Autoencoder Application for Anomaly Detection in Power Consumption of Lighting Systems
Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of...
Saved in:
| Published in: | IEEE access Vol. 11; pp. 124150 - 124162 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks for various configurations and training periods. The evaluation of the algorithms was carried out based on real data from an extensive lighting control system. A practical approach was proposed using real-time, unsupervised algorithms employing limited computing resources that can be implemented in industrial devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is possible to build a model so that the algorithm works correctly regardless of the season of the year. |
|---|---|
| AbstractList | Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on energy consumption anomalies for road lighting systems. However, there is a need for such research because the lighting system, a key element of the Smart City concept, creates new monitoring opportunities and challenges. This paper examines algorithms based on the deep learning method using the Autoencoder model with LSTM and 1D Convolutional networks for various configurations and training periods. The evaluation of the algorithms was carried out based on real data from an extensive lighting control system. A practical approach was proposed using real-time, unsupervised algorithms employing limited computing resources that can be implemented in industrial devices designed to control intelligent city lighting. An anomaly detection algorithm based on classic LSTM networks, single-layer and multi-layer, was used for comparison purposes. Error matrix calculus was used to assess the quality of the models. It was shown that based on the Autoencoder method, it is possible to construct an algorithm that correctly detects anomalies in power measurements of lighting systems, and it is possible to build a model so that the algorithm works correctly regardless of the season of the year. |
| Author | Czyzewski, Andrzej Smialkowski, Tomasz |
| Author_xml | – sequence: 1 givenname: Tomasz orcidid: 0009-0002-8539-993X surname: Smialkowski fullname: Smialkowski, Tomasz email: tomasz.smialkowski@pg.edu.pl organization: Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland – sequence: 2 givenname: Andrzej orcidid: 0000-0001-9159-8658 surname: Czyzewski fullname: Czyzewski, Andrzej organization: Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland |
| BookMark | eNp9UcFuEzEQtVCRKKVfAIeVOCfYO_HaPkZLgUqRQApwtRzvODja2IvtqMrf42aLVHFgLjPz9N7TaN5rchViQELeMrpkjKoP676_226XLW1hCQCUAX9BrlvWqQVw6K6eza_Ibc4HWktWiItr8nN9KhGDjQOmZj1No7em-BgaF-se4tGM5-YjFrQX1IfmW3yo1D6GfDpOFzC6ZuP3v4oP-2Z7zgWP-Q156cyY8fap35Afn-6-918Wm6-f7_v1ZmFXVJVFC0q1chDK7rhTdlCqQ8Wko1w4ZxB3FEAIyhxHBWzoUA6yLg4F33HLEG7I_ew7RHPQU_JHk846Gq8vQEx7bVLxdkTdydaywbamQ7sSoCRUL8llx3Hgjsrq9X72mlL8fcJc9CGeUqjn61ZKJepnqagsNbNsijkndNr6cnlZScaPmlH9mIqeU9GPqeinVKoW_tH-vfj_qnezyiPiMwVQxdgK_gDPRJp- |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109354 |
| Cites_doi | 10.1109/ICSA-C57050.2023.00019 10.1109/BigData.2018.8621990 10.1016/j.apenergy.2017.12.005 10.1109/ACCESS.2019.2891315 10.1145/3219819.3219845 10.1016/j.engappai.2020.104000 10.1109/TII.2018.2873814 10.1109/BigData55660.2022.10020857 10.1109/TIM.2022.3189748 10.3897/jucs.2020.027 10.1016/j.procir.2021.11.031 10.1109/JIOT.2019.2958185 10.1016/j.apenergy.2021.116601 10.1007/978-3-031-07969-6_14 10.1016/j.apenergy.2022.120063 10.1109/TSG.2017.2753738 10.1016/j.engappai.2022.105358 10.1109/ACCESS.2018.2886457 10.5220/0007361704830490 10.3390/en15249438 10.1016/j.scs.2022.104007 10.3390/app13010314 10.1109/JSYST.2021.3136683 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3330135 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 124162 |
| ExternalDocumentID | oai_doaj_org_article_682c1dc2a6ec473983d8185865ed5f08 10_1109_ACCESS_2023_3330135 10309114 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Polish National Centre for Research and Development (NCBR) through the European Regional Development Fund titled “INFOLIGHT-Cloud-Based Lighting System for Smart Cities” grantid: POIR.04.01.04/2019 funderid: 10.13039/501100005632 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-239928d79cb5f9cd996e918f057ffaeeb0337701f5e931d6e8d81f5fe75b5c1e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:05 EDT 2025 Mon Jun 30 07:16:45 EDT 2025 Tue Nov 18 22:27:33 EST 2025 Sat Nov 29 06:25:13 EST 2025 Wed Aug 27 02:36:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-239928d79cb5f9cd996e918f057ffaeeb0337701f5e931d6e8d81f5fe75b5c1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0002-8539-993X 0000-0001-9159-8658 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10309114 |
| PQID | 2889730107 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3330135 crossref_primary_10_1109_ACCESS_2023_3330135 proquest_journals_2889730107 ieee_primary_10309114 doaj_primary_oai_doaj_org_article_682c1dc2a6ec473983d8185865ed5f08 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 Braei (ref8) 2020 Malhotra (ref23) 2016 Lee (ref19) 2021 ref24 ref26 ref20 ref22 ref21 Śmiałkowski (ref28) 2023 ref27 ref7 ref9 ref4 ref3 ref6 ref5 Jeong (ref25) 2022 |
| References_xml | – ident: ref1 doi: 10.1109/ICSA-C57050.2023.00019 – ident: ref27 doi: 10.1109/BigData.2018.8621990 – year: 2023 ident: ref28 article-title: INFOLIGHT SmartMeters DB, version 3 – ident: ref15 doi: 10.1016/j.apenergy.2017.12.005 – ident: ref9 doi: 10.1109/ACCESS.2019.2891315 – ident: ref21 doi: 10.1145/3219819.3219845 – ident: ref2 doi: 10.1016/j.engappai.2020.104000 – ident: ref13 doi: 10.1109/TII.2018.2873814 – ident: ref26 doi: 10.1109/BigData55660.2022.10020857 – ident: ref12 doi: 10.1109/TIM.2022.3189748 – year: 2022 ident: ref25 article-title: Time-series anomaly detection with implicit neural representation publication-title: arXiv:2201.11950 – year: 2021 ident: ref19 article-title: Smart metering system capable of anomaly detection by bi-directional LSTM autoencoder publication-title: arXiv:2112.03275 – ident: ref14 doi: 10.3897/jucs.2020.027 – ident: ref6 doi: 10.1016/j.procir.2021.11.031 – ident: ref7 doi: 10.1109/JIOT.2019.2958185 – ident: ref4 doi: 10.1016/j.apenergy.2021.116601 – ident: ref22 doi: 10.1007/978-3-031-07969-6_14 – year: 2016 ident: ref23 article-title: LSTM-based encoder-decoder for multi-sensor anomaly detection publication-title: arXiv:1607.00148 – ident: ref18 doi: 10.1016/j.apenergy.2022.120063 – ident: ref11 doi: 10.1109/TSG.2017.2753738 – ident: ref3 doi: 10.1016/j.engappai.2022.105358 – ident: ref16 doi: 10.1109/ACCESS.2018.2886457 – ident: ref17 doi: 10.5220/0007361704830490 – ident: ref10 doi: 10.3390/en15249438 – ident: ref24 doi: 10.1016/j.scs.2022.104007 – year: 2020 ident: ref8 article-title: Anomaly detection in univariate time-series: A survey on the state-of-the-art publication-title: arXiv:2004.00433 – ident: ref5 doi: 10.3390/app13010314 – ident: ref20 doi: 10.1109/JSYST.2021.3136683 |
| SSID | ssj0000816957 |
| Score | 2.2783978 |
| Snippet | Detecting energy consumption anomalies is a popular topic of industrial research, but there is a noticeable lack of research reported in the literature on... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 124150 |
| SubjectTerms | Algorithms Anomalies Anomaly detection autoencoder Encoding Energy consumption Industrial research Lighting Lighting systems Long short term memory Machine learning Monolayers Multilayers Power consumption Power management Power measurement Quality assessment road lighting systems Road safety Smart cities smart city Smart meters |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8QgECXGeNCD8WON61c4eLQKbSlwXFc3HjYbD7rxRgoMiYl2zVpN_PcCZXUTE714bWgpj-kwjzJvEDq11IF3_VUmjCizMogN1T4uyLSjmhS5ITpmeE_HfDIRDw_ydqnUVzgT1skDd8BdVCI31Jq8rsCUvJCisGGNERUDy1yX5uujniUyFX2woJVkPMkMUSIvBsOhH9F5qBZ-XngST2OBt--lKCr2pxIrP_xyXGxGW2gzRYl40L3dNlqBZgdtLGkH7qLp4K2dBRVKC3M8-P4NjX0Uij2pf66fPvAVtPGoVYMfG3wbCqLhYcy5jI4CzxweB3LuH4iTdHkP3Y-u74Y3WSqSkBlPzdos5KbmwnJpNHPSWM9fQFLhfBzmXA3gES84J9QxkAW1FQiPn2MOONPMUCj20Goza2AfYW10SbUDkWsoSQ2S1MRqY1kteK7rqo_yBV7KJAXxUMjiSUUmQaTqQFYBZJVA7qOzr5teOgGN35tfhon4ahrUr-MFbxMq2YT6yyb6qBemcam_wodFtOyjo8W8qvSpvqpcCBncHOEH_9H3IVoP4-l2aY7Qajt_g2O0Zt7bx9f5SbTST5Ti6FY priority: 102 providerName: Directory of Open Access Journals |
| Title | Autoencoder Application for Anomaly Detection in Power Consumption of Lighting Systems |
| URI | https://ieeexplore.ieee.org/document/10309114 https://www.proquest.com/docview/2889730107 https://doaj.org/article/682c1dc2a6ec473983d8185865ed5f08 |
| Volume | 11 |
| WOSCitedRecordID | wos001104516700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4V1AM99AFU3ZYiH3oki52X7eN2C-qBIg4t4mbF9lhCgixaspV66W-vxzELEgKplyiJ7MTJ58eM7fk-gC9eBIxdf1sop-qiJrKhLtoFhQ3C8qp03KYI7_MTeXqqLi70WQ5WT7EwiJg2n-GUTtNavl-4FU2VHZIkVmyc9QZsSCnHYK31hAopSOhGZmYhwfXhbD6PHzElgfBpFf12kTTd7kefRNKfVVUedcVpfDl-858lewuvsyHJZiPy7-AF9tvw6gG94A6cz1bDgogqPS7Z7H6lmkVDlUW__7q7-sO-4ZB2Y_XssmdnpJnG5iksM_UlbBHYCfnv8YEss5vvwq_jo5_z70XWUShc9N6GgsJXS-WldrYJ2vno4qAWKkRTLYQOMYJSSclFaFBXwreovIoXAWVjGyeweg-b_aLHD8Css7WwAVVpseYdat5xb51vOiVL27UTKO_-r3GZZJy0Lq5Mcja4NiMohkAxGZQJHKwz3YwcG88n_0rArZMSQXa6ERExub2ZVpVOeFd2LbpaVlpVnkwT1Tbom8DVBHYJxQfvGwGcwN5dPTC5Nd-aUilNPSGXH5_I9gm2qIjj3MwebA7LFX6Gl-73cHm73E-Ofjz--Hu0nyrtP_8z6IM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgIAEHPotYKOADR7K1nTi2j8tCVcSy6qFUvVmxPZYqlSzaZpH67-tx3G0lBBK3JLITJ8-ezNie9wj5EHiEZPrbSnvdVA2SDXXJL6hc5I7VwjOXM7xPFmq51Ken5qgkq-dcGADIm89giod5LT-s_AanyvZREisNzuYuuSebRvAxXWs7pYIaEkaqwi3EmdmfzefpNaYoET6tU-TOs6rbzf8n0_QXXZU_jHH-wxw8-c-2PSWPiytJZyP2z8gd6J-TR7cIBl-Qk9lmWCFVZYA1nd2sVdPkqtIU-f_szi_pZxjyfqyenvX0CFXT6DwnZmZrQleRLjCCTzekhd98l_w4-HI8P6yKkkLlU_w2VJjAKnRQxjsZjQ8pyAHDdUzOWowdQIKlVorxKMHUPLSgg04nEZR00nOoX5KdftXDK0Kddw13EbRw0LAODOtYcD7ITivhunZCxPX3tb7QjKPaxbnN4QYzdgTFIii2gDIhH7eVfo0sG_8u_gmB2xZFiux8ISFiy4izrRaeBy-6FnyjaqPrgM6JbiUEGZmekF1E8dbzRgAnZO-6H9gyni-s0NqgLWTq9V-qvScPDo-_L-zi6_LbG_IQmzvO1OyRnWG9gbfkvv89nF2s3-VOewVEq-mk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder+Application+for+Anomaly+Detection+in+Power+Consumption+of+Lighting+Systems&rft.jtitle=IEEE+access&rft.au=%C5%9Amia%C5%82kowski%2C+Tomasz&rft.au=Czy%C5%BCewski%2C+Andrzej&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=124150&rft.epage=124162&rft_id=info:doi/10.1109%2FACCESS.2023.3330135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3330135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |