Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland

Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was i...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment Vol. 112; no. 5; pp. 2592 - 2604
Main Authors: Darvishzadeh, Roshanak, Skidmore, Andrew, Schlerf, Martin, Atzberger, Clement
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 15.05.2008
Elsevier Science
Subjects:
ISSN:0034-4257, 1879-0704
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R2 between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R2=0.70, NRMSE=0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R2=0.59, NRMSE=0.18). When only sample plots with up to two species were considered (n=107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE=0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements.
AbstractList Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R-2 between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R-2 = 0.70, NRMSE = 0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R-2 = 0.59, NRMSE = 0.18). When only sample plots with up to two species were considered (n = 107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE=0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements. (C) 2008 Elsevier Inc. All rights reserved.
Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R super(2) between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R super(2)=0.70, NRMSE=0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R super(2)=0.59, NRMSE=0.18). When only sample plots with up to two species were considered (n=107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE=0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements.
Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict LAI and leaf and canopy chlorophyll contents in a heterogeneous Mediterranean grassland is investigated. The widely used PROSAIL model was inverted with canopy spectral reflectance measurements by means of a look-up table (LUT). Canopy spectral measurements were acquired in the field using a GER 3700 spectroradiometer, along with simultaneous in situ measurements of LAI and leaf chlorophyll content. We tested the impact of using multiple solutions, stratification (according to species richness), and spectral subsetting on parameter retrieval. To assess the performance of the model inversion, the normalized RMSE and R2 between independent in situ measurements and estimated parameters were used. Of the three investigated plant characteristics, canopy chlorophyll content was estimated with the highest accuracy (R2=0.70, NRMSE=0.18). Leaf chlorophyll content, on the other hand, could not be estimated with acceptable accuracy, while LAI was estimated with intermediate accuracy (R2=0.59, NRMSE=0.18). When only sample plots with up to two species were considered (n=107), the estimation accuracy for all investigated variables (LAI, canopy chlorophyll content and leaf chlorophyll content) increased (NRMSE=0.14, 0.16, 0.19, respectively). This shows the limits of the PROSAIL radiative transfer model in the case of very heterogeneous conditions. We also found that a carefully selected spectral subset contains sufficient information for a successful model inversion. Our results confirm the potential of model inversion for estimating vegetation biophysical parameters at the canopy scale in (moderately) heterogeneous grasslands using hyperspectral measurements.
Author Schlerf, Martin
Darvishzadeh, Roshanak
Skidmore, Andrew
Atzberger, Clement
Author_xml – sequence: 1
  givenname: Roshanak
  surname: Darvishzadeh
  fullname: Darvishzadeh, Roshanak
  email: darvish@itc.nl
  organization: International Institute for Geo-information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede, The Netherlands
– sequence: 2
  givenname: Andrew
  surname: Skidmore
  fullname: Skidmore, Andrew
  organization: International Institute for Geo-information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede, The Netherlands
– sequence: 3
  givenname: Martin
  surname: Schlerf
  fullname: Schlerf, Martin
  organization: International Institute for Geo-information Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede, The Netherlands
– sequence: 4
  givenname: Clement
  surname: Atzberger
  fullname: Atzberger, Clement
  organization: Joint Research Centre of the European Commission, TP 266, Via Enrico Fermi 1, 21020 Ispra (VA), Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20262981$$DView record in Pascal Francis
BookMark eNp9kU2P0zAQhi20SHQXfgA3X-CW4I8kduC0WvFRqRIXOFuOM2lduXax06723zNRVhw47Gks-33GM-97S25iikDIe85qznj36VjnArVgTNVc1IzJV2TDteorplhzQzZ401SNaNUbclvKkTHeasU3JG_jFXLxKdI0UUuzHb2d_RXonG0sE2R6SiMEOqVMocz-hK9xT6-whxmPyO3ut9TGkbpDSDmdD08hUB-x1wFmyGkPEdKl0H22pQQUviWvJxsKvHuud-T3t6-_Hn5Uu5_ftw_3u8o1rJ8rKUbZCN0N3HLRdHKYLOeDYrqVvXWDbSWofnR6EHoUkxqca9XYu77RFhqE5B35vPZ9tDgDDg3RRJudLyZZb4Ifss1P5vGSTQxLOV-GYmTXa9kg_HGFzzn9ueDi5uSLg4ALLNsY3rdSaaFQ-OFZaIuzYULXlh_OGZ3C7oKJTvSao46vOpdTKRmmfxLOzBKhORqM0CwRGi4MBoaM-o9xfjUdw_HhRfLLSgIafPWQTXEeooPRZ3CzGZN_gf4LTYC78A
CODEN RSEEA7
CitedBy_id crossref_primary_10_1088_1755_1315_275_1_012006
crossref_primary_10_1016_j_rse_2022_113348
crossref_primary_10_3390_rs13153001
crossref_primary_10_1016_j_rse_2024_114559
crossref_primary_10_3390_rs17111891
crossref_primary_10_3390_rs11121462
crossref_primary_10_3390_rs12142254
crossref_primary_10_3390_rs13183570
crossref_primary_10_3390_rs11030219
crossref_primary_10_1016_j_jag_2020_102155
crossref_primary_10_1109_JSTARS_2014_2346251
crossref_primary_10_1016_j_jag_2024_104211
crossref_primary_10_1016_j_isprsjprs_2022_08_003
crossref_primary_10_1016_j_jag_2015_11_004
crossref_primary_10_1007_s41064_019_00063_2
crossref_primary_10_3390_rs15081960
crossref_primary_10_1016_j_rse_2018_11_039
crossref_primary_10_1016_j_isprsjprs_2015_05_005
crossref_primary_10_3390_rs70810321
crossref_primary_10_1080_01431161_2015_1084064
crossref_primary_10_1016_j_dib_2025_112030
crossref_primary_10_1016_j_rse_2022_113104
crossref_primary_10_3390_agriculture15131372
crossref_primary_10_3390_rs8020112
crossref_primary_10_1016_j_rse_2019_01_031
crossref_primary_10_3390_rs10010064
crossref_primary_10_1016_j_compag_2024_108959
crossref_primary_10_1111_j_1744_697X_2011_00212_x
crossref_primary_10_1016_j_rse_2023_113614
crossref_primary_10_3390_rs11060671
crossref_primary_10_1016_j_csr_2018_06_016
crossref_primary_10_1016_j_rse_2019_01_039
crossref_primary_10_1111_pce_12815
crossref_primary_10_1016_j_jag_2022_102843
crossref_primary_10_1109_JSTARS_2017_2714423
crossref_primary_10_3390_rs10121927
crossref_primary_10_3390_rs15030700
crossref_primary_10_1016_j_compag_2010_12_003
crossref_primary_10_1016_j_rse_2019_111377
crossref_primary_10_1016_j_ecolind_2018_01_012
crossref_primary_10_1080_01431161_2015_1040135
crossref_primary_10_1016_j_fcr_2023_109077
crossref_primary_10_1080_01431161_2015_1088676
crossref_primary_10_1016_j_isprsjprs_2011_09_013
crossref_primary_10_1109_TGRS_2022_3227565
crossref_primary_10_3390_rs12213534
crossref_primary_10_1016_j_agrformet_2015_02_016
crossref_primary_10_1016_j_rse_2024_114201
crossref_primary_10_1007_s11119_022_09918_y
crossref_primary_10_1016_j_jag_2019_102037
crossref_primary_10_1080_2150704X_2012_689115
crossref_primary_10_1002_2016JG003580
crossref_primary_10_1016_j_asr_2025_02_052
crossref_primary_10_1109_TGRS_2011_2168962
crossref_primary_10_3390_agriculture15101072
crossref_primary_10_3390_rs15030835
crossref_primary_10_3390_rs16071117
crossref_primary_10_3390_rs11101150
crossref_primary_10_1016_j_jag_2009_02_003
crossref_primary_10_1016_j_rse_2018_11_016
crossref_primary_10_1080_01431161_2016_1212421
crossref_primary_10_1080_01431161_2018_1504342
crossref_primary_10_1109_TGRS_2024_3357774
crossref_primary_10_1111_jvs_12525
crossref_primary_10_3390_rs10040618
crossref_primary_10_1016_j_rse_2020_112030
crossref_primary_10_1016_j_rse_2024_114338
crossref_primary_10_1016_j_rse_2020_111985
crossref_primary_10_1016_j_compag_2024_108624
crossref_primary_10_1109_TGRS_2013_2238242
crossref_primary_10_1109_TGRS_2017_2694483
crossref_primary_10_3390_rs16132284
crossref_primary_10_3390_rs12182929
crossref_primary_10_1109_JSTARS_2012_2184268
crossref_primary_10_1016_j_foreco_2025_122588
crossref_primary_10_1080_01431161_2018_1524608
crossref_primary_10_1016_j_jag_2019_102027
crossref_primary_10_1016_j_compag_2021_106293
crossref_primary_10_3390_rs5073280
crossref_primary_10_1016_j_jag_2019_03_003
crossref_primary_10_3390_rs10121942
crossref_primary_10_1016_j_agrcom_2024_100055
crossref_primary_10_1016_j_fcr_2016_04_014
crossref_primary_10_1109_JSTARS_2021_3081565
crossref_primary_10_1016_j_agwat_2015_10_013
crossref_primary_10_1111_j_1469_8137_2010_03536_x
crossref_primary_10_3390_rs70404626
crossref_primary_10_1016_j_jag_2022_102817
crossref_primary_10_1016_j_rse_2019_111272
crossref_primary_10_1109_JSTARS_2015_2422734
crossref_primary_10_1109_JSTARS_2016_2593984
crossref_primary_10_1016_j_compag_2024_108730
crossref_primary_10_1080_00380768_2020_1738899
crossref_primary_10_5589_cjrs3503fi
crossref_primary_10_1016_j_rse_2020_112040
crossref_primary_10_1109_JSTARS_2018_2824901
crossref_primary_10_1016_j_jhazmat_2019_05_093
crossref_primary_10_1016_j_ecolind_2020_107062
crossref_primary_10_1109_TGRS_2012_2235447
crossref_primary_10_1080_22797254_2019_1686717
crossref_primary_10_1016_j_isprsjprs_2020_02_010
crossref_primary_10_3390_rs15112918
crossref_primary_10_1016_j_rse_2021_112578
crossref_primary_10_1016_j_rse_2025_114915
crossref_primary_10_1016_j_compag_2010_05_006
crossref_primary_10_1016_j_rse_2015_04_032
crossref_primary_10_1111_gcb_12664
crossref_primary_10_1080_01431161_2025_2465916
crossref_primary_10_1080_22797254_2020_1810132
crossref_primary_10_1016_j_isprsjprs_2023_10_017
crossref_primary_10_3390_rs16163000
crossref_primary_10_1016_S2095_3119_15_61293_X
crossref_primary_10_3390_rs15143664
crossref_primary_10_1016_j_rse_2015_07_007
crossref_primary_10_1016_j_rse_2017_07_007
crossref_primary_10_1016_j_scitotenv_2012_08_025
crossref_primary_10_1051_e3sconf_20199904011
crossref_primary_10_5589_m09_040
crossref_primary_10_1016_j_rse_2015_04_027
crossref_primary_10_1016_j_rse_2022_113385
crossref_primary_10_1016_j_compag_2016_05_008
crossref_primary_10_1016_j_rse_2014_02_014
crossref_primary_10_3390_rs17162914
crossref_primary_10_3390_rs11131597
crossref_primary_10_1109_TGRS_2016_2551326
crossref_primary_10_3390_rs71215841
crossref_primary_10_1108_IJSHE_07_2024_0445
crossref_primary_10_1016_j_rse_2012_02_011
crossref_primary_10_1016_j_rse_2021_112328
crossref_primary_10_1016_j_jag_2017_10_012
crossref_primary_10_1109_JSTARS_2012_2184527
crossref_primary_10_3390_rs6021171
crossref_primary_10_3390_rs12111788
crossref_primary_10_1080_2150704X_2015_1137987
crossref_primary_10_1080_10106049_2018_1452987
crossref_primary_10_1080_01431161_2023_2205982
crossref_primary_10_1080_01431161_2020_1841323
crossref_primary_10_1080_17538947_2024_2329817
crossref_primary_10_3390_rs13091830
crossref_primary_10_1016_j_rse_2010_09_012
crossref_primary_10_1016_j_rse_2019_111615
crossref_primary_10_3390_rs15092264
crossref_primary_10_1016_j_jag_2025_104516
crossref_primary_10_3390_rs8040303
crossref_primary_10_1007_s11769_016_0833_y
crossref_primary_10_1016_j_ecolind_2022_109102
crossref_primary_10_1016_j_rsase_2025_101728
crossref_primary_10_1109_JSTARS_2012_2186118
crossref_primary_10_3390_rs16061073
crossref_primary_10_1007_s10668_021_01482_1
crossref_primary_10_1016_j_asr_2019_09_023
crossref_primary_10_1016_j_isprsjprs_2021_04_002
crossref_primary_10_3390_rs9030190
crossref_primary_10_3390_rs14215407
crossref_primary_10_3390_rs4051112
crossref_primary_10_1007_s12665_010_0893_8
crossref_primary_10_1080_01431160903439908
crossref_primary_10_1016_j_isprsjprs_2019_02_013
crossref_primary_10_1016_S2095_3119_15_61073_5
crossref_primary_10_3390_agriculture15101026
crossref_primary_10_1007_s10712_018_9478_y
crossref_primary_10_1016_j_jag_2012_08_014
crossref_primary_10_1016_j_rse_2014_12_008
crossref_primary_10_1109_TGRS_2014_2377300
crossref_primary_10_3390_rs17122014
crossref_primary_10_3390_rs10071133
crossref_primary_10_1016_j_rse_2013_11_018
crossref_primary_10_1029_2022EA002799
crossref_primary_10_1109_JSTARS_2017_2690623
crossref_primary_10_1109_JSTARS_2021_3065582
crossref_primary_10_1016_j_isprsjprs_2015_04_013
crossref_primary_10_1016_j_rse_2021_112304
crossref_primary_10_1007_s11707_014_0432_0
crossref_primary_10_1016_j_jag_2018_09_008
crossref_primary_10_1016_j_rse_2018_09_028
crossref_primary_10_1080_00387010_2019_1711131
crossref_primary_10_1109_JSTARS_2021_3062073
crossref_primary_10_1016_j_isprsjprs_2019_06_007
crossref_primary_10_3390_rs71013251
crossref_primary_10_1016_j_jag_2021_102602
crossref_primary_10_1016_j_jag_2013_05_007
crossref_primary_10_1016_j_jag_2019_101932
crossref_primary_10_3390_rs4030561
crossref_primary_10_4028_www_scientific_net_AMR_317_319_1050
crossref_primary_10_3390_agronomy12112835
crossref_primary_10_3390_rs16030479
crossref_primary_10_1016_j_compag_2018_05_035
crossref_primary_10_3390_rs14122864
crossref_primary_10_5589_m09_010
crossref_primary_10_1016_j_rse_2017_03_042
crossref_primary_10_1016_j_isprsjprs_2024_05_014
crossref_primary_10_1016_j_rse_2018_09_030
crossref_primary_10_1016_j_agrformet_2024_110337
crossref_primary_10_3390_rs9070726
crossref_primary_10_3390_rs11151752
crossref_primary_10_1080_10106049_2016_1232438
crossref_primary_10_1080_01431160902895480
crossref_primary_10_1007_s12524_014_0411_7
crossref_primary_10_3390_rs16122058
crossref_primary_10_1016_j_ecoinf_2025_103068
crossref_primary_10_1016_j_compag_2019_04_005
crossref_primary_10_1016_j_rse_2016_01_027
crossref_primary_10_1080_07038992_2019_1605586
crossref_primary_10_3390_rs1041139
crossref_primary_10_1016_j_jag_2015_01_009
crossref_primary_10_1080_01431161_2015_1041176
crossref_primary_10_1080_01431161_2024_2368929
crossref_primary_10_1016_j_compag_2023_108165
crossref_primary_10_1016_j_ecolind_2023_111329
crossref_primary_10_3390_rs10122063
crossref_primary_10_3390_rs14051154
crossref_primary_10_1002_ppj2_20054
crossref_primary_10_3390_rs11111385
crossref_primary_10_3390_rs10122061
crossref_primary_10_3390_rs11222681
crossref_primary_10_5194_bg_10_6279_2013
crossref_primary_10_1080_01904167_2020_1844753
crossref_primary_10_1016_j_compag_2018_10_009
crossref_primary_10_1016_j_rse_2013_07_032
crossref_primary_10_1016_j_foreco_2019_03_030
crossref_primary_10_1016_j_ecolmodel_2020_109058
crossref_primary_10_1016_j_atech_2022_100067
crossref_primary_10_1109_JSTARS_2015_2489718
crossref_primary_10_3390_rs16122066
crossref_primary_10_1111_j_1469_8137_2012_04338_x
crossref_primary_10_1016_j_rse_2016_08_017
crossref_primary_10_1038_s41477_025_02096_5
crossref_primary_10_1111_j_1749_8198_2008_00182_x
crossref_primary_10_1016_j_fcr_2022_108449
crossref_primary_10_1016_j_ecoinf_2023_102099
crossref_primary_10_1109_JSTARS_2015_2401515
crossref_primary_10_1016_j_rse_2019_111415
crossref_primary_10_3390_w14071157
crossref_primary_10_3390_fire7090304
crossref_primary_10_1016_j_scienta_2020_109326
crossref_primary_10_3390_rs14205138
crossref_primary_10_1016_j_rse_2011_11_002
crossref_primary_10_1111_pce_13718
crossref_primary_10_3390_rs11192241
crossref_primary_10_1016_j_jag_2019_01_021
crossref_primary_10_1007_s11119_013_9315_8
crossref_primary_10_3390_rs8070557
crossref_primary_10_1080_01431161_2013_845316
crossref_primary_10_1007_s12145_016_0281_3
crossref_primary_10_1016_j_asr_2012_07_001
crossref_primary_10_3390_rs10091463
crossref_primary_10_1007_s10661_023_11562_6
crossref_primary_10_1016_j_fcr_2024_109660
crossref_primary_10_5194_essd_16_1771_2024
crossref_primary_10_1007_s11119_019_09698_y
crossref_primary_10_1016_j_rse_2022_113284
crossref_primary_10_3390_rs11131572
crossref_primary_10_1007_s10342_025_01768_3
crossref_primary_10_1016_j_rse_2021_112353
crossref_primary_10_1016_j_rse_2021_112352
crossref_primary_10_3390_rs70202089
crossref_primary_10_3390_plants13020259
crossref_primary_10_1016_j_rse_2021_112475
crossref_primary_10_3390_rs70709347
crossref_primary_10_1016_j_envc_2025_101114
crossref_primary_10_1016_j_ecolind_2024_112001
crossref_primary_10_3390_rs12183073
crossref_primary_10_3390_f14071417
crossref_primary_10_1109_TGRS_2024_3462099
crossref_primary_10_1016_j_rsase_2019_100235
crossref_primary_10_5194_hess_24_1251_2020
crossref_primary_10_3390_agronomy13123071
crossref_primary_10_3390_s17010081
crossref_primary_10_1016_j_rse_2022_113170
crossref_primary_10_1007_s12524_017_0682_x
crossref_primary_10_3390_rs17122067
crossref_primary_10_3390_s20092493
crossref_primary_10_1016_j_ecolind_2016_11_003
crossref_primary_10_1016_j_jag_2018_06_018
crossref_primary_10_3390_rs14010078
crossref_primary_10_1016_j_isprsjprs_2016_09_015
crossref_primary_10_1080_01431161_2012_663110
crossref_primary_10_1371_journal_pone_0137029
crossref_primary_10_1016_j_scienta_2023_112641
crossref_primary_10_1016_j_jag_2013_02_002
crossref_primary_10_3390_app10072259
crossref_primary_10_1080_01431161_2020_1864061
crossref_primary_10_1016_j_agrformet_2022_109178
crossref_primary_10_3390_s17061428
crossref_primary_10_1002_2014JG002754
crossref_primary_10_3390_rs14061396
crossref_primary_10_1016_j_jag_2021_102354
crossref_primary_10_3390_drones7090586
crossref_primary_10_1016_j_jag_2016_10_002
crossref_primary_10_1016_j_asr_2024_02_031
crossref_primary_10_3390_rs5062639
crossref_primary_10_1016_j_rse_2012_12_026
crossref_primary_10_1016_j_rse_2018_02_030
crossref_primary_10_3390_rs13234898
crossref_primary_10_1007_s11707_019_0780_x
crossref_primary_10_1016_j_atech_2025_101355
crossref_primary_10_3390_rs12132139
crossref_primary_10_1080_10106049_2024_2387087
crossref_primary_10_3390_rs6032239
crossref_primary_10_1016_j_jag_2019_04_019
crossref_primary_10_1016_j_jag_2017_09_009
crossref_primary_10_3390_rs16224296
crossref_primary_10_3390_s18041120
crossref_primary_10_1109_LGRS_2015_2437391
crossref_primary_10_3390_rs12223773
crossref_primary_10_1016_j_rse_2024_114526
crossref_primary_10_3390_rs10020346
crossref_primary_10_1002_wlb3_01425
crossref_primary_10_1155_2013_964323
crossref_primary_10_1016_j_jag_2020_102242
crossref_primary_10_1016_j_compag_2025_110575
crossref_primary_10_1016_j_agrformet_2021_108535
crossref_primary_10_1029_2018RG000608
crossref_primary_10_1109_JSTARS_2011_2150200
crossref_primary_10_1038_s41598_018_34429_0
crossref_primary_10_1109_JSTARS_2010_2091492
crossref_primary_10_3390_rs14081792
crossref_primary_10_1016_j_jag_2011_09_004
crossref_primary_10_1109_JSTARS_2015_2472415
crossref_primary_10_3390_rs14051247
crossref_primary_10_3390_rs14225801
crossref_primary_10_1080_01431161_2016_1186850
crossref_primary_10_1109_JSTARS_2015_2450762
crossref_primary_10_14358_PERS_79_7_653
crossref_primary_10_3390_rs11192324
crossref_primary_10_1016_j_rse_2025_114739
crossref_primary_10_2134_agronj2019_05_0332
crossref_primary_10_3390_rs14153515
crossref_primary_10_1109_TGRS_2015_2442999
crossref_primary_10_3390_rs12172803
crossref_primary_10_1016_j_agrformet_2014_08_001
crossref_primary_10_1016_j_isprsjprs_2016_08_001
crossref_primary_10_3390_rs11202418
crossref_primary_10_1016_j_ecolind_2013_12_005
crossref_primary_10_1109_JSTARS_2023_3283535
crossref_primary_10_3390_rs15082043
crossref_primary_10_3390_rs11161936
crossref_primary_10_1109_JSTARS_2021_3082621
crossref_primary_10_1016_j_envsoft_2017_06_006
crossref_primary_10_1007_s10668_021_01815_0
crossref_primary_10_3390_rs5126323
crossref_primary_10_3389_fpls_2021_608967
crossref_primary_10_3390_rs13081419
crossref_primary_10_1016_j_eja_2022_126664
crossref_primary_10_1016_j_compag_2022_107401
crossref_primary_10_3390_rs11171979
crossref_primary_10_1111_avsc_12586
crossref_primary_10_1016_j_rse_2024_114309
crossref_primary_10_1016_j_rse_2013_07_012
crossref_primary_10_3390_agriculture14101685
crossref_primary_10_1016_j_cj_2022_04_003
crossref_primary_10_1080_07038992_2019_1641401
crossref_primary_10_1016_j_rse_2011_10_035
crossref_primary_10_3390_rs11202409
crossref_primary_10_3390_s150306196
crossref_primary_10_1016_j_compag_2018_07_023
crossref_primary_10_1016_j_rsase_2024_101161
crossref_primary_10_5589_cjrs3505fi
crossref_primary_10_1016_j_agrformet_2018_02_010
crossref_primary_10_1080_01431161_2023_2283903
crossref_primary_10_3390_rs15235609
crossref_primary_10_1016_j_compag_2020_105786
crossref_primary_10_1080_10106049_2022_2087756
crossref_primary_10_1016_j_rse_2018_02_027
crossref_primary_10_3390_rs10010085
crossref_primary_10_1016_j_rse_2019_111479
Cites_doi 10.1080/01431160410001685018
10.1016/j.rse.2003.11.018
10.1016/j.rse.2004.06.003
10.1016/j.rse.2004.01.017
10.1016/j.rse.2004.06.016
10.1051/agro:2000105
10.1080/01431169408954109
10.1016/j.rse.2002.06.002
10.1016/j.rse.2005.10.006
10.1016/j.rse.2006.07.014
10.1080/014311698214433
10.1016/S0034-4257(96)00238-6
10.1021/ac60214a047
10.1016/j.rse.2003.12.013
10.1016/0034-4257(95)00238-3
10.1016/S0034-4257(99)00113-3
10.1029/97JD01107
10.1016/j.rse.2004.06.005
10.1016/j.rse.2006.07.016
10.1016/0034-4257(90)90100-Z
10.1016/0034-4257(92)90133-5
10.1016/j.rse.2004.05.015
10.1007/BF00032301
10.1016/j.rse.2003.09.004
10.1016/S0034-4257(02)00018-4
10.1016/S0034-4257(99)00045-0
10.1080/01431168308948546
10.1016/S0034-4257(00)00139-5
10.1016/j.rse.2006.05.021
10.1016/j.jag.2004.03.002
10.1016/j.scienta.2006.07.026
10.2134/agronj1991.00021962008300050009x
10.1016/S0034-4257(98)00014-5
10.21273/HORTSCI.25.3.330
10.1016/S0034-4257(02)00012-3
10.1080/014311699213631
10.1016/0034-4257(85)90072-0
10.1016/j.rse.2006.09.031
10.1016/S0034-4257(96)00069-7
10.1016/j.rse.2007.02.018
10.1016/S0034-4257(01)00342-X
10.1016/0034-4257(95)00018-V
10.1016/S0034-4257(02)00035-4
10.1016/j.rse.2004.12.016
10.1080/02757250009532396
10.1016/0034-4257(84)90057-9
10.1016/S0034-4257(03)00094-4
10.1016/j.rse.2006.12.013
10.1016/0034-4257(95)00234-0
10.1016/0034-4257(89)90069-2
10.1016/0034-4257(95)00135-N
10.1016/S0034-4257(03)00146-9
10.1080/014311697217558
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2008 INIST-CNRS
Wageningen University & Research
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2008 INIST-CNRS
– notice: Wageningen University & Research
DBID AAYXX
CITATION
IQODW
7SN
7TG
8FD
C1K
FR3
KL.
P64
RC3
QVL
DOI 10.1016/j.rse.2007.12.003
DatabaseName CrossRef
Pascal-Francis
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
NARCIS:Publications
DatabaseTitle CrossRef
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 2604
ExternalDocumentID oai_library_wur_nl_wurpubs_369834
20262981
10_1016_j_rse_2007_12_003
S0034425707004968
GeographicLocations MED
GeographicLocations_xml – name: MED
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
HMA
HMC
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
GBLVA
HVGLF
H~9
OHT
P-8
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SN
7TG
8FD
C1K
FR3
KL.
P64
RC3
02
08R
0R
1
41
8P
AAPBV
ABFLS
ABPTK
ADALY
AFRUD
F20
G-
G8K
HZ
K
KM
M
QVL
STF
UNR
X
ID FETCH-LOGICAL-c409t-32d34286b1a12463bfa11b708539acba53e79dc8b28d2f7bcc57d9c948ae4b1a3
ISICitedReferencesCount 450
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255370700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Fri Feb 05 18:08:29 EST 2021
Tue Oct 07 09:19:43 EDT 2025
Mon Jul 21 09:11:54 EDT 2025
Tue Nov 18 21:50:23 EST 2025
Sat Nov 29 02:51:00 EST 2025
Fri Feb 23 02:25:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Grassland
Radiative transfer model
Model inversion
LAI
Hyperspectral
LUT
Canopy chlorophyll
Leaf chlorophyll
Spectroradiometry
stratification
radiative transfer
vegetation
Spectral data
grasslands
LA1
models
inverse problem
Prediction
chlorophyll
Plant leaf
utilization
heterogeneity
Measurement in situ
Content
Canopy(vegetation)
Reflectance
Leaf area index
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-32d34286b1a12463bfa11b708539acba53e79dc8b28d2f7bcc57d9c948ae4b1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 19537827
PQPubID 23462
PageCount 13
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_369834
proquest_miscellaneous_19537827
pascalfrancis_primary_20262981
crossref_primary_10_1016_j_rse_2007_12_003
crossref_citationtrail_10_1016_j_rse_2007_12_003
elsevier_sciencedirect_doi_10_1016_j_rse_2007_12_003
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate 2008-05-15
PublicationDateYYYYMMDD 2008-05-15
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-05-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2008
Publisher Elsevier Inc
Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
References Cimini (bib17) 2005
Markwell, Osterman, Mitchell (bib52) 1995; 46
Haboudane, Miller, Pattey, Zarco-Tejada, Strachan (bib35) 2004; 90
Combal, Baret, Weiss (bib20) 2002; 22
Yoder, Pettigrew-Crosby (bib71) 1995; 53
Atzberger (bib2) 1997
Combal, Baret, Weiss, Trubuil, Mace, Pragnere (bib21) 2003; 84
Carter (bib12) 1994; 15
Zarco-Tejada, Miller, Morales, Berjon, Aguera (bib73) 2004; 90
Guyot, Baret (bib34) 1988
Cho, Skidmore, Corsi, van Wieren, van Sobhan (bib16) 2007; 9
Baret, Jacquemoud (bib9) 1994
Fourty, Baret (bib27) 1997; 61
Kimes, Nelson, Manry, Fung (bib45) 1998; 19
CROMA (bib22) 2000
Curran (bib23) 1989; 30
Mathworks (bib53) 2007
Goel (bib32) 1989
Baret, Hagolle, Geiger, Bicheron, Miras, Huc (bib8) 2007; 110
Meroni, Colombo, Panigada (bib54) 2004; 92
Tang, Chen, Zhu, Li, Chen, Sun (bib61) 2006
Lavergne, Kaminski, Pinty, Taberner, Gobron, Verstraete, Vossbeck, Widlowski, Giering (bib48) 2007; 107
Thenkabail, Enclona, Ashton, Legg, De Dieu (bib62) 2004; 90
Boegh, Soegaard, Broge, Hasager, Jensen, Schelde (bib10) 2002; 81
Jacquemoud, Bacour, Poilve, Frangi (bib39) 2000; 74
Zarco-Tejada, Miller, Harron, Hu, Noland, Goel (bib72) 2004; 89
Qi, Kerr, Moran, Weltz, Huete, Sorooshian (bib58) 2000; 73
Weiss, Baret, Myneni, Pragnere, Knyazikhin (bib69) 2000; 20
Clevers, Verhoef (bib18) 1991
Verhoef (bib64) 1985; 17
Fourty, Baret, Jacquemoud, Schmuck, Verdebout (bib28) 1996; 56
Jacquemoud, Ustin, Verdebout, Schmuck, Andreoli, Hosgood (bib42) 1996; 56
Jacquemoud, Baret (bib40) 1990; 34
Bacour, Jacquemoud, Vogt, Hosgood, Andreoli, Frangi (bib7) 2001
Chaurasia, Dadhwal (bib13) 2004; 25
Verhoef, Bach (bib65) 2007; 109
Jongschaap, Booij (bib43) 2004; 5
le Maire, Francois, Dufrene (bib49) 2004; 89
Curran, Dungan, Macler, Plummer, Peterson (bib24) 1992; 39
Cho, M. A., 2007. Hyperspectral remote sensing of biochemical and biophysical parameters: the derivative red-edge “double-peak feature": a nuisance or an opportunity? Wageningen University, 2007. ITC Dissertation 142, 206 pp.
Haboudane, Miller, Tremblay, Zarco-Tejada, Dextraze (bib36) 2002; 81
Horler, Dockray, Barber (bib37) 1983; 4
Walthall, Dulaney, Anderson, Norman, Fang, Liang (bib67) 2004; 92
Campbell, Nobley, Marini, Pfeiffer (bib11) 1990; 25
Jacquemoud, Baret, Andrieu, Danson, Jaggard (bib41) 1995; 52
Asner (bib1) 1998; 64
Atzberger (bib3) 2004; 93
Weiss, Baret (bib68) 1999; 70
Kötz, Schaepman, Morsdorf, Bowyer, Itten, Allgower (bib46) 2004; 92
Minolta (bib55) 2003
Nakano, Nomizu, Mizunashi, Suzuki, Mori, Kuwayama (bib56) 2006; 110
Gemmell, Varjo, Strandstrom, Kuusk (bib30) 2002; 81
Schlerf, Atzberger (bib60) 2006; 100
Gitelson, Merzlyak (bib31) 1997; V18
Darvishzadeh, R., Skidmore, A.K., Schlerf, M., Atzberger, C., Corsi, F., Cho, M.A., (in press). LAI and chlorophyll estimated for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing.
Chen, Rich, Gower, Norman, Plummer (bib14) 1997; 102
Gong, Wang, Liang (bib33) 1999; 20
Durbha, King, Younan (bib26) 2007; 107
Verhoef (bib63) 1984; 16
Schlerf, Atzberger, Hill (bib75) 2005; 95
LI-COR (bib51) 1992
Bacour, Baret, Beal, Weiss, Pavageau (bib5) 2006; 105
Welles, Norman (bib70) 1991; 83
Savitzky, Golay (bib59) 1964; 36
Colombo, Bellingeri, Fasolini, Marino (bib19) 2003; 86
Liang (bib50) 2004
Atzberger, Jarmer, Schlerf, Kötz, Werner (bib4) 2003
Houborg, Soegaard, Boegh (bib38) 2007; 106
Kuusk (bib47) 1991
Gastellu-Etchegorry, Gascon, Esteve (bib29) 2003; 87
Kimes, Knyazikhin, Privette, Abuelgasim, Gao (bib44) 2000; 18
Verstraete, Pinty, Myneni (bib66) 1996; 58
Horler (10.1016/j.rse.2007.12.003_bib37) 1983; 4
Jacquemoud (10.1016/j.rse.2007.12.003_bib41) 1995; 52
Boegh (10.1016/j.rse.2007.12.003_bib10) 2002; 81
Schlerf (10.1016/j.rse.2007.12.003_bib75) 2005; 95
Curran (10.1016/j.rse.2007.12.003_bib24) 1992; 39
Goel (10.1016/j.rse.2007.12.003_bib32) 1989
le Maire (10.1016/j.rse.2007.12.003_bib49) 2004; 89
Bacour (10.1016/j.rse.2007.12.003_bib5) 2006; 105
Lavergne (10.1016/j.rse.2007.12.003_bib48) 2007; 107
LI-COR (10.1016/j.rse.2007.12.003_bib51) 1992
Guyot (10.1016/j.rse.2007.12.003_bib34) 1988
Cho (10.1016/j.rse.2007.12.003_bib16) 2007; 9
Durbha (10.1016/j.rse.2007.12.003_bib26) 2007; 107
Chaurasia (10.1016/j.rse.2007.12.003_bib13) 2004; 25
Colombo (10.1016/j.rse.2007.12.003_bib19) 2003; 86
Fourty (10.1016/j.rse.2007.12.003_bib27) 1997; 61
10.1016/j.rse.2007.12.003_bib25
Schlerf (10.1016/j.rse.2007.12.003_bib60) 2006; 100
Verstraete (10.1016/j.rse.2007.12.003_bib66) 1996; 58
Verhoef (10.1016/j.rse.2007.12.003_bib65) 2007; 109
Curran (10.1016/j.rse.2007.12.003_bib23) 1989; 30
Tang (10.1016/j.rse.2007.12.003_bib61) 2006
Zarco-Tejada (10.1016/j.rse.2007.12.003_bib73) 2004; 90
Clevers (10.1016/j.rse.2007.12.003_bib18) 1991
Atzberger (10.1016/j.rse.2007.12.003_bib3) 2004; 93
Gong (10.1016/j.rse.2007.12.003_bib33) 1999; 20
Kimes (10.1016/j.rse.2007.12.003_bib45) 1998; 19
Markwell (10.1016/j.rse.2007.12.003_bib52) 1995; 46
Qi (10.1016/j.rse.2007.12.003_bib58) 2000; 73
Verhoef (10.1016/j.rse.2007.12.003_bib64) 1985; 17
Haboudane (10.1016/j.rse.2007.12.003_bib36) 2002; 81
Thenkabail (10.1016/j.rse.2007.12.003_bib62) 2004; 90
10.1016/j.rse.2007.12.003_bib15
Gemmell (10.1016/j.rse.2007.12.003_bib30) 2002; 81
Mathworks (10.1016/j.rse.2007.12.003_bib53) 2007
Savitzky (10.1016/j.rse.2007.12.003_bib59) 1964; 36
Atzberger (10.1016/j.rse.2007.12.003_bib4) 2003
Jongschaap (10.1016/j.rse.2007.12.003_bib43) 2004; 5
Liang (10.1016/j.rse.2007.12.003_bib50) 2004
Cimini (10.1016/j.rse.2007.12.003_bib17) 2005
Haboudane (10.1016/j.rse.2007.12.003_bib35) 2004; 90
Gastellu-Etchegorry (10.1016/j.rse.2007.12.003_bib29) 2003; 87
CROMA (10.1016/j.rse.2007.12.003_bib22) 2000
Yoder (10.1016/j.rse.2007.12.003_bib71) 1995; 53
Campbell (10.1016/j.rse.2007.12.003_bib11) 1990; 25
Meroni (10.1016/j.rse.2007.12.003_bib54) 2004; 92
Jacquemoud (10.1016/j.rse.2007.12.003_bib42) 1996; 56
Baret (10.1016/j.rse.2007.12.003_bib9) 1994
Carter (10.1016/j.rse.2007.12.003_bib12) 1994; 15
Fourty (10.1016/j.rse.2007.12.003_bib28) 1996; 56
Jacquemoud (10.1016/j.rse.2007.12.003_bib39) 2000; 74
Minolta (10.1016/j.rse.2007.12.003_bib55) 2003
Chen (10.1016/j.rse.2007.12.003_bib14) 1997; 102
Walthall (10.1016/j.rse.2007.12.003_bib67) 2004; 92
Asner (10.1016/j.rse.2007.12.003_bib1) 1998; 64
Gitelson (10.1016/j.rse.2007.12.003_bib31) 1997; V18
Houborg (10.1016/j.rse.2007.12.003_bib38) 2007; 106
Verhoef (10.1016/j.rse.2007.12.003_bib63) 1984; 16
Jacquemoud (10.1016/j.rse.2007.12.003_bib40) 1990; 34
Baret (10.1016/j.rse.2007.12.003_bib8) 2007; 110
Combal (10.1016/j.rse.2007.12.003_bib21) 2003; 84
Weiss (10.1016/j.rse.2007.12.003_bib68) 1999; 70
Kuusk (10.1016/j.rse.2007.12.003_bib47) 1991
Atzberger (10.1016/j.rse.2007.12.003_bib2) 1997
Welles (10.1016/j.rse.2007.12.003_bib70) 1991; 83
Kimes (10.1016/j.rse.2007.12.003_bib44) 2000; 18
Nakano (10.1016/j.rse.2007.12.003_bib56) 2006; 110
Kötz (10.1016/j.rse.2007.12.003_bib46) 2004; 92
Zarco-Tejada (10.1016/j.rse.2007.12.003_bib72) 2004; 89
Combal (10.1016/j.rse.2007.12.003_bib20) 2002; 22
Bacour (10.1016/j.rse.2007.12.003_bib7) 2001
Weiss (10.1016/j.rse.2007.12.003_bib69) 2000; 20
References_xml – volume: 39
  start-page: 153
  year: 1992
  end-page: 166
  ident: bib24
  article-title: Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration
  publication-title: Remote Sensing of Environment
– volume: 90
  start-page: 23
  year: 2004
  end-page: 43
  ident: bib62
  article-title: Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests
  publication-title: Remote Sensing of Environment
– volume: 109
  start-page: 166
  year: 2007
  end-page: 182
  ident: bib65
  article-title: Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data
  publication-title: Remote Sensing of Environment
– volume: 81
  start-page: 179
  year: 2002
  end-page: 193
  ident: bib10
  article-title: Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture
  publication-title: Remote Sensing of Environment
– volume: 4
  start-page: 273
  year: 1983
  end-page: 288
  ident: bib37
  article-title: The red edge of plant leaf reflectance
  publication-title: International Journal of Remote Sensing
– volume: 100
  start-page: 281
  year: 2006
  end-page: 294
  ident: bib60
  article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
  publication-title: Remote Sensing of Environment
– volume: 17
  start-page: 165
  year: 1985
  end-page: 178
  ident: bib64
  article-title: Earth observation modeling based on layer scattering matrices
  publication-title: Remote Sensing of Environment
– year: 1997
  ident: bib2
  article-title: Estimates of winter wheat production through remote sensing and crop growth modelling
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1638
  ident: bib59
  article-title: Smoothing and differentiation of data by simplified least square procedure
  publication-title: Analytical Chemistry
– volume: 20
  start-page: 3
  year: 2000
  end-page: 22
  ident: bib69
  article-title: Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data
  publication-title: Agronomie
– volume: 106
  start-page: 39
  year: 2007
  end-page: 58
  ident: bib38
  article-title: Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data
  publication-title: Remote Sensing of Environment
– volume: 81
  start-page: 416
  year: 2002
  end-page: 426
  ident: bib36
  article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
  publication-title: Remote Sensing of Environment
– volume: 73
  start-page: 18
  year: 2000
  end-page: 30
  ident: bib58
  article-title: Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region
  publication-title: Remote Sensing of Environment
– year: 2000
  ident: bib22
  article-title: Crop reflectance operational models for agriculture
  publication-title: Description of work.—Energy, environment and sustainable development work programme
– year: 2003
  ident: bib55
  article-title: Chlorophyll meter SPAD-502. Instruction manual
– volume: 84
  start-page: 1
  year: 2003
  end-page: 15
  ident: bib21
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sensing of Environment
– year: 2001
  ident: bib7
  article-title: Optimal sampling configurations for the estimation of canopy properties from BRDF data acquired from the EGO/JRC, 8th International Symposium
  publication-title: Physical measurements and signatures in remote sensing
– volume: 87
  start-page: 55
  year: 2003
  end-page: 71
  ident: bib29
  article-title: An interpolation procedure for generalizing a look-up table inversion method
  publication-title: Remote Sensing of Environment
– volume: 105
  start-page: 313
  year: 2006
  end-page: 325
  ident: bib5
  article-title: Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation
  publication-title: Remote Sensing of Environment
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: bib63
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sensing of Environment
– volume: 46
  start-page: 467
  year: 1995
  end-page: 472
  ident: bib52
  article-title: Calibration of Minolta SPAD-502 leaf chlorophyll meter
  publication-title: Photosynthetic Research
– year: 2007
  ident: bib53
  article-title: Matlab, the language of technical computing
– volume: 81
  start-page: 365
  year: 2002
  end-page: 377
  ident: bib30
  article-title: Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion
  publication-title: Remote Sensing of Environment
– volume: 56
  start-page: 194
  year: 1996
  end-page: 202
  ident: bib42
  article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model
  publication-title: Remote Sensing of Environment
– volume: 9
  start-page: 375
  year: 2007
  end-page: 391
  ident: bib16
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 95
  start-page: 177
  year: 2005
  end-page: 194
  ident: bib75
  article-title: Remote sensing of forest biophysical variables using HyMap imaging spectrometer data
  publication-title: Remote Sensing of Environment
– volume: 90
  start-page: 463
  year: 2004
  end-page: 476
  ident: bib73
  article-title: Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops
  publication-title: Remote Sensing of Environment
– volume: 61
  start-page: 34
  year: 1997
  end-page: 45
  ident: bib27
  article-title: Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study
  publication-title: Remote Sensing of Environment
– volume: 34
  start-page: 75
  year: 1990
  end-page: 91
  ident: bib40
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote Sensing of Environment
– reference: Cho, M. A., 2007. Hyperspectral remote sensing of biochemical and biophysical parameters: the derivative red-edge “double-peak feature": a nuisance or an opportunity? Wageningen University, 2007. ITC Dissertation 142, 206 pp.
– volume: 110
  start-page: 275
  year: 2007
  end-page: 286
  ident: bib8
  article-title: LAI, fAPAR and fCover CYCLOPES global products derived from vegetation: Part 1: Principles of the algorithm
  publication-title: Remote Sensing of Environment
– year: 1992
  ident: bib51
  publication-title: LAI-2000 Plant Canopy Analyzer Instruction Manual
– volume: 15
  start-page: 697
  year: 1994
  end-page: 703
  ident: bib12
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: International Journal of Remote Sensing
– volume: 18
  start-page: 381
  year: 2000
  end-page: 439
  ident: bib44
  article-title: Inversion methods for physically-based models
  publication-title: Remote Sensing Reviews
– volume: 89
  start-page: 1
  year: 2004
  end-page: 28
  ident: bib49
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sensing of Environment
– volume: 25
  start-page: 2881
  year: 2004
  end-page: 2887
  ident: bib13
  article-title: Comparison of principal component inversion with VI-empirical approach for LAI estimation using simulated reflectance data
  publication-title: International Journal Remote Sensing
– volume: 90
  start-page: 337
  year: 2004
  end-page: 352
  ident: bib35
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sensing of Environment
– volume: 92
  start-page: 332
  year: 2004
  end-page: 344
  ident: bib46
  article-title: Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties
  publication-title: Remote Sensing of Environment
– volume: 20
  start-page: 111
  year: 1999
  end-page: 122
  ident: bib33
  article-title: Inverting a canopy reflectance model using a neural network
  publication-title: International Journal of Remote Sensing
– start-page: 58
  year: 2006
  ident: bib61
  article-title: LAI inversion algorithm based on directional reflectance kernels
  publication-title: Journal of Environmental Management
– start-page: 205
  year: 1989
  end-page: 251
  ident: bib32
  article-title: Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data
  publication-title: Theory and Applications of Optical Remote Sensing
– year: 1991
  ident: bib18
  article-title: Modelling and synergetic use of optical and microwave remote sensing. Report 2: LAI estimation from canopy reflectance and WDVI: A sensitivity analysis with the SAIL model
  publication-title: BCRS Report 90-39
– volume: 110
  start-page: 366
  year: 2006
  end-page: 371
  ident: bib56
  article-title: Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures
  publication-title: Scientia Horticulturae
– volume: 22
  start-page: 205
  year: 2002
  end-page: 215
  ident: bib20
  article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information
  publication-title: Case study on sugar beet canopies. Agronomie
– volume: 107
  start-page: 348
  year: 2007
  end-page: 361
  ident: bib26
  article-title: Support vector machines regression for retrieval of leaf area index from multi-angle imaging spectroradiometer
  publication-title: Remote Sensing of Environment
– volume: 92
  start-page: 195
  year: 2004
  end-page: 206
  ident: bib54
  article-title: Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations
  publication-title: Remote Sensing of Environment
– volume: 107
  start-page: 362
  year: 2007
  end-page: 375
  ident: bib48
  article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes
  publication-title: Remote Sensing of Environment
– start-page: 473
  year: 2003
  end-page: 482
  ident: bib4
  article-title: Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model
  publication-title: In Proc. 3rd EARSeL workshop on imaging spectroscopy
– start-page: 145
  year: 1994
  end-page: 167
  ident: bib9
  article-title: Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics
  publication-title: Imaging spectrometry: A tool for environmental observations
– start-page: 139
  year: 1991
  end-page: 159
  ident: bib47
  article-title: The hot-spot effect in plant canopy reflectance
  publication-title: Photon–vegetation interactions
– volume: 93
  start-page: 53
  year: 2004
  end-page: 67
  ident: bib3
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sensing of Environment
– volume: 102
  start-page: 29429
  year: 1997
  end-page: 29443
  ident: bib14
  article-title: Leaf area index of boreal forests: theory, techniques, and measurements
  publication-title: Journal of Geophysical Research, D
– volume: 53
  start-page: 199
  year: 1995
  end-page: 211
  ident: bib71
  article-title: Predicting nitrogen and chlorophyll content and concentration from reflectance spectra (400–2500 nm) at leaf and canopy scales
  publication-title: Remote Sensing of Environment
– volume: 5
  start-page: 205
  year: 2004
  end-page: 218
  ident: bib43
  article-title: Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 56
  start-page: 104
  year: 1996
  end-page: 117
  ident: bib28
  article-title: Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems
  publication-title: Remote Sensing of Environment
– volume: 74
  start-page: 471
  year: 2000
  end-page: 481
  ident: bib39
  article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode
  publication-title: Remote Sensing of Environment
– volume: 83
  start-page: 818
  year: 1991
  end-page: 825
  ident: bib70
  article-title: Instrument for indirect measurement of canopy architecture
  publication-title: Agronomy Journal
– volume: 25
  start-page: 330
  year: 1990
  end-page: 331
  ident: bib11
  article-title: Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll
  publication-title: HortScience
– volume: 30
  start-page: 271
  year: 1989
  end-page: 278
  ident: bib23
  article-title: Remote sensing of foliar chemistry
  publication-title: Remote Sensing of Environment
– volume: 58
  start-page: 201
  year: 1996
  end-page: 214
  ident: bib66
  article-title: Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing
  publication-title: Remote Sensing of Environment
– volume: 70
  start-page: 293
  year: 1999
  end-page: 306
  ident: bib68
  article-title: Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data
  publication-title: Remote Sensing of Environment
– volume: 19
  start-page: 2639
  year: 1998
  end-page: 2662
  ident: bib45
  article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
  publication-title: International Journal of Remote Sensing
– reference: Darvishzadeh, R., Skidmore, A.K., Schlerf, M., Atzberger, C., Corsi, F., Cho, M.A., (in press). LAI and chlorophyll estimated for a heterogeneous grassland using hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote Sensing.
– volume: 92
  start-page: 465
  year: 2004
  end-page: 474
  ident: bib67
  article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery
  publication-title: Remote Sensing of Environment
– year: 2005
  ident: bib17
  article-title: Parco Nazionale della Majella
– volume: 64
  start-page: 234
  year: 1998
  end-page: 253
  ident: bib1
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sensing of Environment
– volume: 86
  start-page: 120
  year: 2003
  end-page: 131
  ident: bib19
  article-title: Retrieval of leaf area index in different vegetation types using high resolution satellite data
  publication-title: Remote Sensing of Environment
– start-page: 279
  year: 1988
  end-page: 286
  ident: bib34
  article-title: Utilisation de la haute resolution spectrale pour suivre l'état des couverts végétaux
  publication-title: Proceedings 4th international colloquium on spectral signatures of objects in remote sensing. ESA SP-287, Aussois, France
– volume: 52
  start-page: 163
  year: 1995
  end-page: 172
  ident: bib41
  article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors
  publication-title: Remote Sensing of Environment
– year: 2004
  ident: bib50
  article-title: Quantitative remote sensing of land surfaces
  publication-title: Wiley Praxis Series in Remote Sensing
– volume: V18
  start-page: 2691
  year: 1997
  end-page: 2697
  ident: bib31
  article-title: Remote estimation of chlorophyll content in higher plant leaves
  publication-title: International Journal of Remote Sensing
– volume: 89
  start-page: 189
  year: 2004
  end-page: 199
  ident: bib72
  article-title: Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies
  publication-title: Remote Sensing of Environment
– year: 2001
  ident: 10.1016/j.rse.2007.12.003_bib7
  article-title: Optimal sampling configurations for the estimation of canopy properties from BRDF data acquired from the EGO/JRC, 8th International Symposium
– volume: 25
  start-page: 2881
  issue: 14
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib13
  article-title: Comparison of principal component inversion with VI-empirical approach for LAI estimation using simulated reflectance data
  publication-title: International Journal Remote Sensing
  doi: 10.1080/01431160410001685018
– year: 2003
  ident: 10.1016/j.rse.2007.12.003_bib55
– volume: 90
  start-page: 23
  issue: 1
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib62
  article-title: Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.11.018
– volume: 92
  start-page: 465
  issue: 4
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib67
  article-title: A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.06.003
– volume: 90
  start-page: 463
  issue: 4
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib73
  article-title: Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.01.017
– volume: 93
  start-page: 53
  issue: 1–2
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib3
  article-title: Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.06.016
– volume: 20
  start-page: 3
  issue: 1
  year: 2000
  ident: 10.1016/j.rse.2007.12.003_bib69
  article-title: Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data
  publication-title: Agronomie
  doi: 10.1051/agro:2000105
– volume: 15
  start-page: 697
  year: 1994
  ident: 10.1016/j.rse.2007.12.003_bib12
  article-title: Ratios of leaf reflectances in narrow wavebands as indicators of plant stress
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169408954109
– volume: 89
  start-page: 189
  issue: 2
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib72
  article-title: Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2002.06.002
– year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib50
  article-title: Quantitative remote sensing of land surfaces
– start-page: 139
  year: 1991
  ident: 10.1016/j.rse.2007.12.003_bib47
  article-title: The hot-spot effect in plant canopy reflectance
– year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib53
– volume: 100
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.rse.2007.12.003_bib60
  article-title: Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.10.006
– volume: 105
  start-page: 313
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2007.12.003_bib5
  article-title: Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.07.014
– ident: 10.1016/j.rse.2007.12.003_bib25
– volume: 19
  start-page: 2639
  issue: 14
  year: 1998
  ident: 10.1016/j.rse.2007.12.003_bib45
  article-title: Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311698214433
– volume: 61
  start-page: 34
  issue: 1
  year: 1997
  ident: 10.1016/j.rse.2007.12.003_bib27
  article-title: Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00238-6
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.rse.2007.12.003_bib59
  article-title: Smoothing and differentiation of data by simplified least square procedure
  publication-title: Analytical Chemistry
  doi: 10.1021/ac60214a047
– volume: 90
  start-page: 337
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib35
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.12.013
– year: 1991
  ident: 10.1016/j.rse.2007.12.003_bib18
  article-title: Modelling and synergetic use of optical and microwave remote sensing. Report 2: LAI estimation from canopy reflectance and WDVI: A sensitivity analysis with the SAIL model
– volume: 56
  start-page: 194
  issue: 3
  year: 1996
  ident: 10.1016/j.rse.2007.12.003_bib42
  article-title: Estimating leaf biochemistry using the PROSPECT leaf optical properties model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00238-3
– volume: 73
  start-page: 18
  issue: 1
  year: 2000
  ident: 10.1016/j.rse.2007.12.003_bib58
  article-title: Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00113-3
– volume: 102
  start-page: 29429
  issue: D24
  year: 1997
  ident: 10.1016/j.rse.2007.12.003_bib14
  article-title: Leaf area index of boreal forests: theory, techniques, and measurements
  publication-title: Journal of Geophysical Research, D
  doi: 10.1029/97JD01107
– volume: 92
  start-page: 195
  issue: 2
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib54
  article-title: Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.06.005
– volume: 106
  start-page: 39
  issue: 1
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib38
  article-title: Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.07.016
– volume: 34
  start-page: 75
  issue: 2
  year: 1990
  ident: 10.1016/j.rse.2007.12.003_bib40
  article-title: PROSPECT: A model of leaf optical properties spectra
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(90)90100-Z
– volume: 39
  start-page: 153
  year: 1992
  ident: 10.1016/j.rse.2007.12.003_bib24
  article-title: Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(92)90133-5
– volume: 92
  start-page: 332
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib46
  article-title: Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.05.015
– volume: 46
  start-page: 467
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2007.12.003_bib52
  article-title: Calibration of Minolta SPAD-502 leaf chlorophyll meter
  publication-title: Photosynthetic Research
  doi: 10.1007/BF00032301
– volume: 89
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib49
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.09.004
– volume: 22
  start-page: 205
  issue: 2
  year: 2002
  ident: 10.1016/j.rse.2007.12.003_bib20
  article-title: Improving canopy variables estimation from remote sensing data by exploiting ancillary information
  publication-title: Case study on sugar beet canopies. Agronomie
– volume: 81
  start-page: 416
  issue: 2–3
  year: 2002
  ident: 10.1016/j.rse.2007.12.003_bib36
  article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00018-4
– volume: 70
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.rse.2007.12.003_bib68
  article-title: Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(99)00045-0
– start-page: 145
  year: 1994
  ident: 10.1016/j.rse.2007.12.003_bib9
  article-title: Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics
– volume: 4
  start-page: 273
  issue: 2
  year: 1983
  ident: 10.1016/j.rse.2007.12.003_bib37
  article-title: The red edge of plant leaf reflectance
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431168308948546
– volume: 74
  start-page: 471
  issue: 3
  year: 2000
  ident: 10.1016/j.rse.2007.12.003_bib39
  article-title: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00139-5
– volume: 107
  start-page: 362
  issue: 1–2
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib48
  article-title: Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.05.021
– volume: 5
  start-page: 205
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2007.12.003_bib43
  article-title: Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status
  publication-title: International Journal of Applied Earth Observation and Geoinformation
  doi: 10.1016/j.jag.2004.03.002
– volume: 110
  start-page: 366
  issue: 4
  year: 2006
  ident: 10.1016/j.rse.2007.12.003_bib56
  article-title: Somaclonal variation in Tricyrtis hirta plants regenerated from 1-year-old embryogenic callus cultures
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2006.07.026
– volume: 83
  start-page: 818
  issue: 5
  year: 1991
  ident: 10.1016/j.rse.2007.12.003_bib70
  article-title: Instrument for indirect measurement of canopy architecture
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1991.00021962008300050009x
– year: 2000
  ident: 10.1016/j.rse.2007.12.003_bib22
  article-title: Crop reflectance operational models for agriculture
– year: 2005
  ident: 10.1016/j.rse.2007.12.003_bib17
– volume: 64
  start-page: 234
  issue: 3
  year: 1998
  ident: 10.1016/j.rse.2007.12.003_bib1
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(98)00014-5
– volume: 25
  start-page: 330
  year: 1990
  ident: 10.1016/j.rse.2007.12.003_bib11
  article-title: Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll
  publication-title: HortScience
  doi: 10.21273/HORTSCI.25.3.330
– volume: 81
  start-page: 365
  issue: 2–3
  year: 2002
  ident: 10.1016/j.rse.2007.12.003_bib30
  article-title: Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00012-3
– volume: 20
  start-page: 111
  issue: 1
  year: 1999
  ident: 10.1016/j.rse.2007.12.003_bib33
  article-title: Inverting a canopy reflectance model using a neural network
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311699213631
– start-page: 473
  year: 2003
  ident: 10.1016/j.rse.2007.12.003_bib4
  article-title: Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model
– volume: 17
  start-page: 165
  issue: 2
  year: 1985
  ident: 10.1016/j.rse.2007.12.003_bib64
  article-title: Earth observation modeling based on layer scattering matrices
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(85)90072-0
– volume: 107
  start-page: 348
  issue: 1–2
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib26
  article-title: Support vector machines regression for retrieval of leaf area index from multi-angle imaging spectroradiometer
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.09.031
– volume: 58
  start-page: 201
  year: 1996
  ident: 10.1016/j.rse.2007.12.003_bib66
  article-title: Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00069-7
– volume: 110
  start-page: 275
  issue: 3
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib8
  article-title: LAI, fAPAR and fCover CYCLOPES global products derived from vegetation: Part 1: Principles of the algorithm
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.02.018
– start-page: 58
  year: 2006
  ident: 10.1016/j.rse.2007.12.003_bib61
  article-title: LAI inversion algorithm based on directional reflectance kernels
  publication-title: Journal of Environmental Management
– volume: 81
  start-page: 179
  issue: 2–3
  year: 2002
  ident: 10.1016/j.rse.2007.12.003_bib10
  article-title: Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(01)00342-X
– start-page: 205
  year: 1989
  ident: 10.1016/j.rse.2007.12.003_bib32
  article-title: Inversion of canopy reflectance models for estimation of biophysical parameters from reflectance data
– volume: 52
  start-page: 163
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2007.12.003_bib41
  article-title: Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00018-V
– volume: 84
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.rse.2007.12.003_bib21
  article-title: Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00035-4
– year: 1992
  ident: 10.1016/j.rse.2007.12.003_bib51
– volume: 95
  start-page: 177
  issue: 2
  year: 2005
  ident: 10.1016/j.rse.2007.12.003_bib75
  article-title: Remote sensing of forest biophysical variables using HyMap imaging spectrometer data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.12.016
– volume: 18
  start-page: 381
  issue: 2–4
  year: 2000
  ident: 10.1016/j.rse.2007.12.003_bib44
  article-title: Inversion methods for physically-based models
  publication-title: Remote Sensing Reviews
  doi: 10.1080/02757250009532396
– volume: 16
  start-page: 125
  issue: 2
  year: 1984
  ident: 10.1016/j.rse.2007.12.003_bib63
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(84)90057-9
– volume: 86
  start-page: 120
  issue: 1
  year: 2003
  ident: 10.1016/j.rse.2007.12.003_bib19
  article-title: Retrieval of leaf area index in different vegetation types using high resolution satellite data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00094-4
– volume: 109
  start-page: 166
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib65
  article-title: Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2006.12.013
– ident: 10.1016/j.rse.2007.12.003_bib15
– year: 1997
  ident: 10.1016/j.rse.2007.12.003_bib2
– volume: 56
  start-page: 104
  issue: 2
  year: 1996
  ident: 10.1016/j.rse.2007.12.003_bib28
  article-title: Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00234-0
– start-page: 279
  year: 1988
  ident: 10.1016/j.rse.2007.12.003_bib34
  article-title: Utilisation de la haute resolution spectrale pour suivre l'état des couverts végétaux
– volume: 9
  start-page: 375
  issue: 2007-4
  year: 2007
  ident: 10.1016/j.rse.2007.12.003_bib16
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 30
  start-page: 271
  issue: 3
  year: 1989
  ident: 10.1016/j.rse.2007.12.003_bib23
  article-title: Remote sensing of foliar chemistry
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(89)90069-2
– volume: 53
  start-page: 199
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2007.12.003_bib71
  article-title: Predicting nitrogen and chlorophyll content and concentration from reflectance spectra (400–2500 nm) at leaf and canopy scales
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(95)00135-N
– volume: 87
  start-page: 55
  issue: 1
  year: 2003
  ident: 10.1016/j.rse.2007.12.003_bib29
  article-title: An interpolation procedure for generalizing a look-up table inversion method
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00146-9
– volume: V18
  start-page: 2691
  issue: 12
  year: 1997
  ident: 10.1016/j.rse.2007.12.003_bib31
  article-title: Remote estimation of chlorophyll content in higher plant leaves
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311697217558
SSID ssj0015871
Score 2.4716706
Snippet Radiative transfer models have seldom been applied for studying heterogeneous grassland canopies. Here, the potential of radiative transfer modeling to predict...
SourceID wageningen
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2592
SubjectTerms ancillary information
Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
canopy biophysical variables
Canopy chlorophyll
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Grassland
Hyperspectral
Internal geophysics
LAI
Leaf chlorophyll
leaf-area index
LUT
Model inversion
neural-network
optical-properties
precision agriculture
Radiative transfer model
reflectance data
remote-sensing data
retrieval
satellite data
Teledetection and vegetation maps
Title Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland
URI https://dx.doi.org/10.1016/j.rse.2007.12.003
https://www.proquest.com/docview/19537827
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F369834
Volume 112
WOSCitedRecordID wos000255370700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBmISQlCYKJfhB8QDU6Zcm_ixQt0YqgqCTuqbFSdO21GlJem6sd_BD-ac2LkhGPDAS1qlidP2-3x8fK6EvIqElYRWgsGtwjHcxIyNIBTMYMw1ReD0mesXicIjfzwOplP2sdP5XubCbJd-mgZXV2z9X6GGcwA2ps7-A9zVoHAC3gPocATY4fhXwGPljMIGplIfMyw-UMQHbQodVWaq-42q9Q0THFXWdHa4lbMy8nA0OFXpbnPYzK8AhyUW5oCx5hg7s4InSwycnWWgeOsOIJWC-0kC9vIwx7h4FU_dSKVrmMW3i3x-HcZy3gpa_PxlEdeRv5WPCDs0Jy3T7WBzjYFpOouxZboI0OuukjdLcey4BgqNlji27AbvvKZw9VTbPL1Qw07M_eUioOwR50dZLlWNSrT3mk694pVe_vEHfnw2GvHJcDp5vf5qYC8y9Nnrxiy3yK7tewxk5e7gdDh9X3mnvMBXnRj11y-95UXc4E9P_Z2-c28d5jALE9U-pbW_2buEn5cWuXUNXWfygNzXmxQ6UOR6SDoy7ZL9YQ0kfKgXhbxL7p5IXfe8S-6cFJ2ivz0iWcVDukpoSCse0pKHtOAhBR7Smoe05iEFHlKgF23wkC5SGKvFQ1rx8DE5Ox5O3r4zdIMPI3JNtjEcO3Zg-9sXVghqZt8RIDYs4cMuwGFhJELPkT6Lo0DYQWwnvogiz49ZxNwglC7c5OyTnXSVyieEgnxJQPfHcnoxJnszAcDB5ZEXuiKyzR4xSxh4pKvfYxOWJS_DHM85IIddWX1u2Vgyt0feVLesVemXmy52S2y51l2VTsqBlTfddtDiQfUg27T7NgusHnlZEoOD4EdvXlj8uRz936De-z3i1HzhKXYgyzkWjddmYH55kfF0iS8g4XMO8jdw3Kd_HPcZ2avn7HOys8ku5AtyO9puFnl2oKfEDyz76Hc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion+of+a+radiative+transfer+model+for+estimating+vegetation+LAI+and+chlorophyll+in+a+heterogeneous+grassland&rft.jtitle=Remote+sensing+of+environment&rft.au=Darvishzadeh%2C+R&rft.au=Skidmore%2C+A&rft.au=Schlerf%2C+M&rft.au=Atzberger%2C+C&rft.date=2008-05-15&rft.issn=0034-4257&rft.volume=112&rft.issue=5&rft.spage=2592&rft.epage=2604&rft_id=info:doi/10.1016%2Fj.rse.2007.12.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon