A Hybrid Composite Differential Evolution and Multiobjective Particle Swarm Optimization Evolutionary Algorithm and Its Application
The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This...
Saved in:
| Published in: | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This research introduces an improved hybrid algorithm, CoDE-MOPSO, which integrates multi-objective particle swarm optimization with composite differential evolution based on clustering technology. The clustering algorithm is used for all individual clusters to analyze the distribution constructs of populations, which determines whether the new solutions come from global or local populations at a mating restriction probability. The mating restriction probability is updated at each generation. To adapt the balance between the population solution diversities and the convergence speed of the algorithm, at each generation, the control probability is adjusted by a developed adaptive strategy according to the reproduction utility of the two mechanisms of generating new solutions over the last certain generations. This research introduces the CoDE-MOPSO algorithm, designed to transcend existing multi-objective optimization methods' limitations by optimally balancing exploration and exploitation. Our approach significantly advances evolutionary multi-objective optimization, demonstrating superior performance through lower Inverse Generational Distance and higher Hypervolume metrics, indicating enhanced efficiency in solving complex MOPs across various fields. In practical scenarios like gear reducer optimization, CoDE-MOPSO showcases remarkable effectiveness, highlighting its value in engineering applications and setting a foundation for sophisticated optimization strategies that combine speed with solution quality. |
|---|---|
| AbstractList | The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population diversity. Conversely, composite differential evolution algorithms maintain superior solution distribution but lag in convergence efficiency. This research introduces an improved hybrid algorithm, CoDE-MOPSO, which integrates multi-objective particle swarm optimization with composite differential evolution based on clustering technology. The clustering algorithm is used for all individual clusters to analyze the distribution constructs of populations, which determines whether the new solutions come from global or local populations at a mating restriction probability. The mating restriction probability is updated at each generation. To adapt the balance between the population solution diversities and the convergence speed of the algorithm, at each generation, the control probability is adjusted by a developed adaptive strategy according to the reproduction utility of the two mechanisms of generating new solutions over the last certain generations. This research introduces the CoDE-MOPSO algorithm, designed to transcend existing multi-objective optimization methods’ limitations by optimally balancing exploration and exploitation. Our approach significantly advances evolutionary multi-objective optimization, demonstrating superior performance through lower Inverse Generational Distance and higher Hypervolume metrics, indicating enhanced efficiency in solving complex MOPs across various fields. In practical scenarios like gear reducer optimization, CoDE-MOPSO showcases remarkable effectiveness, highlighting its value in engineering applications and setting a foundation for sophisticated optimization strategies that combine speed with solution quality. |
| Author | Shang, Jin Li, Guiying |
| Author_xml | – sequence: 1 givenname: Jin orcidid: 0009-0004-9818-0763 surname: Shang fullname: Shang, Jin organization: Control Technology Institute, Wuxi Institute of Technology, Wuxi, China – sequence: 2 givenname: Guiying orcidid: 0000-0003-1102-0763 surname: Li fullname: Li, Guiying organization: School of Mechanical & Electrical Engineering, Heilongjiang University, Harbin, China |
| BookMark | eNp9UU1v1DAQjVCRKKW_AA6WOO_ij8SOj1FY6EpFrbTt2Zo4dvEqiYPjLSrX_vG6yYIqDvXFo9F7b97Me5-dDH4wWfaR4DUhWH6p6nqz260ppvma5TjPsXiTnVLC5YoVjJ-8qN9l59O0x-mVqVWI0-yxQhcPTXAtqn0_-slFg746a00wQ3TQoc297w7R-QHB0KIfhy7Vzd7o6O4NuoYQne4M2v2G0KOrMbre_YEZ_o8I4QFV3Z0PLv7sZ5VtnFA1jp3TM_RD9tZCN5nz43-W3X7b3NQXq8ur79u6ulzpHMu4olprIbmQBGjJigJkYwrADQjBCzCAW2CGitZqbYFSS2gr8rLUubQNY6DZWbZddFsPezUG1ydryoNTc8OHO3XcRxFMOLBCN6KhecmI5LqUJM0qKLYN50nr86I1Bv_rYKao9v4QhmRfMcypYGU6ekLJBaWDn6ZgrNIuzjvHAK5LY9RzhGqJUD1HqI4RJi77j_vX8eusTwvLGWNeMAomiCjZE30Yq_8 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_app15116030 crossref_primary_10_1007_s42835_025_02236_z crossref_primary_10_1186_s42162_025_00490_z |
| Cites_doi | 10.1109/TCYB.2019.2949204 10.1109/TEVC.2010.2087271 10.1016/j.asoc.2022.108532 10.1007/s00521-023-08332-3 10.1016/j.anucene.2023.110097 10.1016/j.ejor.2006.08.008 10.1109/TEVC.2007.894202 10.1109/CEC.2012.6256519 10.1371/journal.pone.0295621 10.2514/6.1992-4758 10.1016/j.aej.2021.09.013 10.1109/sbrn.2012.20 10.1109/TNSRE.2023.3314516 10.1109/TMAG.2023.3250319 10.1007/978-3-540-31880-4_20 10.1023/A:1008202821328 10.1007/s00158-002-0247-6 10.1109/TCYB.2017.2692385 10.1109/ISME.2010.274 10.1016/j.swevo.2011.03.001 10.3934/mbe.2022410 10.1016/j.camwa.2008.09.023 10.1109/TCYB.2019.2922287 10.1007/s11831-024-10076-9 10.1109/TCYB.2020.3015756 10.1109/4235.797969 10.1007/978-3-642-28314-7_35 10.1007/s00500-023-08812-7 10.1109/TEVC.2010.2064321 10.1016/j.advengsoft.2018.05.011 10.1016/j.neucom.2013.05.049 10.1109/TEVC.2004.826067 10.1109/TMAG.2014.2320511 10.1109/TCYB.2022.3189684 10.1126/science.1136800 10.5019/j.ijcir.2006.68 10.1109/CEC.2008.4631121 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3404407 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_1016a35cb7b2483196c8910ba520fb66 10_1109_ACCESS_2024_3404407 10537178 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-2ccc796791a28355a9be5a0ba7765aea0da3e27dfccfa22f12d7488c49fb33ac3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001237386900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:39 EDT 2025 Mon Jun 30 13:13:14 EDT 2025 Sat Nov 29 06:25:45 EST 2025 Tue Nov 18 22:52:11 EST 2025 Wed Aug 27 02:05:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-2ccc796791a28355a9be5a0ba7765aea0da3e27dfccfa22f12d7488c49fb33ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-9818-0763 0000-0003-1102-0763 |
| OpenAccessLink | https://doaj.org/article/1016a35cb7b2483196c8910ba520fb66 |
| PQID | 3062738216 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2024_3404407 doaj_primary_oai_doaj_org_article_1016a35cb7b2483196c8910ba520fb66 crossref_primary_10_1109_ACCESS_2024_3404407 proquest_journals_3062738216 ieee_primary_10537178 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref12 doi: 10.1109/TCYB.2019.2949204 – ident: ref6 doi: 10.1109/TEVC.2010.2087271 – ident: ref5 doi: 10.1016/j.asoc.2022.108532 – ident: ref19 doi: 10.1007/s00521-023-08332-3 – ident: ref15 doi: 10.1016/j.anucene.2023.110097 – ident: ref29 doi: 10.1016/j.ejor.2006.08.008 – ident: ref30 doi: 10.1109/TEVC.2007.894202 – ident: ref23 doi: 10.1109/CEC.2012.6256519 – ident: ref35 doi: 10.1371/journal.pone.0295621 – ident: ref37 doi: 10.2514/6.1992-4758 – ident: ref10 doi: 10.1016/j.aej.2021.09.013 – ident: ref26 doi: 10.1109/sbrn.2012.20 – ident: ref33 doi: 10.1109/TNSRE.2023.3314516 – ident: ref17 doi: 10.1109/TMAG.2023.3250319 – ident: ref34 doi: 10.1007/978-3-540-31880-4_20 – ident: ref8 doi: 10.1023/A:1008202821328 – ident: ref36 doi: 10.1007/s00158-002-0247-6 – ident: ref1 doi: 10.1109/TCYB.2017.2692385 – ident: ref32 doi: 10.1109/ISME.2010.274 – ident: ref2 doi: 10.1016/j.swevo.2011.03.001 – ident: ref11 doi: 10.3934/mbe.2022410 – ident: ref24 doi: 10.1016/j.camwa.2008.09.023 – ident: ref9 doi: 10.1109/TCYB.2019.2922287 – ident: ref16 doi: 10.1007/s11831-024-10076-9 – ident: ref20 doi: 10.1109/TCYB.2020.3015756 – ident: ref31 doi: 10.1109/4235.797969 – ident: ref14 doi: 10.1007/978-3-642-28314-7_35 – ident: ref18 doi: 10.1007/s00500-023-08812-7 – ident: ref22 doi: 10.1109/TEVC.2010.2064321 – ident: ref25 doi: 10.1016/j.advengsoft.2018.05.011 – ident: ref27 doi: 10.1016/j.neucom.2013.05.049 – ident: ref4 doi: 10.1109/TEVC.2004.826067 – ident: ref13 doi: 10.1109/TMAG.2014.2320511 – ident: ref7 doi: 10.1109/TCYB.2022.3189684 – ident: ref28 doi: 10.1126/science.1136800 – ident: ref3 doi: 10.5019/j.ijcir.2006.68 – ident: ref21 doi: 10.1109/CEC.2008.4631121 |
| SSID | ssj0000816957 |
| Score | 2.3328276 |
| Snippet | The current multi-objective particle swarm algorithms excel in convergence speed for solving complex problems but often suffer from a loss of population... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Cluster analysis Clustering Clustering algorithm Clustering algorithms composite differential evolution Convergence Evolutionary algorithms Evolutionary computation gear reducer Generations Hybrid composites Interconnected systems multiobjective optimization Multiple objective analysis Optimization Pareto optimization particle swarm algorithm Particle swarm optimization Populations Social factors Statistics |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1AM9FEqpukCRDz02NLHjOD6GLYheKFJbiVs0duy2aD-qsFBx5o_jccxChYrUW5TYieM3Hn_OewDvi9pJNKbI0FuVld6SkLurM2VU6B-E0cKYKDahTk7qszN9moLVYyyMcy4ePnP7dBn38ru5vaSlstDCpQjTj3oFVpSqhmCt5YIKKUhoqRKzUJHrj814HH4izAF5uS9K0lZWf_U-kaQ_qao8csWxfzla_8-SbcDLNJBkzYD8K3jmZpvw4gG94Cas0UhyIGJ-DTcNO76m8CxGLoCOajn2KamjhFY-YYdXyQoZzjoWA3Pn5nzwh-w0WRj7-gf7KfsSHM00RXDeZ8T-mjWTH_P-1-LnNL7l8-KCNfdb5Fvw_ejw2_g4SwoMmQ3zvkXGrbVKV0oXSLxsErUJ0OYGQ_VLdJh3KBxXnbfWI-e-4J0KHsGW2hsh0Io3sDqbz9xbYJUyXoanqvJYOo81VkSS3UlrlBUyHwG_Q6a1iZ6cVDImbZym5Lod4GwJzjbBOYIPy0y_B3aOp5MfEOTLpEStHW8ELNtUj_HMGwoqluFlTR7K1mFMZVDy3JuqGsEW4f_gewP0I9i9s6A2-YGLVhALtKh5UW3_I9sOrFERh1WdXVhd9JfuHTy3V8E--r1o4reKsfxO priority: 102 providerName: IEEE |
| Title | A Hybrid Composite Differential Evolution and Multiobjective Particle Swarm Optimization Evolutionary Algorithm and Its Application |
| URI | https://ieeexplore.ieee.org/document/10537178 https://www.proquest.com/docview/3062738216 https://doaj.org/article/1016a35cb7b2483196c8910ba520fb66 |
| Volume | 12 |
| WOSCitedRecordID | wos001237386900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9QwFLdQ1QEGREsRV0rlgZHQxI5jewzXq8pAqQRI3axnx4ai-0C5UNSFhX8cP8dtDyHBwpIhseP4fTkv8fv9CHlRKS_A2qqA4GRRB4dE7l4V0sq4PnCrubWJbEKenamLC32-QfWFe8JGeOBRcEeYXQIXzkrLaoUG41Rc4iwIVgbbJLDtUuqNZCrFYFU1WsgMM1SV-qidTuOMYkLI6le8RqJl-dtSlBD7M8XKH3E5LTYnj8jD_JZI2_Hpdsg9v9wlDzawAx-Tny09vcZyK4oujVuvPD3ObCfRa-d0dpWtisKyo6nQdmW_jPGNnueJ0_ffoV_QdzFwLHJF5l1H6K9pO_-06i-Hz4t0lzfDmrZ3v7z3yMeT2YfpaZEZFQoX87ihYM45qRupK0CcNQHaRlVFYUrZCPBQdsA9k11wLgBjoWKdjB7uah0s5-D4E7K1XC39U0IbaYOIV2UToPYBFDQIet2hphwX5YSwG-Eal-HGkfViblLaUWozasSgRkzWyIS8vO30dUTb-Hvz16i126YIlZ1ORAMyWY7mXwY0IXuo843xBI85rpqQgxsjMNmv14YjqjNXrGr2_8fYz8h9nM_4SeeAbA39N_-cbLur4XLdHyaTjse3P2aHqTDxF9nM-2s |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9UwFD5RNBEfQBHjFdA--Ohwa9d1fRxXyCXilURMeGvarkXN_WHGBcOz_zg9XblgjCa-LVu7dfvOTnvanu8DeFPUjmtjikx7K7LSWxRyd3UmjAj9AzOSGRPFJsR4XJ-eyuOUrB5zYZxzcfOZ28XDuJbfzu0FTpWFP5yzEH7U9-EBL0ua9-layykV1JCQXCRuoSKX75rhMLxGiAJpuctKVFcWv_U_kaY_6ar84YxjD3Ow_p9tewJraShJmh77p3DPzTbg8R2CwQ1YxbFkT8X8DH41ZHSFCVoEnQBu1nLkfdJHCf_5hOxfJjsketaSmJo7N997j0iOk42Rzz91NyWfgquZphzO24q6uyLN5GzefVt8nca7HC7OSXO7SL4JXw72T4ajLGkwZDZEfouMWmuFrIQsNDKzcS1NADc3WoiKa6fzVjNHReut9ZpSX9BWBJ9gS-kNY9qy57Aym8_cCyCVMJ6Hq6LyunRe17pCmuyWWyMs4_kA6A0yyiaCctTJmKgYqORS9XAqhFMlOAfwdlnpR8_P8e_iewj5siiSa8cTAUuVvmPc9aYZNsvQskYfZeswqjKa09ybqhrAJuJ_53k99APYvrEglTzBuWLIA81qWlQv_1LtNTwanXw8UkeH4w9bsIrN7ed4tmFl0V24HXhoL4OtdK-iuV8Dxx3_lQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Composite+Differential+Evolution+and+Multiobjective+Particle+Swarm+Optimization+Evolutionary+Algorithm+and+Its+Application&rft.jtitle=IEEE+access&rft.au=Shang%2C+Jin&rft.au=Li%2C+Guiying&rft.date=2024-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=74417&rft.epage=74431&rft_id=info:doi/10.1109%2FACCESS.2024.3404407&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3404407 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |