the shortcomings of the traditional approaches, this research developed a hybrid resilient architecture for an enhanced solar irradiation forecast by employing a long short-term memory (LSTM) autoencoder, convolutional neural network (CNN), and the Bi-directional Long Short Term Memory (BiLSTM) model with grid search optimization. The suggested hybrid technique is comprised of two parts: feature encoding and dimensionality reduction using an LSTM autoencoder, followed by a regularized convolutional BiLSTM. The encoder is tasked with extracting the key features in order to deduce the input into a compact latent representation. The decoder network then predicts solar irradiance by analyzing the encoded representation’s attributes. The experiments are conducted on three publicly available data sets collected from Desert Knowledge Australia Solar Centre (DKASC), National Solar Radiation Database (NSRDB), and Hawaii Space Exploration Analog and Simulation (HI-SEAS) Habitat. The analysis of univariate and multivariate-multi step ahead forecasting performed independently and it is compared with the conventional approaches. Several benchmark forecasting models and three performance metrics are utilized to validate the hybrid approach’s prediction performance. The results show that the proposed architecture outperforms benchmark models in accuracy.
Author Chiranjeevi, Madderla
Moger, Tukaram
Karlamangal, Skandha
Jena, Debashisha
Author_xml – sequence: 1
  givenname: Madderla
  orcidid: 0009-0002-7837-796X
  surname: Chiranjeevi
  fullname: Chiranjeevi, Madderla
  email: chirumadderla.197ee012@nitk.edu.in
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Mangalore, Surathkal, India
– sequence: 2
  givenname: Skandha
  surname: Karlamangal
  fullname: Karlamangal, Skandha
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Mangalore, Surathkal, India
– sequence: 3
  givenname: Tukaram
  orcidid: 0000-0003-4176-5125
  surname: Moger
  fullname: Moger, Tukaram
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Mangalore, Surathkal, India
– sequence: 4
  givenname: Debashisha
  surname: Jena
  fullname: Jena, Debashisha
  organization: Department of Electrical and Electronics Engineering, National Institute of Technology Karnataka, Mangalore, Surathkal, India
BookMark eNp9kVFv0zAQxy00JEbZJ4CHSDyn2Lk4iR-7aGOVikC0PFsX-1Jcsrg4ydD49LjNkCYe8IvP5_v9dXf_1-yi9z0x9lbwpRBcfVjV9c12u8x4BksA4FkGL9hlJgqVgoTi4ln8il0Nw4HHU8WULC-Z3_oOQ7IOAa3D0fk--RLIOnMO7x6b4GxyG_CefvnwI_k2uH6ffKX9FCn3m2xS-_7Bd9OpHLvk2m22u0_pNQ7xazWNnnrjLYVkdTwGj-b7G_ayxW6gq6d7wXa3N7v6Lt18_riuV5vU5FyNKZTSkMp4AXlVETeNrQyY08PmQrRFyZXIbS6pEKppSxQoVAtFa5vGclXCgq1nWevxoI_B3WN41B6dPid82GsMozMd6bZRnDdUgChVDkIhcklNBZy4xIrLqPV-1ooT_JxoGPXBTyFOO-isUrIqcxX7XDA1V5nghyFQq40bzwsdA7pOC65PbunZLX1ySz-5FVn4h_3b8f-pdzPliOgZAXE3QsIfXgKikA
CODEN IAECCG
CitedBy_id crossref_primary_10_1080_01430750_2024_2414924
crossref_primary_10_7717_peerj_cs_3026
crossref_primary_10_1016_j_ejrh_2025_102663
crossref_primary_10_1371_journal_pone_0320089
crossref_primary_10_3390_electronics14142779
Cites_doi 10.1016/j.solener.2017.09.068
10.1109/ACCESS.2019.2923905
10.1109/ICPES.2017.8387332
10.1016/j.egyr.2022.10.071
10.1016/j.renene.2021.02.161
10.1007/s10661-014-3733-6
10.1016/j.epsr.2021.107633
10.1109/ACCESS.2019.2923006
10.1016/j.apenergy.2019.113315
10.1109/TSTE.2018.2888548
10.1016/j.asoc.2019.04.016
10.1016/j.enconman.2018.06.021
10.1109/RESEM57584.2023.10236100
10.1016/j.rser.2018.12.055
10.1016/j.renene.2015.08.068
10.1016/j.renene.2020.10.126
10.1109/smc.2016.7844673
10.1016/j.renene.2015.02.061
10.1109/TSTE.2021.3130949
10.1016/j.enconman.2019.112254
10.3390/app8050689
10.1111/rssc.12455
10.1109/ICEPE57949.2023.10201489
10.1016/j.enconman.2018.02.087
10.1109/access.2021.3100105
10.1016/j.egypro.2017.12.126
10.1007/s13369-021-05669-6
10.1016/j.solener.2021.12.066
10.1016/j.vibspec.2017.10.006
10.1016/j.renene.2019.02.087
10.1016/j.enconman.2018.07.089
10.1287/mnsc.42.7.1082
10.1109/PTC.2019.8810672
10.1016/j.ymssp.2020.107398
10.1016/j.compeleceng.2023.108804
10.1016/j.energy.2019.04.127
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3330223
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 131375
ExternalDocumentID oai_doaj_org_article_fb900be631794319aa05eb830e05a805
10_1109_ACCESS_2023_3330223
10309115
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-375ce92063488e0cbd8c3c3488d411f670914d45e619bf7a1a19f36fdbbd0973
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001112737500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Tue Oct 14 19:09:34 EDT 2025
Sun Nov 30 04:50:26 EST 2025
Tue Nov 18 22:06:02 EST 2025
Sat Nov 29 06:25:13 EST 2025
Wed Aug 27 02:22:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-375ce92063488e0cbd8c3c3488d411f670914d45e619bf7a1a19f36fdbbd0973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-7837-796X
0000-0003-4176-5125
OpenAccessLink https://ieeexplore.ieee.org/document/10309115
PQID 2895874906
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3330223
proquest_journals_2895874906
ieee_primary_10309115
crossref_primary_10_1109_ACCESS_2023_3330223
doaj_primary_oai_doaj_org_article_fb900be631794319aa05eb830e05a805
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Ren (ref40) 2018; 35
ref22
ref21
(ref1) 2019
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1016/j.solener.2017.09.068
– ident: ref24
  doi: 10.1109/ACCESS.2019.2923905
– ident: ref14
  doi: 10.1109/ICPES.2017.8387332
– ident: ref30
  doi: 10.1016/j.egyr.2022.10.071
– ident: ref32
  doi: 10.1016/j.renene.2021.02.161
– ident: ref11
  doi: 10.1007/s10661-014-3733-6
– ident: ref3
  doi: 10.1016/j.epsr.2021.107633
– ident: ref27
  doi: 10.1109/ACCESS.2019.2923006
– ident: ref26
  doi: 10.1016/j.apenergy.2019.113315
– ident: ref22
  doi: 10.1109/TSTE.2018.2888548
– ident: ref18
  doi: 10.1016/j.asoc.2019.04.016
– ident: ref20
  doi: 10.1016/j.enconman.2018.06.021
– ident: ref37
  doi: 10.1109/RESEM57584.2023.10236100
– ident: ref7
  doi: 10.1016/j.rser.2018.12.055
– ident: ref6
  doi: 10.1016/j.renene.2015.08.068
– ident: ref8
  doi: 10.1016/j.renene.2020.10.126
– ident: ref28
  doi: 10.1109/smc.2016.7844673
– ident: ref23
  doi: 10.1016/j.renene.2015.02.061
– ident: ref39
  doi: 10.1109/TSTE.2021.3130949
– volume-title: Administration, U. International Energy Outlook 2019 With Projections to 2050
  year: 2019
  ident: ref1
– ident: ref10
  doi: 10.1016/j.enconman.2019.112254
– ident: ref25
  doi: 10.3390/app8050689
– ident: ref9
  doi: 10.1111/rssc.12455
– ident: ref29
  doi: 10.1109/ICEPE57949.2023.10201489
– ident: ref17
  doi: 10.1016/j.enconman.2018.02.087
– ident: ref31
  doi: 10.1109/access.2021.3100105
– volume: 35
  start-page: 44
  issue: 4
  year: 2018
  ident: ref40
  article-title: Stock index forecast based on regularized LSTM model
  publication-title: Comput. Appl. Softw.
– ident: ref19
  doi: 10.1016/j.egypro.2017.12.126
– ident: ref12
  doi: 10.1007/s13369-021-05669-6
– ident: ref5
  doi: 10.1016/j.solener.2021.12.066
– ident: ref38
  doi: 10.1016/j.vibspec.2017.10.006
– ident: ref21
  doi: 10.1016/j.renene.2019.02.087
– ident: ref2
  doi: 10.1016/j.enconman.2018.07.089
– ident: ref16
  doi: 10.1287/mnsc.42.7.1082
– ident: ref15
  doi: 10.1109/PTC.2019.8810672
– ident: ref34
  doi: 10.1016/j.ymssp.2020.107398
– ident: ref33
  doi: 10.1016/j.compeleceng.2023.108804
– ident: ref4
  doi: 10.1016/j.energy.2019.04.127
SSID ssj0000816957
Score 2.3445337
Snippet Solar irradiance prediction is an essential subject in renewable energy generation. Prediction enhances the planning and management of solar installations and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131362
SubjectTerms Artificial neural networks
Autoencoder
Autoregressive processes
Benchmarks
BiLSTM
convolution neural network
Convolutional neural networks
Decoding
Encoding
Forecasting
Irradiance
Irradiation
Long short term memory
Mathematical models
Model accuracy
Performance measurement
Predictive models
Radiation effects
Representations
Solar power generation
Solar radiation
Space exploration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4ie9CD6Ko4_lhy8Gg1mbRpc5wZdlBYRXQO3kJ-woDMSB0F96_f99KMjAjuxVsb0qZ5ecl7X5t-HyGnRslaQCAqfBCuKKNqisZWMPFisCp4J01gSWyivrlpHh7U7YrUF-4J6-iBO8NdRKsYs0GKRGXGlTGsCrYRLLDKNB17KWQ9K2AqrcENl6qqM80QZ-piMBpBj85RLfxcAIjv98WHUJQY-7PEyqd1OQWb8TbZylkiHXRPt0PWwuwn2VzhDtwl83sEpfSqbZFdAM1Lb1v86pIOL9_wTyw6Xm69omlrAL1LyvPt9G_wdDSfvWa_g6aG0z_3k-tiCEHN08HLYo4Elz60dJBJx_fIZPx7MrossnpC4QCzLWDlqFxQfUhBYI4G5qxvnHB44kvOI_K28dKXVQAIZWNtuOEqChm9tR45fPbJ-mw-CweESh-8hHsoJ21pmLAGchBTR1v7Opqy7JH-0o7aZWZxFLh41AlhMKU742s0vs7G75Gz94ueOmKNr6sPcYDeqyIrdioAX9HZV_T_fKVH9nB4V9oTYAQO5cfL8dZ5Cj9rQKJVU5eKycPvaPuIbGB_urc3x2R90b6EE_LDvS6mz-2v5L3_AHhp8Jg
  priority: 102
  providerName: Directory of Open Access Journals
Title Solar Irradiation Prediction Hybrid Framework Using Regularized Convolutional BiLSTM-Based Autoencoder Approach
URI https://ieeexplore.ieee.org/document/10309115
https://www.proquest.com/docview/2895874906
https://doaj.org/article/fb900be631794319aa05eb830e05a805
Volume 11
WOSCitedRecordID wos001112737500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBdt2WE77LOj2bqiQ491KkeWZR2T0NDBWkqbQ29CH08QGHFxkkJ32N8-PVkJHWODXYxsJEv2T09P70n6PUJOjaolj4qo8MBdUQXVFI0VUfACWAXe1QZYCjYhr6-b-3t1kw-rp7MwAJA2n8EQk2kt37dug66ycwyJFYVT7JN9KWV_WGvnUMEIEkrIzCxUMnU-nk7jRwwxQPiQR7t9NOK_aZ9E0p-jqvwxFCf9Mnvzny17S17niSQd98i_I3uwfE9ePaMX_EDaO7Rb6deuQwICRIDedLgwk5KXT3hYi862u7No2j1Ab1Nw-m7xAzydtsvH3DVjVZPFt7v5VTGJes_T8WbdIgemh46OMy_5IZnPLubTyyIHWChcNOvWcXARDtQozlKiGANz1jeOO7zxVVkGpHYrK18JiFaWDdKUplSB18Fb65Hm5yM5WLZLOCK09uDr-A7lalsZxq2J0xQjg5VeBlNVAzLa_nftMvk4xsD4rpMRwpTuwdIIls5gDcjZrtBDz73x7-wTBHSXFYmz04OIlM5yqINVjFmoeWLGK5UxTIBtOAMmTMPEgBwius_q64EdkONt_9BZylc6GquikZVi9ae_FPtMXmITe5_NMTlYdxv4Ql64x_Vi1Z0kB0C8Xv28OEmd-Rea6PEO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgIAEPXIcobOAHHknnJHYSP7bVqk501cT6sDfLl2Op0tSgrJ0Evx4fx62GEJP25kR24uTz8fHx5fsI-aplVZfBEWUOSptxL5usMSIYngcjwdlKA4tiE_Vi0VxdyYt0WD2ehQGAuPkMhpiMa_mutVucKjtBSaxgnOIxeSI4L_L-uNZ-SgU1JKSoE7dQzuTJaDIJnzFEifBhGSL3oij_8j-Rpj_pqvzTGUcPM331wLq9Ji_TUJKOeuzfkEewfkte3CEYfEfaS4xc6VnXIQUBYkAvOlyaicnZLzyuRae7_Vk07h-gP6I8fbf6DY5O2vVtapzhVePV_HJ5no2D53N0tN20yILpoKOjxEx-SJbT0-VkliWJhcyGwG4TuhdhQRZhnBIMGZg1rrGlxQvH89wjuVvOHRcQ4izja53rXPqy8s4Yh0Q_78nBul3DB0IrB64Kz5C2Mlyz0ugwUNG1N7WrveZ8QIrdf1c20Y-jCsa1imEIk6oHSyFYKoE1IN_2hX727Bv3Zx8joPusSJ0dbwSkVLJE5Y1kzEBVRm68XGrNBJimZMCEbpgYkENE9877emAH5GjXPlSy8xsVwlXR1Fyy6uN_in0hz2bL87many2-fyLPsbr9DM4ROdh0WzgmT-3tZnXTfY6N-Q_q1fIv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solar+Irradiation+Prediction+Hybrid+Framework+Using+Regularized+Convolutional+BiLSTM-Based+Autoencoder+Approach&rft.jtitle=IEEE+access&rft.au=Chiranjeevi%2C+Madderla&rft.au=Karlamangal%2C+Skandha&rft.au=Moger%2C+Tukaram&rft.au=Jena%2C+Debashisha&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=131362&rft.epage=131375&rft_id=info:doi/10.1109%2FACCESS.2023.3330223&rft.externalDocID=10309115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon