Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model

This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 104818 - 104832
Hlavní autori: Kun, Zhang, Hongren, Li, Xin, Wang, Daxing, Xie, Shuai, Yang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex data and improving robustness in noisy environments. Additionally, a graph convolution module captures correlations between sensors, further enhancing diagnostic accuracy. Experimental results demonstrate the model's effectiveness, achieving high diagnostic accuracy in both gear fault simulation and real gas turbine fault datasets. Ablation experiments show that the integration of the graph convolutional network and the multi-scale dilated convolutional attention mechanism significantly improves accuracy, highlighting the model's potential for practical industrial applications in gas turbine fault diagnosis.
AbstractList This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex data and improving robustness in noisy environments. Additionally, a graph convolution module captures correlations between sensors, further enhancing diagnostic accuracy. Experimental results demonstrate the model's effectiveness, achieving high diagnostic accuracy in both gear fault simulation and real gas turbine fault datasets. Ablation experiments show that the integration of the graph convolutional network and the multi-scale dilated convolutional attention mechanism significantly improves accuracy, highlighting the model's potential for practical industrial applications in gas turbine fault diagnosis.
Author Shuai, Yang
Hongren, Li
Kun, Zhang
Xin, Wang
Daxing, Xie
Author_xml – sequence: 1
  givenname: Zhang
  orcidid: 0000-0002-3764-9087
  surname: Kun
  fullname: Kun, Zhang
  email: 3240569595@qq.com
  organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China
– sequence: 2
  givenname: Li
  orcidid: 0009-0002-8937-2216
  surname: Hongren
  fullname: Hongren, Li
  organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China
– sequence: 3
  givenname: Wang
  surname: Xin
  fullname: Xin, Wang
  organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China
– sequence: 4
  givenname: Xie
  orcidid: 0009-0000-4761-4104
  surname: Daxing
  fullname: Daxing, Xie
  organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China
– sequence: 5
  givenname: Yang
  orcidid: 0000-0003-1097-571X
  surname: Shuai
  fullname: Shuai, Yang
  organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China
BookMark eNp9UcFu3CAQRVUqNU3zBe0BqWdvwRgMx9V2s42UqIdNekVjPN6wcmEL9qF_XzZOpaiHchhGb957gnnvyUWIAQn5yNmKc2a-rDeb7X6_qlndrEQjmpbpN-Sy5spUQgp18ap_R65zPrJydIFke0lwG54gOB8OdAeZPsyp8wHpDczjRL96OISYfaaP-cwAel9gX-0djFimI0zY012C0xP9AcnD5GOAka7nKWJwscdE70sdP5C3A4wZr1_uK_J4s33YfKvuvu9uN-u7yjXMTJVQTDWd0yAF1j3KdhgkU2XWD4YD8N61ppbgmOqEYM5wJqRpgIPuQWPfiytyu_j2EY72lPxPSL9tBG-fgZgOFtLk3YjWGa1c6wwyFE3HTNcNptHYcaUHXTNZvD4vXqcUf82YJ3uMcyrfy1YwbUytpDSFZRaWSzHnhIN1fnrew5TAj5Yzew7JLiHZc0j2JaSiFf9o_774_6pPi8oj4iuF4qJVUvwB9YGfVQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103742
crossref_primary_10_1088_1361_6501_ad7a97
Cites_doi 10.3390/s24041185
10.1186/s40649-019-0069-y
10.1561/2200000089
10.1088/1742-6596/364/1/012076
10.1109/TAI.2021.3110835
10.3390/math11081777
10.1109/TII.2019.2943898
10.3389/fenrg.2022.998760
10.1016/j.measurement.2020.108235
10.48550/arXiv.1511.07122
10.1115/1.4024735
10.1109/ACCESS.2024.3375943
10.1177/1077546308095224
10.1016/j.measurement.2019.01.022
10.1007/s11831-020-09480-8
10.3390/en17051203
10.1561/9781680836233
10.1007/s42979-021-00702-9
10.1155/2023/8342104
10.3390/en14248468
10.1016/j.neucom.2015.06.008
10.1016/j.ymssp.2017.12.008
10.3390/s24041290
10.1016/j.measurement.2012.05.031
10.3390/e24010036
10.3390/aerospace6070083
10.48550/arXiv.1312.6114
10.3390/s22239150
10.1088/1361-6501/aca217
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3434708
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104832
ExternalDocumentID oai_doaj_org_article_c986c7c9e0e34b09bbf948eb168f8205
10_1109_ACCESS_2024_3434708
10613765
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 282205
  funderid: 10.13039/501100002858
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-36064bc8a53e2de57ff506c40df91aa1dc7925ac06b330c9103594a1a8da8edd3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:37:31 EDT 2025
Mon Jun 30 17:08:58 EDT 2025
Sat Nov 29 04:26:59 EST 2025
Tue Nov 18 22:22:56 EST 2025
Wed Aug 27 02:35:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-36064bc8a53e2de57ff506c40df91aa1dc7925ac06b330c9103594a1a8da8edd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3764-9087
0009-0000-4761-4104
0000-0003-1097-571X
0009-0002-8937-2216
OpenAccessLink https://doaj.org/article/c986c7c9e0e34b09bbf948eb168f8205
PQID 3089926559
PQPubID 4845423
PageCount 15
ParticipantIDs proquest_journals_3089926559
crossref_primary_10_1109_ACCESS_2024_3434708
ieee_primary_10613765
crossref_citationtrail_10_1109_ACCESS_2024_3434708
doaj_primary_oai_doaj_org_article_c986c7c9e0e34b09bbf948eb168f8205
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref11
ref33
ref2
ref1
ref17
Wu (ref26) 2019
ref16
ref18
Dehaene (ref14) 2021
Bruna (ref23) 2013
Chen (ref31) 2024
ref24
ref25
ref20
ref22
ref21
ref28
Khalfaoui-Hassani (ref30) 2021
ref27
ref29
ref8
Asperti (ref19) 2021
ref7
ref9
ref4
ref3
ref6
ref5
Bahdanau (ref32) 2014
Haoren (ref10) 2017; 36
References_xml – ident: ref27
  doi: 10.3390/s24041185
– ident: ref24
  doi: 10.1186/s40649-019-0069-y
– ident: ref18
  doi: 10.1561/2200000089
– ident: ref8
  doi: 10.1088/1742-6596/364/1/012076
– ident: ref20
  doi: 10.1109/TAI.2021.3110835
– ident: ref17
  doi: 10.3390/math11081777
– ident: ref5
  doi: 10.1109/TII.2019.2943898
– ident: ref37
  doi: 10.3389/fenrg.2022.998760
– ident: ref2
  doi: 10.1016/j.measurement.2020.108235
– ident: ref28
  doi: 10.48550/arXiv.1511.07122
– ident: ref11
  doi: 10.1115/1.4024735
– ident: ref33
  doi: 10.1109/ACCESS.2024.3375943
– ident: ref7
  doi: 10.1177/1077546308095224
– ident: ref4
  doi: 10.1016/j.measurement.2019.01.022
– ident: ref36
  doi: 10.1007/s11831-020-09480-8
– ident: ref34
  doi: 10.3390/en17051203
– ident: ref16
  doi: 10.1561/9781680836233
– ident: ref15
  doi: 10.1007/s42979-021-00702-9
– ident: ref25
  doi: 10.1155/2023/8342104
– ident: ref6
  doi: 10.3390/en14248468
– year: 2013
  ident: ref23
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv:1312.6203
– year: 2021
  ident: ref19
  article-title: A survey on variational autoencoders from a GreenAI perspective
  publication-title: arXiv:2103.01071
– year: 2021
  ident: ref30
  article-title: Dilated convolution with learnable spacings
  publication-title: arXiv:2112.03740
– volume: 36
  start-page: 45
  issue: 22
  year: 2017
  ident: ref10
  article-title: Health assessment for a piston pump based on WPD and LE
  publication-title: J. Vib. Shock
– ident: ref12
  doi: 10.1016/j.neucom.2015.06.008
– ident: ref1
  doi: 10.1016/j.ymssp.2017.12.008
– year: 2014
  ident: ref32
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: arXiv:1409.0473
– year: 2021
  ident: ref14
  article-title: Re-parameterizing VAEs for stability
  publication-title: arXiv:2106.13739
– year: 2019
  ident: ref26
  article-title: Simplifying graph convolutional networks
  publication-title: arXiv:1902.07153
– ident: ref29
  doi: 10.3390/s24041290
– ident: ref9
  doi: 10.1016/j.measurement.2012.05.031
– year: 2024
  ident: ref31
  article-title: Frequency-adaptive dilated convolution for semantic segmentation
  publication-title: arXiv:2403.05369
– ident: ref21
  doi: 10.3390/e24010036
– ident: ref13
  doi: 10.3390/aerospace6070083
– ident: ref22
  doi: 10.48550/arXiv.1312.6114
– ident: ref35
  doi: 10.3390/s22239150
– ident: ref3
  doi: 10.1088/1361-6501/aca217
SSID ssj0000816957
Score 2.31996
Snippet This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104818
SubjectTerms Ablation
Accuracy
Artificial neural networks
Convolutional neural networks
Data mining
Data models
Fault diagnosis
Feature extraction
Gas turbine
Gas turbines
Industrial applications
MG-VAE
Monitoring
noise robustness
Real gases
Turbines
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOLR9FLC3IB46kdWInto_L0i2nComCeosm9hgqrbJoN-nvZ-y4q5UQSNyi2FacPDueN_a8Yew9AmoDyhTQYF0o6HQBJp4E8JXoOtUICCElm9DX1-b21n7JweopFgYR0-EzPI-XaS_fr90YXWUXkb7QhKgP2IHWzRSstXOoxAwSttZZWagU9mK-WNBLEAes1LlUUumYQ3Jv9Uki_Tmryh-_4rS-LI__s2fP2FE2JPl8Qv45e4T9C_Z0T17wJcPL_meU0-h_8CvY8ptxQzQY-RLG1cA_TWfs7rY8nRrgwFMsbvGVQEMqXZER6vlV1LPm34lQZ6chn4_DOopfetzwmEhtdcK-LS9vFp-LnFahcETmhkISZ1GdM1BLrDzWOoRaNFTmgy0BSu-0rWpwoumkFI7sCVlbBSUYDwa9l6_YYb_u8TXjoQQhgzfKoVEGiaWTdYEaTBPI7gowY9XD525d1hyPqS9WbeIewrYTRm3EqM0YzdiHXaNfk-TGv6t_jDjuqka97HSDAGrz9GudNY3TzqJAqTphuy5Y6nBXNiaQDVTP2EkEde95E54zdvYwLNo8ubetjFulVUNc7M1fmp2yJ7GLk6vmjB0OmxHfssfufrjbbt6lcfsbKafrpg
  priority: 102
  providerName: IEEE
Title Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model
URI https://ieeexplore.ieee.org/document/10613765
https://www.proquest.com/docview/3089926559
https://doaj.org/article/c986c7c9e0e34b09bbf948eb168f8205
Volume 12
WOSCitedRecordID wos001286654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCEoRC6XygSOhTuz4cVyW3fbSComCerMmfkClVVrtZjn2t3fsuFUkJLj0koPtyPHMxJ7PHn9DyMcAQWkQugIZ2kpApyrQKRLAN6zrhGQQY042oc7P9eWl-TZJ9ZViwkZ64FFwx85o6ZQzgQUuOma6LhqhcYaROuLqldlLmTITMJXnYF1L06pCM1QzczxfLHBECAgb8ZkLLlRKKDlZijJjf0mx8te8nBeb1UvyoniJdD5-3SvyJPT75PmEO_A1Ccv-d-LK6H_RE9jSi90GMW6gK9itB_p1DKC72tIcEkCB5ou21XfUSMDaNXqYnp4ksmr6E9Fy2RGk891wnZgtfdjQlCVtfUB-rJYXi9Oq5EyoHCK1oeIISETnNLQ8ND60KsaWSazz0dQAtXfKNC04JjvOmUNngbdGQA3agw7e8zdkr7_uw1tCYw2MR6-FCxoljhAcXYegQMuITlWEGWnuxWddIRRPeS3WNgMLZuwoc5tkbovMZ-TTw0s3I5_Gv5t_SXp5aJrIsHMBmogtJmL_ZyIzcpC0OukPfRglsfzwXs22_Llby9M5aCMRaL17jL7fk2dpPOOmzSHZGza78IE8dX-Gq-3mKBstPs9ul0f56uEd1Enweg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pj9QgFCa6mqgHf65xdFUOHu0uLdDCcRx3do3rxMTR7I28wkM3mXTMTOvfL1B2MonRxFtTIKX9oLzvwfseIW8QsFEgVAE1ykJA2xSg4kkAV7G2FTUD71OyiWaxUJeX-nMOVk-xMIiYDp_hcbxMe_lubYfoKjuJ9CVMCHmT3JJCVGwM19q5VGIOCS2brC1UMn0ync3CawQWWIljLrhoYhbJvfUnyfTnvCp__IzTCjN_8J99e0juZ1OSTkfsH5Eb2D0m9_YEBp8QPO1-REGN7js9gy1dDptAhJHOYVj19P14yu5qS9O5AQo0ReMWXwJsGEpXwQx19CwqWtNvgVJntyGdDv06yl863NCYSm11SL7OT5ez8yInVihsoHN9wQNrEa1VIDlWDmXjvWR1KHNelwCls42uJFhWt5wzGywKLrWAEpQDhc7xp-SgW3f4jFBfAuPeKWFRCYWBpwf7AhtQtQ-Wl4cJqa4_t7FZdTwmv1iZxD6YNiNGJmJkMkYT8nbX6OcouvHv6u8ijruqUTE73QgAmTwBjdWqto3VyJCLlum29Tp0uC1r5YMVJCfkMIK697wRzwk5uh4WJk_vreFxs7SqAxt7_pdmr8md8-WnC3PxYfHxBbkbuzs6bo7IQb8Z8CW5bX_1V9vNqzSGfwOO0e7t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Gas+Turbine+Fault+Diagnosis+Using+a+Multi-Scale+Dilated+Graph+Variational+Autoencoder+Model&rft.jtitle=IEEE+access&rft.au=Kun%2C+Zhang&rft.au=Hongren%2C+Li&rft.au=Xin%2C+Wang&rft.au=Daxing%2C+Xie&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104818&rft.epage=104832&rft_id=info:doi/10.1109%2FACCESS.2024.3434708&rft.externalDocID=10613765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon