Autoencoder Application for Anomaly Detection in Power Consumption of Lighting Systems

Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 124150 - 124162
Main Authors: Smialkowski, Tomasz, Czyzewski, Andrzej
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks for various configurations and training periods. The evaluation of the algorithms was carried out based on real data from an extensive lighting control system. A practical approach was proposed using real-time, unsupervised algorithms employing limited computing resources that can be implemented in industrial devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is possible to build a model so that the algorithm works correctly regardless of the season of the year.
AbstractList Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks for various configurations and training periods. The evaluation of the algorithms was carried out based on real data from an extensive lighting control system. A practical approach was proposed using real-time, unsupervised algorithms employing limited computing resources that can be implemented in industrial devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is possible to build a model so that the algorithm works correctly regardless of the season of the year.
Author Czyzewski, Andrzej
Smialkowski, Tomasz
Author_xml – sequence: 1
  givenname: Tomasz
  orcidid: 0009-0002-8539-993X
  surname: Smialkowski
  fullname: Smialkowski, Tomasz
  email: tomasz.smialkowski@pg.edu.pl
  organization: Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
– sequence: 2
  givenname: Andrzej
  orcidid: 0000-0001-9159-8658
  surname: Czyzewski
  fullname: Czyzewski, Andrzej
  organization: Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
BookMark eNp9UcFuEzEQtVCRKKVfAIeVOCfYO_HaPkZLgUqRQApwtRzvODja2IvtqMrf42aLVHFgLjPz9N7TaN5rchViQELeMrpkjKoP676_226XLW1hCQCUAX9BrlvWqQVw6K6eza_Ibc4HWktWiItr8nN9KhGDjQOmZj1No7em-BgaF-se4tGM5-YjFrQX1IfmW3yo1D6GfDpOFzC6ZuP3v4oP-2Z7zgWP-Q156cyY8fap35Afn-6-918Wm6-f7_v1ZmFXVJVFC0q1chDK7rhTdlCqQ8Wko1w4ZxB3FEAIyhxHBWzoUA6yLg4F33HLEG7I_ew7RHPQU_JHk846Gq8vQEx7bVLxdkTdydaywbamQ7sSoCRUL8llx3Hgjsrq9X72mlL8fcJc9CGeUqjn61ZKJepnqagsNbNsijkndNr6cnlZScaPmlH9mIqeU9GPqeinVKoW_tH-vfj_qnezyiPiMwVQxdgK_gDPRJp-
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_jobe_2024_109354
Cites_doi 10.1109/ICSA-C57050.2023.00019
10.1109/BigData.2018.8621990
10.1016/j.apenergy.2017.12.005
10.1109/ACCESS.2019.2891315
10.1145/3219819.3219845
10.1016/j.engappai.2020.104000
10.1109/TII.2018.2873814
10.1109/BigData55660.2022.10020857
10.1109/TIM.2022.3189748
10.3897/jucs.2020.027
10.1016/j.procir.2021.11.031
10.1109/JIOT.2019.2958185
10.1016/j.apenergy.2021.116601
10.1007/978-3-031-07969-6_14
10.1016/j.apenergy.2022.120063
10.1109/TSG.2017.2753738
10.1016/j.engappai.2022.105358
10.1109/ACCESS.2018.2886457
10.5220/0007361704830490
10.3390/en15249438
10.1016/j.scs.2022.104007
10.3390/app13010314
10.1109/JSYST.2021.3136683
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3330135
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 124162
ExternalDocumentID oai_doaj_org_article_682c1dc2a6ec473983d8185865ed5f08
10_1109_ACCESS_2023_3330135
10309114
Genre orig-research
GrantInformation_xml – fundername: Polish National Centre for Research and Development (NCBR) through the European Regional Development Fund titled “INFOLIGHT-Cloud-Based Lighting System for Smart Cities”
  grantid: POIR.04.01.04/2019
  funderid: 10.13039/501100005632
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-239928d79cb5f9cd996e918f057ffaeeb0337701f5e931d6e8d81f5fe75b5c1e3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:05 EDT 2025
Mon Jun 30 07:16:45 EDT 2025
Tue Nov 18 22:27:33 EST 2025
Sat Nov 29 06:25:13 EST 2025
Wed Aug 27 02:36:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-239928d79cb5f9cd996e918f057ffaeeb0337701f5e931d6e8d81f5fe75b5c1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-8539-993X
0000-0001-9159-8658
OpenAccessLink https://ieeexplore.ieee.org/document/10309114
PQID 2889730107
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3330135
crossref_primary_10_1109_ACCESS_2023_3330135
proquest_journals_2889730107
ieee_primary_10309114
doaj_primary_oai_doaj_org_article_682c1dc2a6ec473983d8185865ed5f08
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
Braei (ref8) 2020
Malhotra (ref23) 2016
Lee (ref19) 2021
ref24
ref26
ref20
ref22
ref21
Śmiałkowski (ref28) 2023
ref27
ref7
ref9
ref4
ref3
ref6
ref5
Jeong (ref25) 2022
References_xml – ident: ref1
  doi: 10.1109/ICSA-C57050.2023.00019
– ident: ref27
  doi: 10.1109/BigData.2018.8621990
– year: 2023
  ident: ref28
  article-title: INFOLIGHT SmartMeters DB, version 3
– ident: ref15
  doi: 10.1016/j.apenergy.2017.12.005
– ident: ref9
  doi: 10.1109/ACCESS.2019.2891315
– ident: ref21
  doi: 10.1145/3219819.3219845
– ident: ref2
  doi: 10.1016/j.engappai.2020.104000
– ident: ref13
  doi: 10.1109/TII.2018.2873814
– ident: ref26
  doi: 10.1109/BigData55660.2022.10020857
– ident: ref12
  doi: 10.1109/TIM.2022.3189748
– year: 2022
  ident: ref25
  article-title: Time-series anomaly detection with implicit neural representation
  publication-title: arXiv:2201.11950
– year: 2021
  ident: ref19
  article-title: Smart metering system capable of anomaly detection by bi-directional LSTM autoencoder
  publication-title: arXiv:2112.03275
– ident: ref14
  doi: 10.3897/jucs.2020.027
– ident: ref6
  doi: 10.1016/j.procir.2021.11.031
– ident: ref7
  doi: 10.1109/JIOT.2019.2958185
– ident: ref4
  doi: 10.1016/j.apenergy.2021.116601
– ident: ref22
  doi: 10.1007/978-3-031-07969-6_14
– year: 2016
  ident: ref23
  article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection
  publication-title: arXiv:1607.00148
– ident: ref18
  doi: 10.1016/j.apenergy.2022.120063
– ident: ref11
  doi: 10.1109/TSG.2017.2753738
– ident: ref3
  doi: 10.1016/j.engappai.2022.105358
– ident: ref16
  doi: 10.1109/ACCESS.2018.2886457
– ident: ref17
  doi: 10.5220/0007361704830490
– ident: ref10
  doi: 10.3390/en15249438
– ident: ref24
  doi: 10.1016/j.scs.2022.104007
– year: 2020
  ident: ref8
  article-title: Anomaly detection in univariate time-series: A survey on the state-of-the-art
  publication-title: arXiv:2004.00433
– ident: ref5
  doi: 10.3390/app13010314
– ident: ref20
  doi: 10.1109/JSYST.2021.3136683
SSID ssj0000816957
Score 2.2783978
Snippet Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124150
SubjectTerms Algorithms
Anomalies
Anomaly detection
autoencoder
Encoding
Energy consumption
Industrial research
Lighting
Lighting systems
Long short term memory
Machine learning
Monolayers
Multilayers
Power consumption
Power management
Power measurement
Quality assessment
road lighting systems
Road safety
Smart cities
smart city
Smart meters
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8QgECXGeNCD8WON61c4eLQKbSlwXFc3HjYbD7rxRgoMiYl2zVpN_PcCZXUTE714bWgpj-kwjzJvEDq11IF3_VUmjCizMogN1T4uyLSjmhS5ITpmeE_HfDIRDw_ydqnUVzgT1skDd8BdVCI31Jq8rsCUvJCisGGNERUDy1yX5uujniUyFX2woJVkPMkMUSIvBsOhH9F5qBZ-XngST2OBt--lKCr2pxIrP_xyXGxGW2gzRYl40L3dNlqBZgdtLGkH7qLp4K2dBRVKC3M8-P4NjX0Uij2pf66fPvAVtPGoVYMfG3wbCqLhYcy5jI4CzxweB3LuH4iTdHkP3Y-u74Y3WSqSkBlPzdos5KbmwnJpNHPSWM9fQFLhfBzmXA3gES84J9QxkAW1FQiPn2MOONPMUCj20Goza2AfYW10SbUDkWsoSQ2S1MRqY1kteK7rqo_yBV7KJAXxUMjiSUUmQaTqQFYBZJVA7qOzr5teOgGN35tfhon4ahrUr-MFbxMq2YT6yyb6qBemcam_wodFtOyjo8W8qvSpvqpcCBncHOEH_9H3IVoP4-l2aY7Qajt_g2O0Zt7bx9f5SbTST5Ti6FY
  priority: 102
  providerName: Directory of Open Access Journals
Title Autoencoder Application for Anomaly Detection in Power Consumption of Lighting Systems
URI https://ieeexplore.ieee.org/document/10309114
https://www.proquest.com/docview/2889730107
https://doaj.org/article/682c1dc2a6ec473983d8185865ed5f08
Volume 11
WOSCitedRecordID wos001104516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1AM99AFU3ZYiH3oki52X7eN2C-qBIg4t4mbF9lhCgixaspV66W-vxzELEgKplyiJ7MTJ58eM7fk-gC9eBIxdf1sop-qiJrKhLtoFhQ3C8qp03KYI7_MTeXqqLi70WQ5WT7EwiJg2n-GUTtNavl-4FU2VHZIkVmyc9QZsSCnHYK31hAopSOhGZmYhwfXhbD6PHzElgfBpFf12kTTd7kefRNKfVVUedcVpfDl-858lewuvsyHJZiPy7-AF9tvw6gG94A6cz1bDgogqPS7Z7H6lmkVDlUW__7q7-sO-4ZB2Y_XssmdnpJnG5iksM_UlbBHYCfnv8YEss5vvwq_jo5_z70XWUShc9N6GgsJXS-WldrYJ2vno4qAWKkRTLYQOMYJSSclFaFBXwreovIoXAWVjGyeweg-b_aLHD8Css7WwAVVpseYdat5xb51vOiVL27UTKO_-r3GZZJy0Lq5Mcja4NiMohkAxGZQJHKwz3YwcG88n_0rArZMSQXa6ERExub2ZVpVOeFd2LbpaVlpVnkwT1Tbom8DVBHYJxQfvGwGcwN5dPTC5Nd-aUilNPSGXH5_I9gm2qIjj3MwebA7LFX6Gl-73cHm73E-Ofjz--Hu0nyrtP_8z6IM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIAEHPotYKOADR7K1nTi2j8tCVcSy6qFUvVmxPZYqlSzaZpH67-tx3G0lBBK3JLITJ8-ezNie9wj5EHiEZPrbSnvdVA2SDXXJL6hc5I7VwjOXM7xPFmq51Ken5qgkq-dcGADIm89giod5LT-s_AanyvZREisNzuYuuSebRvAxXWs7pYIaEkaqwi3EmdmfzefpNaYoET6tU-TOs6rbzf8n0_QXXZU_jHH-wxw8-c-2PSWPiytJZyP2z8gd6J-TR7cIBl-Qk9lmWCFVZYA1nd2sVdPkqtIU-f_szi_pZxjyfqyenvX0CFXT6DwnZmZrQleRLjCCTzekhd98l_w4-HI8P6yKkkLlU_w2VJjAKnRQxjsZjQ8pyAHDdUzOWowdQIKlVorxKMHUPLSgg04nEZR00nOoX5KdftXDK0Kddw13EbRw0LAODOtYcD7ITivhunZCxPX3tb7QjKPaxbnN4QYzdgTFIii2gDIhH7eVfo0sG_8u_gmB2xZFiux8ISFiy4izrRaeBy-6FnyjaqPrgM6JbiUEGZmekF1E8dbzRgAnZO-6H9gyni-s0NqgLWTq9V-qvScPDo-_L-zi6_LbG_IQmzvO1OyRnWG9gbfkvv89nF2s3-VOewVEq-mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder+Application+for+Anomaly+Detection+in+Power+Consumption+of+Lighting+Systems&rft.jtitle=IEEE+access&rft.au=%C5%9Amia%C5%82kowski%2C+Tomasz&rft.au=Czy%C5%BCewski%2C+Andrzej&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=124150&rft.epage=124162&rft_id=info:doi/10.1109%2FACCESS.2023.3330135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3330135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon