Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model
This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex d...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 104818 - 104832 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex data and improving robustness in noisy environments. Additionally, a graph convolution module captures correlations between sensors, further enhancing diagnostic accuracy. Experimental results demonstrate the model's effectiveness, achieving high diagnostic accuracy in both gear fault simulation and real gas turbine fault datasets. Ablation experiments show that the integration of the graph convolutional network and the multi-scale dilated convolutional attention mechanism significantly improves accuracy, highlighting the model's potential for practical industrial applications in gas turbine fault diagnosis. |
|---|---|
| AbstractList | This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a multi-scale dilated convolutional attention mechanism to extract features across different scales, enhancing its ability to represent complex data and improving robustness in noisy environments. Additionally, a graph convolution module captures correlations between sensors, further enhancing diagnostic accuracy. Experimental results demonstrate the model's effectiveness, achieving high diagnostic accuracy in both gear fault simulation and real gas turbine fault datasets. Ablation experiments show that the integration of the graph convolutional network and the multi-scale dilated convolutional attention mechanism significantly improves accuracy, highlighting the model's potential for practical industrial applications in gas turbine fault diagnosis. |
| Author | Shuai, Yang Hongren, Li Kun, Zhang Xin, Wang Daxing, Xie |
| Author_xml | – sequence: 1 givenname: Zhang orcidid: 0000-0002-3764-9087 surname: Kun fullname: Kun, Zhang email: 3240569595@qq.com organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China – sequence: 2 givenname: Li orcidid: 0009-0002-8937-2216 surname: Hongren fullname: Hongren, Li organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China – sequence: 3 givenname: Wang surname: Xin fullname: Xin, Wang organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China – sequence: 4 givenname: Xie orcidid: 0009-0000-4761-4104 surname: Daxing fullname: Daxing, Xie organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China – sequence: 5 givenname: Yang orcidid: 0000-0003-1097-571X surname: Shuai fullname: Shuai, Yang organization: Huadian Electric Power Research Institute Company Ltd., Hangzhou, China |
| BookMark | eNp9UcFu3CAQRVUqNU3zBe0BqWdvwRgMx9V2s42UqIdNekVjPN6wcmEL9qF_XzZOpaiHchhGb957gnnvyUWIAQn5yNmKc2a-rDeb7X6_qlndrEQjmpbpN-Sy5spUQgp18ap_R65zPrJydIFke0lwG54gOB8OdAeZPsyp8wHpDczjRL96OISYfaaP-cwAel9gX-0djFimI0zY012C0xP9AcnD5GOAka7nKWJwscdE70sdP5C3A4wZr1_uK_J4s33YfKvuvu9uN-u7yjXMTJVQTDWd0yAF1j3KdhgkU2XWD4YD8N61ppbgmOqEYM5wJqRpgIPuQWPfiytyu_j2EY72lPxPSL9tBG-fgZgOFtLk3YjWGa1c6wwyFE3HTNcNptHYcaUHXTNZvD4vXqcUf82YJ3uMcyrfy1YwbUytpDSFZRaWSzHnhIN1fnrew5TAj5Yzew7JLiHZc0j2JaSiFf9o_774_6pPi8oj4iuF4qJVUvwB9YGfVQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_103742 crossref_primary_10_1088_1361_6501_ad7a97 |
| Cites_doi | 10.3390/s24041185 10.1186/s40649-019-0069-y 10.1561/2200000089 10.1088/1742-6596/364/1/012076 10.1109/TAI.2021.3110835 10.3390/math11081777 10.1109/TII.2019.2943898 10.3389/fenrg.2022.998760 10.1016/j.measurement.2020.108235 10.48550/arXiv.1511.07122 10.1115/1.4024735 10.1109/ACCESS.2024.3375943 10.1177/1077546308095224 10.1016/j.measurement.2019.01.022 10.1007/s11831-020-09480-8 10.3390/en17051203 10.1561/9781680836233 10.1007/s42979-021-00702-9 10.1155/2023/8342104 10.3390/en14248468 10.1016/j.neucom.2015.06.008 10.1016/j.ymssp.2017.12.008 10.3390/s24041290 10.1016/j.measurement.2012.05.031 10.3390/e24010036 10.3390/aerospace6070083 10.48550/arXiv.1312.6114 10.3390/s22239150 10.1088/1361-6501/aca217 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3434708 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 104832 |
| ExternalDocumentID | oai_doaj_org_article_c986c7c9e0e34b09bbf948eb168f8205 10_1109_ACCESS_2024_3434708 10613765 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 282205 funderid: 10.13039/501100002858 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-36064bc8a53e2de57ff506c40df91aa1dc7925ac06b330c9103594a1a8da8edd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:37:31 EDT 2025 Mon Jun 30 17:08:58 EDT 2025 Sat Nov 29 04:26:59 EST 2025 Tue Nov 18 22:22:56 EST 2025 Wed Aug 27 02:35:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-36064bc8a53e2de57ff506c40df91aa1dc7925ac06b330c9103594a1a8da8edd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3764-9087 0009-0000-4761-4104 0000-0003-1097-571X 0009-0002-8937-2216 |
| OpenAccessLink | https://doaj.org/article/c986c7c9e0e34b09bbf948eb168f8205 |
| PQID | 3089926559 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3089926559 crossref_primary_10_1109_ACCESS_2024_3434708 ieee_primary_10613765 crossref_citationtrail_10_1109_ACCESS_2024_3434708 doaj_primary_oai_doaj_org_article_c986c7c9e0e34b09bbf948eb168f8205 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref36 ref11 ref33 ref2 ref1 ref17 Wu (ref26) 2019 ref16 ref18 Dehaene (ref14) 2021 Bruna (ref23) 2013 Chen (ref31) 2024 ref24 ref25 ref20 ref22 ref21 ref28 Khalfaoui-Hassani (ref30) 2021 ref27 ref29 ref8 Asperti (ref19) 2021 ref7 ref9 ref4 ref3 ref6 ref5 Bahdanau (ref32) 2014 Haoren (ref10) 2017; 36 |
| References_xml | – ident: ref27 doi: 10.3390/s24041185 – ident: ref24 doi: 10.1186/s40649-019-0069-y – ident: ref18 doi: 10.1561/2200000089 – ident: ref8 doi: 10.1088/1742-6596/364/1/012076 – ident: ref20 doi: 10.1109/TAI.2021.3110835 – ident: ref17 doi: 10.3390/math11081777 – ident: ref5 doi: 10.1109/TII.2019.2943898 – ident: ref37 doi: 10.3389/fenrg.2022.998760 – ident: ref2 doi: 10.1016/j.measurement.2020.108235 – ident: ref28 doi: 10.48550/arXiv.1511.07122 – ident: ref11 doi: 10.1115/1.4024735 – ident: ref33 doi: 10.1109/ACCESS.2024.3375943 – ident: ref7 doi: 10.1177/1077546308095224 – ident: ref4 doi: 10.1016/j.measurement.2019.01.022 – ident: ref36 doi: 10.1007/s11831-020-09480-8 – ident: ref34 doi: 10.3390/en17051203 – ident: ref16 doi: 10.1561/9781680836233 – ident: ref15 doi: 10.1007/s42979-021-00702-9 – ident: ref25 doi: 10.1155/2023/8342104 – ident: ref6 doi: 10.3390/en14248468 – year: 2013 ident: ref23 article-title: Spectral networks and locally connected networks on graphs publication-title: arXiv:1312.6203 – year: 2021 ident: ref19 article-title: A survey on variational autoencoders from a GreenAI perspective publication-title: arXiv:2103.01071 – year: 2021 ident: ref30 article-title: Dilated convolution with learnable spacings publication-title: arXiv:2112.03740 – volume: 36 start-page: 45 issue: 22 year: 2017 ident: ref10 article-title: Health assessment for a piston pump based on WPD and LE publication-title: J. Vib. Shock – ident: ref12 doi: 10.1016/j.neucom.2015.06.008 – ident: ref1 doi: 10.1016/j.ymssp.2017.12.008 – year: 2014 ident: ref32 article-title: Neural machine translation by jointly learning to align and translate publication-title: arXiv:1409.0473 – year: 2021 ident: ref14 article-title: Re-parameterizing VAEs for stability publication-title: arXiv:2106.13739 – year: 2019 ident: ref26 article-title: Simplifying graph convolutional networks publication-title: arXiv:1902.07153 – ident: ref29 doi: 10.3390/s24041290 – ident: ref9 doi: 10.1016/j.measurement.2012.05.031 – year: 2024 ident: ref31 article-title: Frequency-adaptive dilated convolution for semantic segmentation publication-title: arXiv:2403.05369 – ident: ref21 doi: 10.3390/e24010036 – ident: ref13 doi: 10.3390/aerospace6070083 – ident: ref22 doi: 10.48550/arXiv.1312.6114 – ident: ref35 doi: 10.3390/s22239150 – ident: ref3 doi: 10.1088/1361-6501/aca217 |
| SSID | ssj0000816957 |
| Score | 2.31996 |
| Snippet | This paper proposes a Multi-scale Dilated Variational Graph Convolutional Autoencoder (MG-VAE) model for gas turbine fault diagnosis. The model integrates a... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104818 |
| SubjectTerms | Ablation Accuracy Artificial neural networks Convolutional neural networks Data mining Data models Fault diagnosis Feature extraction Gas turbine Gas turbines Industrial applications MG-VAE Monitoring noise robustness Real gases Turbines |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVoxQEOLR9FLC3IB46kdWInto_L0i2nComCeosm9hgqrbJoN-nvZ-y4q5UQSNyi2FacPDueN_a8Yew9AmoDyhTQYF0o6HQBJp4E8JXoOtUICCElm9DX1-b21n7JweopFgYR0-EzPI-XaS_fr90YXWUXkb7QhKgP2IHWzRSstXOoxAwSttZZWagU9mK-WNBLEAes1LlUUumYQ3Jv9Uki_Tmryh-_4rS-LI__s2fP2FE2JPl8Qv45e4T9C_Z0T17wJcPL_meU0-h_8CvY8ptxQzQY-RLG1cA_TWfs7rY8nRrgwFMsbvGVQEMqXZER6vlV1LPm34lQZ6chn4_DOopfetzwmEhtdcK-LS9vFp-LnFahcETmhkISZ1GdM1BLrDzWOoRaNFTmgy0BSu-0rWpwoumkFI7sCVlbBSUYDwa9l6_YYb_u8TXjoQQhgzfKoVEGiaWTdYEaTBPI7gowY9XD525d1hyPqS9WbeIewrYTRm3EqM0YzdiHXaNfk-TGv6t_jDjuqka97HSDAGrz9GudNY3TzqJAqTphuy5Y6nBXNiaQDVTP2EkEde95E54zdvYwLNo8ubetjFulVUNc7M1fmp2yJ7GLk6vmjB0OmxHfssfufrjbbt6lcfsbKafrpg priority: 102 providerName: IEEE |
| Title | Enhancing Gas Turbine Fault Diagnosis Using a Multi-Scale Dilated Graph Variational Autoencoder Model |
| URI | https://ieeexplore.ieee.org/document/10613765 https://www.proquest.com/docview/3089926559 https://doaj.org/article/c986c7c9e0e34b09bbf948eb168f8205 |
| Volume | 12 |
| WOSCitedRecordID | wos001286654200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOCEoRC6XygSOhTuz4cVyW3fbSComCerMmfkClVVrtZjn2t3fsuFUkJLj0koPtyPHMxJ7PHn9DyMcAQWkQugIZ2kpApyrQKRLAN6zrhGQQY042oc7P9eWl-TZJ9ZViwkZ64FFwx85o6ZQzgQUuOma6LhqhcYaROuLqldlLmTITMJXnYF1L06pCM1QzczxfLHBECAgb8ZkLLlRKKDlZijJjf0mx8te8nBeb1UvyoniJdD5-3SvyJPT75PmEO_A1Ccv-d-LK6H_RE9jSi90GMW6gK9itB_p1DKC72tIcEkCB5ou21XfUSMDaNXqYnp4ksmr6E9Fy2RGk891wnZgtfdjQlCVtfUB-rJYXi9Oq5EyoHCK1oeIISETnNLQ8ND60KsaWSazz0dQAtXfKNC04JjvOmUNngbdGQA3agw7e8zdkr7_uw1tCYw2MR6-FCxoljhAcXYegQMuITlWEGWnuxWddIRRPeS3WNgMLZuwoc5tkbovMZ-TTw0s3I5_Gv5t_SXp5aJrIsHMBmogtJmL_ZyIzcpC0OukPfRglsfzwXs22_Llby9M5aCMRaL17jL7fk2dpPOOmzSHZGza78IE8dX-Gq-3mKBstPs9ul0f56uEd1Enweg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pj9QgFCa6mqgHf65xdFUOHu0uLdDCcRx3do3rxMTR7I28wkM3mXTMTOvfL1B2MonRxFtTIKX9oLzvwfseIW8QsFEgVAE1ykJA2xSg4kkAV7G2FTUD71OyiWaxUJeX-nMOVk-xMIiYDp_hcbxMe_lubYfoKjuJ9CVMCHmT3JJCVGwM19q5VGIOCS2brC1UMn0ync3CawQWWIljLrhoYhbJvfUnyfTnvCp__IzTCjN_8J99e0juZ1OSTkfsH5Eb2D0m9_YEBp8QPO1-REGN7js9gy1dDptAhJHOYVj19P14yu5qS9O5AQo0ReMWXwJsGEpXwQx19CwqWtNvgVJntyGdDv06yl863NCYSm11SL7OT5ez8yInVihsoHN9wQNrEa1VIDlWDmXjvWR1KHNelwCls42uJFhWt5wzGywKLrWAEpQDhc7xp-SgW3f4jFBfAuPeKWFRCYWBpwf7AhtQtQ-Wl4cJqa4_t7FZdTwmv1iZxD6YNiNGJmJkMkYT8nbX6OcouvHv6u8ijruqUTE73QgAmTwBjdWqto3VyJCLlum29Tp0uC1r5YMVJCfkMIK697wRzwk5uh4WJk_vreFxs7SqAxt7_pdmr8md8-WnC3PxYfHxBbkbuzs6bo7IQb8Z8CW5bX_1V9vNqzSGfwOO0e7t |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Gas+Turbine+Fault+Diagnosis+Using+a+Multi-Scale+Dilated+Graph+Variational+Autoencoder+Model&rft.jtitle=IEEE+access&rft.au=Kun%2C+Zhang&rft.au=Hongren%2C+Li&rft.au=Xin%2C+Wang&rft.au=Daxing%2C+Xie&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104818&rft.epage=104832&rft_id=info:doi/10.1109%2FACCESS.2024.3434708&rft.externalDocID=10613765 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |