Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model
This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex d...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 104818 - 104832 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!