A Hybrid Composite Differential Evolution and Multiobjective Particle Swarm Optimization Evolutionary Algorithm and Its Application

The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; p. 1
Main Authors: Shang, Jin, Li, Guiying
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This research introduces an improved hybrid algorithm, CoDE-MOPSO, which integrates multi-objective particle swarm optimization with composite differential evolution based on clustering technology. The clustering algorithm is used for all individual clusters to analyze the distribution constructs of populations, which determines whether the new solutions come from global or local populations at a mating restriction probability. The mating restriction probability is updated at each generation. To adapt the balance between the population solution diversities and the convergence speed of the algorithm, at each generation, the control probability is adjusted by a developed adaptive strategy according to the reproduction utility of the two mechanisms of generating new solutions over the last certain generations. This research introduces the CoDE-MOPSO algorithm, designed to transcend existing multi-objective optimization methods' limitations by optimally balancing exploration and exploitation. Our approach significantly advances evolutionary multi-objective optimization, demonstrating superior performance through lower Inverse Generational Distance and higher Hypervolume metrics, indicating enhanced efficiency in solving complex MOPs across various fields. In practical scenarios like gear reducer optimization, CoDE-MOPSO showcases remarkable effectiveness, highlighting its value in engineering applications and setting a foundation for sophisticated optimization strategies that combine speed with solution quality.
AbstractList The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This research introduces an improved hybrid algorithm, CoDE-MOPSO, which integrates multi-objective particle swarm optimization with composite differential evolution based on clustering technology. The clustering algorithm is used for all individual clusters to analyze the distribution constructs of populations, which determines whether the new solutions come from global or local populations at a mating restriction probability. The mating restriction probability is updated at each generation. To adapt the balance between the population solution diversities and the convergence speed of the algorithm, at each generation, the control probability is adjusted by a developed adaptive strategy according to the reproduction utility of the two mechanisms of generating new solutions over the last certain generations. This research introduces the CoDE-MOPSO algorithm, designed to transcend existing multi-objective optimization methods’ limitations by optimally balancing exploration and exploitation. Our approach significantly advances evolutionary multi-objective optimization, demonstrating superior performance through lower Inverse Generational Distance and higher Hypervolume metrics, indicating enhanced efficiency in solving complex MOPs across various fields. In practical scenarios like gear reducer optimization, CoDE-MOPSO showcases remarkable effectiveness, highlighting its value in engineering applications and setting a foundation for sophisticated optimization strategies that combine speed with solution quality.
Author Shang, Jin
Li, Guiying
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0009-0004-9818-0763
  surname: Shang
  fullname: Shang, Jin
  organization: Control Technology Institute, Wuxi Institute of Technology, Wuxi, China
– sequence: 2
  givenname: Guiying
  orcidid: 0000-0003-1102-0763
  surname: Li
  fullname: Li, Guiying
  organization: School of Mechanical & Electrical Engineering, Heilongjiang University, Harbin, China
BookMark eNp9UU1v1DAQjVCRKKW_AA6WOO_ij8SOj1FY6EpFrbTt2Zo4dvEqiYPjLSrX_vG6yYIqDvXFo9F7b97Me5-dDH4wWfaR4DUhWH6p6nqz260ppvma5TjPsXiTnVLC5YoVjJ-8qN9l59O0x-mVqVWI0-yxQhcPTXAtqn0_-slFg746a00wQ3TQoc297w7R-QHB0KIfhy7Vzd7o6O4NuoYQne4M2v2G0KOrMbre_YEZ_o8I4QFV3Z0PLv7sZ5VtnFA1jp3TM_RD9tZCN5nz43-W3X7b3NQXq8ur79u6ulzpHMu4olprIbmQBGjJigJkYwrADQjBCzCAW2CGitZqbYFSS2gr8rLUubQNY6DZWbZddFsPezUG1ydryoNTc8OHO3XcRxFMOLBCN6KhecmI5LqUJM0qKLYN50nr86I1Bv_rYKao9v4QhmRfMcypYGU6ekLJBaWDn6ZgrNIuzjvHAK5LY9RzhGqJUD1HqI4RJi77j_vX8eusTwvLGWNeMAomiCjZE30Yq_8
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app15116030
crossref_primary_10_1007_s42835_025_02236_z
crossref_primary_10_1186_s42162_025_00490_z
Cites_doi 10.1109/TCYB.2019.2949204
10.1109/TEVC.2010.2087271
10.1016/j.asoc.2022.108532
10.1007/s00521-023-08332-3
10.1016/j.anucene.2023.110097
10.1016/j.ejor.2006.08.008
10.1109/TEVC.2007.894202
10.1109/CEC.2012.6256519
10.1371/journal.pone.0295621
10.2514/6.1992-4758
10.1016/j.aej.2021.09.013
10.1109/sbrn.2012.20
10.1109/TNSRE.2023.3314516
10.1109/TMAG.2023.3250319
10.1007/978-3-540-31880-4_20
10.1023/A:1008202821328
10.1007/s00158-002-0247-6
10.1109/TCYB.2017.2692385
10.1109/ISME.2010.274
10.1016/j.swevo.2011.03.001
10.3934/mbe.2022410
10.1016/j.camwa.2008.09.023
10.1109/TCYB.2019.2922287
10.1007/s11831-024-10076-9
10.1109/TCYB.2020.3015756
10.1109/4235.797969
10.1007/978-3-642-28314-7_35
10.1007/s00500-023-08812-7
10.1109/TEVC.2010.2064321
10.1016/j.advengsoft.2018.05.011
10.1016/j.neucom.2013.05.049
10.1109/TEVC.2004.826067
10.1109/TMAG.2014.2320511
10.1109/TCYB.2022.3189684
10.1126/science.1136800
10.5019/j.ijcir.2006.68
10.1109/CEC.2008.4631121
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3404407
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_1016a35cb7b2483196c8910ba520fb66
10_1109_ACCESS_2024_3404407
10537178
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-2ccc796791a28355a9be5a0ba7765aea0da3e27dfccfa22f12d7488c49fb33ac3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237386900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:39 EDT 2025
Mon Jun 30 13:13:14 EDT 2025
Sat Nov 29 06:25:45 EST 2025
Tue Nov 18 22:52:11 EST 2025
Wed Aug 27 02:05:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-2ccc796791a28355a9be5a0ba7765aea0da3e27dfccfa22f12d7488c49fb33ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-9818-0763
0000-0003-1102-0763
OpenAccessLink https://doaj.org/article/1016a35cb7b2483196c8910ba520fb66
PQID 3062738216
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2024_3404407
doaj_primary_oai_doaj_org_article_1016a35cb7b2483196c8910ba520fb66
crossref_primary_10_1109_ACCESS_2024_3404407
proquest_journals_3062738216
ieee_primary_10537178
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1109/TCYB.2019.2949204
– ident: ref6
  doi: 10.1109/TEVC.2010.2087271
– ident: ref5
  doi: 10.1016/j.asoc.2022.108532
– ident: ref19
  doi: 10.1007/s00521-023-08332-3
– ident: ref15
  doi: 10.1016/j.anucene.2023.110097
– ident: ref29
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref30
  doi: 10.1109/TEVC.2007.894202
– ident: ref23
  doi: 10.1109/CEC.2012.6256519
– ident: ref35
  doi: 10.1371/journal.pone.0295621
– ident: ref37
  doi: 10.2514/6.1992-4758
– ident: ref10
  doi: 10.1016/j.aej.2021.09.013
– ident: ref26
  doi: 10.1109/sbrn.2012.20
– ident: ref33
  doi: 10.1109/TNSRE.2023.3314516
– ident: ref17
  doi: 10.1109/TMAG.2023.3250319
– ident: ref34
  doi: 10.1007/978-3-540-31880-4_20
– ident: ref8
  doi: 10.1023/A:1008202821328
– ident: ref36
  doi: 10.1007/s00158-002-0247-6
– ident: ref1
  doi: 10.1109/TCYB.2017.2692385
– ident: ref32
  doi: 10.1109/ISME.2010.274
– ident: ref2
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref11
  doi: 10.3934/mbe.2022410
– ident: ref24
  doi: 10.1016/j.camwa.2008.09.023
– ident: ref9
  doi: 10.1109/TCYB.2019.2922287
– ident: ref16
  doi: 10.1007/s11831-024-10076-9
– ident: ref20
  doi: 10.1109/TCYB.2020.3015756
– ident: ref31
  doi: 10.1109/4235.797969
– ident: ref14
  doi: 10.1007/978-3-642-28314-7_35
– ident: ref18
  doi: 10.1007/s00500-023-08812-7
– ident: ref22
  doi: 10.1109/TEVC.2010.2064321
– ident: ref25
  doi: 10.1016/j.advengsoft.2018.05.011
– ident: ref27
  doi: 10.1016/j.neucom.2013.05.049
– ident: ref4
  doi: 10.1109/TEVC.2004.826067
– ident: ref13
  doi: 10.1109/TMAG.2014.2320511
– ident: ref7
  doi: 10.1109/TCYB.2022.3189684
– ident: ref28
  doi: 10.1126/science.1136800
– ident: ref3
  doi: 10.5019/j.ijcir.2006.68
– ident: ref21
  doi: 10.1109/CEC.2008.4631121
SSID ssj0000816957
Score 2.3328276
Snippet The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cluster analysis
Clustering
Clustering algorithm
Clustering algorithms
composite differential evolution
Convergence
Evolutionary algorithms
Evolutionary computation
gear reducer
Generations
Hybrid composites
Interconnected systems
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
particle swarm algorithm
Particle swarm optimization
Populations
Social factors
Statistics
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1AM9FEqpukCRDz02NLHjOD6GLYheKFJbiVs0duy2aD-qsFBx5o_jccxChYrUW5TYieM3Hn_OewDvi9pJNKbI0FuVld6SkLurM2VU6B-E0cKYKDahTk7qszN9moLVYyyMcy4ePnP7dBn38ru5vaSlstDCpQjTj3oFVpSqhmCt5YIKKUhoqRKzUJHrj814HH4izAF5uS9K0lZWf_U-kaQ_qao8csWxfzla_8-SbcDLNJBkzYD8K3jmZpvw4gG94Cas0UhyIGJ-DTcNO76m8CxGLoCOajn2KamjhFY-YYdXyQoZzjoWA3Pn5nzwh-w0WRj7-gf7KfsSHM00RXDeZ8T-mjWTH_P-1-LnNL7l8-KCNfdb5Fvw_ejw2_g4SwoMmQ3zvkXGrbVKV0oXSLxsErUJ0OYGQ_VLdJh3KBxXnbfWI-e-4J0KHsGW2hsh0Io3sDqbz9xbYJUyXoanqvJYOo81VkSS3UlrlBUyHwG_Q6a1iZ6cVDImbZym5Lod4GwJzjbBOYIPy0y_B3aOp5MfEOTLpEStHW8ELNtUj_HMGwoqluFlTR7K1mFMZVDy3JuqGsEW4f_gewP0I9i9s6A2-YGLVhALtKh5UW3_I9sOrFERh1WdXVhd9JfuHTy3V8E--r1o4reKsfxO
  priority: 102
  providerName: IEEE
Title A Hybrid Composite Differential Evolution and Multiobjective Particle Swarm Optimization Evolutionary Algorithm and Its Application
URI https://ieeexplore.ieee.org/document/10537178
https://www.proquest.com/docview/3062738216
https://doaj.org/article/1016a35cb7b2483196c8910ba520fb66
Volume 12
WOSCitedRecordID wos001237386900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQ1QEGREsRV0rlgZHQxI5jewzXq8pAqQRI3axnx4ai-0C5UNSFhX8cP8dtDyHBwpIhseP4fTkv8fv9CHlRKS_A2qqA4GRRB4dE7l4V0sq4PnCrubWJbEKenamLC32-QfWFe8JGeOBRcEeYXQIXzkrLaoUG41Rc4iwIVgbbJLDtUuqNZCrFYFU1WsgMM1SV-qidTuOMYkLI6le8RqJl-dtSlBD7M8XKH3E5LTYnj8jD_JZI2_Hpdsg9v9wlDzawAx-Tny09vcZyK4oujVuvPD3ObCfRa-d0dpWtisKyo6nQdmW_jPGNnueJ0_ffoV_QdzFwLHJF5l1H6K9pO_-06i-Hz4t0lzfDmrZ3v7z3yMeT2YfpaZEZFQoX87ihYM45qRupK0CcNQHaRlVFYUrZCPBQdsA9k11wLgBjoWKdjB7uah0s5-D4E7K1XC39U0IbaYOIV2UToPYBFDQIet2hphwX5YSwG-Eal-HGkfViblLaUWozasSgRkzWyIS8vO30dUTb-Hvz16i126YIlZ1ORAMyWY7mXwY0IXuo843xBI85rpqQgxsjMNmv14YjqjNXrGr2_8fYz8h9nM_4SeeAbA39N_-cbLur4XLdHyaTjse3P2aHqTDxF9nM-2s
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9UwFD5RNBEfQBHjFdA--Ohwa9d1fRxXyCXilURMeGvarkXN_WHGBcOz_zg9XblgjCa-LVu7dfvOTnvanu8DeFPUjmtjikx7K7LSWxRyd3UmjAj9AzOSGRPFJsR4XJ-eyuOUrB5zYZxzcfOZ28XDuJbfzu0FTpWFP5yzEH7U9-EBL0ua9-layykV1JCQXCRuoSKX75rhMLxGiAJpuctKVFcWv_U_kaY_6ar84YxjD3Ow_p9tewJraShJmh77p3DPzTbg8R2CwQ1YxbFkT8X8DH41ZHSFCVoEnQBu1nLkfdJHCf_5hOxfJjsketaSmJo7N997j0iOk42Rzz91NyWfgquZphzO24q6uyLN5GzefVt8nca7HC7OSXO7SL4JXw72T4ajLGkwZDZEfouMWmuFrIQsNDKzcS1NADc3WoiKa6fzVjNHReut9ZpSX9BWBJ9gS-kNY9qy57Aym8_cCyCVMJ6Hq6LyunRe17pCmuyWWyMs4_kA6A0yyiaCctTJmKgYqORS9XAqhFMlOAfwdlnpR8_P8e_iewj5siiSa8cTAUuVvmPc9aYZNsvQskYfZeswqjKa09ybqhrAJuJ_53k99APYvrEglTzBuWLIA81qWlQv_1LtNTwanXw8UkeH4w9bsIrN7ed4tmFl0V24HXhoL4OtdK-iuV8Dxx3_lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Composite+Differential+Evolution+and+Multiobjective+Particle+Swarm+Optimization+Evolutionary+Algorithm+and+Its+Application&rft.jtitle=IEEE+access&rft.au=Shang%2C+Jin&rft.au=Li%2C+Guiying&rft.date=2024-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=74417&rft.epage=74431&rft_id=info:doi/10.1109%2FACCESS.2024.3404407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3404407
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon