Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model
This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex d...
Uloženo v:
| Vydáno v: | IEEE access Ročník 12; s. 104818 - 104832 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!