Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games

Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamic games and applications Jg. 12; H. 2; S. 394 - 442
Hauptverfasser: Di, Bolei, Lamperski, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2022
Springer Nature B.V
Schlagworte:
ISSN:2153-0785, 2153-0793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend the Newton step algorithm, the Bellman recursion and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information nonzero sum dynamic games. We show that the Newton’s step can be solved in a computationally efficient manner and inherits its original quadratic convergence rate to open-loop Nash equilibria, and that the approximated Bellman recursion and DDP methods are very similar and can be used to find local feedback O ( ε 2 ) -Nash equilibria. Numerical examples are provided.
AbstractList Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend the Newton step algorithm, the Bellman recursion and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information nonzero sum dynamic games. We show that the Newton’s step can be solved in a computationally efficient manner and inherits its original quadratic convergence rate to open-loop Nash equilibria, and that the approximated Bellman recursion and DDP methods are very similar and can be used to find local feedback O ( ε 2 ) -Nash equilibria. Numerical examples are provided.
Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense, energy systems and etc. However, compared to single-agent control problems, the computational methods for dynamic games are relatively limited. As in the single-agent case, only specific dynamic games can be solved exactly, so approximation algorithms are required. In this paper, we show how to extend the Newton step algorithm, the Bellman recursion and the popular differential dynamic programming (DDP) for single-agent optimal control to the case of full-information nonzero sum dynamic games. We show that the Newton’s step can be solved in a computationally efficient manner and inherits its original quadratic convergence rate to open-loop Nash equilibria, and that the approximated Bellman recursion and DDP methods are very similar and can be used to find local feedback O(ε2)-Nash equilibria. Numerical examples are provided.
Author Lamperski, Andrew
Di, Bolei
Author_xml – sequence: 1
  givenname: Bolei
  orcidid: 0000-0001-6678-1581
  surname: Di
  fullname: Di, Bolei
  email: dixxx047@umn.com
– sequence: 2
  givenname: Andrew
  surname: Lamperski
  fullname: Lamperski, Andrew
BookMark eNp9kMtKxTAQhoMoeH0BVwG3VidN0yZL7wreEF2HmE6OlTbRpAc5O1_D1_NJjB5RcOHMYmbxf3P5V8miDx4J2WSwwwCa3cR4yUUBJSsAuFKFXCArJRO8gEbxxZ9eimWykdIj5KhqVotmhaRLfBmDf399S_QCx4fQbtN97PvBeHqDdhpTFzw1vqWHnXMY0Y-d6enhzJuhs_Q6hkk0w9D5CXUh0jtvg09jNJ3Hll4G3-fGxB_9iRkwrZMlZ_qEG991jdwdH90enBbnVydnB3vnha1AjQUzUjXIGgbW5YS2bMAaZM40yiqmXMVBsvsaoWW1rATWwpWAlkkhpXLA18jWfO5TDM9TTKN-DNPo80pd1nUtuBKVyio5V9kYUorotO1GM-a3P9_oNQP96bKeu6yzy_rLZS0zWv5Bn2I3mDj7H-JzKGWxn2D8veof6gO6f5Lw
CitedBy_id crossref_primary_10_1109_LRA_2022_3227867
crossref_primary_10_1016_j_neunet_2024_106413
crossref_primary_10_1177_02783649231182453
crossref_primary_10_1109_LCSYS_2022_3184657
Cites_doi 10.1007/s10288-007-0054-4
10.1007/978-3-319-27335-8_34-1
10.1016/j.orl.2006.03.004
10.1007/s13235-014-0105-3
10.1007/s00032-011-0163-6
10.1007/978-3-319-44374-4
10.1512/iumj.1984.33.33040
10.1007/s13235-010-0005-0
10.1007/978-3-319-98237-3_13
10.1109/TAC.2004.838489
10.1016/S0005-1098(99)00119-3
10.1007/s13235-016-0201-7
10.1007/BF00940728
10.1016/j.reseneeco.2004.08.001
10.1137/S0363012901389457
10.1109/TCST.2012.2231960
10.1007/978-0-8176-8355-9_9
10.1137/19M1288802
10.1007/s13235-018-0268-4
10.1137/1.9781611974287
10.1109/CDC.2015.7402805
10.1016/j.ejcon.2013.05.015
10.1007/978-3-319-01059-5
10.1007/s10107-007-0160-2
10.1007/s10957-020-01742-6
10.1109/TSP.2016.2551693
10.1007/s11425-016-0264-6
10.1109/ICASSP.2015.7178335
10.1007/BF01753310
10.1109/TAC.1971.1099685
10.1109/TPWRS.2003.820692
10.1007/s10287-006-0033-9
10.1109/9.86943
10.1007/978-3-030-00205-3
10.1016/j.automatica.2012.01.004
10.1109/CDC.2016.7799217
10.1007/s13235-016-0206-2
10.1134/S0005117917080136
10.1007/978-3-319-44374-4_5
10.1023/A:1019097208499
10.1016/j.jcp.2020.109907
10.1142/8442
10.1109/TAC.2011.2173412
10.1007/s40687-020-00215-6
10.1007/BF00934463
10.1007/s12532-018-0139-4
10.2139/ssrn.66448
10.1007/978-3-319-44374-4_3
10.1109/ACC.2015.7172215
10.1109/TAC.2017.2719158
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13235-021-00399-8
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
EISSN 2153-0793
EndPage 442
ExternalDocumentID 10_1007_s13235_021_00399_8
GrantInformation_xml – fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 1727096
  funderid: http://dx.doi.org/10.13039/100000147
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PQQKQ
PT4
RLLFE
ROL
RSV
S1Z
S27
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z81
ZMTXR
~A9
7WY
8FL
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUWG
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BEZIV
BGLVJ
CCPQU
CITATION
DWQXO
FRNLG
HCIFZ
K7-
M0C
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
JQ2
ID FETCH-LOGICAL-c409t-1a897e1710cfcfc0d270cae1fa79c919f43081b6e0d16845e65f20ec185889f03
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717416400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2153-0785
IngestDate Thu Sep 18 00:00:33 EDT 2025
Sat Nov 29 05:40:41 EST 2025
Tue Nov 18 22:41:11 EST 2025
Fri Feb 21 02:45:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Noncooperative dynamic games
Feedback Nash equilibrium
Newton’s method
Differential dynamic programming
Open-loop Nash equilibrium
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-1a897e1710cfcfc0d270cae1fa79c919f43081b6e0d16845e65f20ec185889f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6678-1581
PQID 2666539549
PQPubID 2043993
PageCount 49
ParticipantIDs proquest_journals_2666539549
crossref_citationtrail_10_1007_s13235_021_00399_8
crossref_primary_10_1007_s13235_021_00399_8
springer_journals_10_1007_s13235_021_00399_8
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle Dynamic games and applications
PublicationTitleAbbrev Dyn Games Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MazalovVVRettievaANAvrachenkovKELinear-quadratic discrete-time dynamic potential gamesAutom Remote Control20177881537154437025661405.9149310.1134/S0005117917080136
Pan Y, Ozguner U (2004) Sliding mode extremum seeking control for linear quadratic dynamic game. In: Proceedings of the 2004 American Control Conference, vol 1. IEEE, pp 614–619
FacchineiFFischerAPiccialliVGeneralized Nash equilibrium problems and Newton methodsMath Program20091171–216319424213041166.9001510.1007/s10107-007-0160-2
FacchineiFFischerAPiccialliVOn generalized Nash games and variational inequalitiesOper Res Lett200735215916423113951303.9102010.1016/j.orl.2006.03.004
Basar T, Haurie A, Zaccour G (2018) Nonzero-sum differential games. In Basar T, Zaccour G (eds) Handbook of dynamic game theory. Springer, pp 61–110
Dechert WD (1997) Non cooperative dynamic games: a control theoretic approach. Unpublished, available on request to the author
Dutang C (2013) A survey of GNE computation methods: theory and algorithms. hal-00813531. https://hal.archives-ouvertes.fr/hal-00813531
EngwerdaJFeedback Nash equilibria in the scalar infinite horizon LQ-gameAutomatica200036113513918336810951.9101410.1016/S0005-1098(99)00119-3
ZazoSMacuaSVSánchez-FernándezMZazoJDynamic potential games with constraints: fundamentals and applications in communicationsIEEE Trans Signal Process201664143806382135157181414.9472410.1109/TSP.2016.2551693
EvansLCSouganidisPEDifferential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equationsIndiana Univ Math J19843357737977561581169.9131710.1512/iumj.1984.33.33040
BausoDGame theory with engineering applications2016PhiladelphiaSIAM1337.9100210.1137/1.9781611974287
Murray D, Yakowitz S (1984) Differential dynamic programming and Newton’s method for discrete optimal control problems. J Optim Theory Appl 43(3):395–414
KushnerHJNumerical approximations for stochastic differential gamesSIAM J Control Optim200241245748619202671014.6003510.1137/S0363012901389457
Carlson D, Haurie A, Zaccour G (2016) Infinite horizon concave games with coupled constraints. In: Handbook of dynamic game theory, pp 1–44
Frihauf P, Krstic M, Başar T (2013) Nash equilibrium seeking for dynamic systems with non-quadratic payoffs. In: Advances in dynamic games. Springer, pp 179–198
ContrerasJKluschMKrawczykJBNumerical solutions to Nash–Cournot equilibria in coupled constraint electricity marketsIEEE Trans Power Syst200419119520610.1109/TPWRS.2003.820692
BasarTOlsderGJDynamic noncooperative game theory1999PhiladelphiaSIAM0946.91001
KrawczykJBUryasevSRelaxation algorithms to find Nash equilibria with economic applicationsEnviron Model Assess200051637310.1023/A:1019097208499
DiehlMBjornbergJRobust dynamic programming for min-max model predictive control of constrained uncertain systemsIEEE Trans Autom Control200449122253225721067551365.9313110.1109/TAC.2004.838489
KrikelisNRekasiusZOn the solution of the optimal linear control problems under conflict of interestIEEE Trans Autom Control197116214014729081010.1109/TAC.1971.1099685
FrihaufPKrsticMBaşarTFinite-horizon LQ control for unknown discrete-time linear systems via extremum seekingEur J Control201319539940733001591293.4908010.1016/j.ejcon.2013.05.015
Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2015) Dynamic potential games in communications: fundamentals and applications. arXiv preprint arXiv:1509.01313
Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2018) CasADi—a software framework for nonlinear optimization and optimal control. Math Program Comput (in press)
Sun W, Theodorou EA, Tsiotras P (2015) Game theoretic continuous time differential dynamic programming. In: American Control Conference (ACC), 2015. IEEE, pp 5593–5598
Dunn JC, Bertsekas DP (1989) Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems. J Optim Theory Appl 63(1):23–38
Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W
LiaoLZShoemakerCAConvergence in unconstrained discrete-time differential dynamic programmingIEEE Trans Autom Control199136669270611196610760.4901610.1109/9.86943
DarbonJLangloisGPMengTOvercoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architecturesRes Math Sci20207315041233951445.3511910.1007/s40687-020-00215-6
HaurieAKrawczykJBZaccourGGames and dynamic games2012SingaporeWorld Scientific Publishing Company1396.9100310.1142/8442
FacchineiFPangJSFinite-dimensional variational inequalities and complementarity problems2007BerlinSpringer1062.90001
Bigi G, Castellani M, Pappalardo M, Passacantando M (2018) Nonlinear programming techniques for equilibria. EURO advanced tutorials on operational research. Springer. https://doi.org/10.1007/978-3-030-00205-3
ExarchosITheodorouETsiotrasPStochastic differential games: a sampling approach via fbsdesDyn Games Appl2018948650539465541429.9103510.1007/s13235-018-0268-4
Cacace S, Cristiani E, Falcone M (2011) Numerical approximation of Nash equilibria for a class of non-cooperative differential games. arXiv preprint arXiv:1109.3569
Tassa Y (2011) Theory and implementation of biomimetic motor controllers. Hebrew University of Jerusalem
KebriaeiHIannelliLDiscrete-time robust hierarchical linear-quadratic dynamic gamesIEEE Trans Autom Control201863390290937725191390.9106410.1109/TAC.2017.2719158
BressanANoncooperative differential gamesMilan J Math201179235742728620231238.4905510.1007/s00032-011-0163-6
IsaacsRDifferential games: a mathematical theory with applications to warfare and pursuit, control and optimization1999ChelmsfordCourier Corporation1233.91001
González-SánchezDHernández-LermaOA survey of static and dynamic potential gamesSci China Math201659112075210235618291371.9100910.1007/s11425-016-0264-6
O’Donoghue B, Stathopoulos G, Boyd S (2013) A splitting method for optimal control. IEEE Trans Control Syst Technol 21(6):2432–2442
DarbonJMengTOn some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton–Jacobi partial differential equationsJ Comput Phys2021425109907416606210.1016/j.jcp.2020.109907
BuckdahnRCardaliaguetPQuincampoixMSome recent aspects of differential game theoryDyn Games Appl2011117411428007861214.9101310.1007/s13235-010-0005-0
Sethi SP (2019) Differential games. In: Optimal control theory. Springer, pp 385–407
KrawczykJBCoupled constraint Nash equilibria in environmental gamesResour Energy Econ200527215718110.1016/j.reseneeco.2004.08.001
BressanANguyenKTStability of feedback solutions for infinite horizon noncooperative differential gamesDyn Games Appl201881427837646901390.9106010.1007/s13235-016-0206-2
FrihaufPKrsticMBasarTNash equilibrium seeking in noncooperative gamesIEEE Trans Autom Control20125751192120729238791369.9101010.1109/TAC.2011.2173412
EngwerdaJFeedback Nash equilibria for linear quadratic descriptor differential gamesAutomatica201248462563129015711238.4905610.1016/j.automatica.2012.01.004
González-SánchezDHernández-LermaODynamic potential games: the discrete-time stochastic caseDyn Games Appl20144330932832460321302.9101910.1007/s13235-014-0105-3
Krawczyk JB, Petkov V (2018) Multistage games. In: Handbook of dynamic game theory, pp 157–213
NocedalJWrightSJNumerical optimization20062BerlinSpringer1104.65059
FacchineiFKanzowCGeneralized Nash equilibrium problems4OR20075317321023534151211.9116210.1007/s10288-007-0054-4
Berridge S, Krawczyk JB (1997) Relaxation algorithms in finding Nash equilibria. Available at SSRN 66448
Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equationsSIAM J Sci Comput2021432A1221A124742411901467.4902810.1137/19M1288802
Zazo S, Valcarcel S, Matilde S, Zazo J et al (2015) A new framework for solving dynamic scheduling games. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 2071–2075
BasarTOn the uniqueness of the Nash solution in linear-quadratic differential gamesInt J Game Theory197652–365904413770354.9010110.1007/BF01753310
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org
Lin W (2013) Differential games for multi-agent systems under distributed information. Ph.D. thesis, University of Central Florida information
Duncan TE, Pasik-Duncan B (2015) Some stochastic differential games with state dependent noise. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp 3773–3777
EngwerdaJA numerical algorithm to calculate the unique feedback Nash equilibrium in a large scalar LQ differential gameDyn Games Appl20177463565636984451391.9104810.1007/s13235-016-0201-7
Basar T, Zaccour G (2018) Handbook of Dynamic Game Theory. Springer
González-SánchezDHernández-LermaODiscrete-time stochastic control and dynamic potential games: the Euler-equation approach2013BerlinSpringer1344.9300110.1007/978-3-319-01059-5
KrawczykJNumerical solutions to coupled-constraint (or generalised Nash) equilibrium problemsCMS20074218320423006361134.9130310.1007/s10287-006-0033-9
Plaksin A (2020) Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems. arXiv e-prints arXiv:2001.07905
Sun W, Theodorou EA, Tsiotras P (2016) Stochastic game theoretic trajectory optimization in continuous time. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, pp 6167–6172
F Facchinei (399_CR29) 2009; 117
399_CR34
399_CR2
399_CR1
399_CR4
F Facchinei (399_CR28) 2007; 35
399_CR6
I Exarchos (399_CR27) 2018; 9
399_CR8
399_CR9
J Darbon (399_CR16) 2020; 7
VV Mazalov (399_CR49) 2017; 78
R Buckdahn (399_CR12) 2011; 1
M Diehl (399_CR19) 2004; 49
399_CR20
399_CR63
399_CR22
J Darbon (399_CR17) 2021; 425
399_CR21
J Nocedal (399_CR52) 2006
399_CR60
HJ Kushner (399_CR46) 2002; 41
P Frihauf (399_CR32) 2012; 57
399_CR61
J Engwerda (399_CR23) 2000; 36
399_CR18
F Facchinei (399_CR30) 2007; 5
399_CR13
399_CR57
399_CR56
399_CR59
399_CR14
399_CR58
399_CR53
399_CR55
D González-Sánchez (399_CR35) 2013
399_CR54
T Basar (399_CR5) 1999
399_CR50
JB Krawczyk (399_CR44) 2000; 5
S Zazo (399_CR62) 2016; 64
T Basar (399_CR3) 1976; 5
R Isaacs (399_CR39) 1999
J Krawczyk (399_CR41) 2007; 4
D Bauso (399_CR7) 2016
A Haurie (399_CR38) 2012
T Nakamura-Zimmerer (399_CR51) 2021; 43
D González-Sánchez (399_CR36) 2014; 4
J Contreras (399_CR15) 2004; 19
J Engwerda (399_CR25) 2012; 48
399_CR48
LC Evans (399_CR26) 1984; 33
A Bressan (399_CR11) 2018; 8
399_CR43
JB Krawczyk (399_CR42) 2005; 27
LZ Liao (399_CR47) 1991; 36
A Bressan (399_CR10) 2011; 79
P Frihauf (399_CR33) 2013; 19
H Kebriaei (399_CR40) 2018; 63
F Facchinei (399_CR31) 2007
J Engwerda (399_CR24) 2017; 7
D González-Sánchez (399_CR37) 2016; 59
N Krikelis (399_CR45) 1971; 16
References_xml – reference: Cacace S, Cristiani E, Falcone M (2011) Numerical approximation of Nash equilibria for a class of non-cooperative differential games. arXiv preprint arXiv:1109.3569
– reference: Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2018) CasADi—a software framework for nonlinear optimization and optimal control. Math Program Comput (in press)
– reference: O’Donoghue B, Stathopoulos G, Boyd S (2013) A splitting method for optimal control. IEEE Trans Control Syst Technol 21(6):2432–2442
– reference: KebriaeiHIannelliLDiscrete-time robust hierarchical linear-quadratic dynamic gamesIEEE Trans Autom Control201863390290937725191390.9106410.1109/TAC.2017.2719158
– reference: Carlson D, Haurie A, Zaccour G (2016) Infinite horizon concave games with coupled constraints. In: Handbook of dynamic game theory, pp 1–44
– reference: EvansLCSouganidisPEDifferential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equationsIndiana Univ Math J19843357737977561581169.9131710.1512/iumj.1984.33.33040
– reference: Krawczyk JB, Petkov V (2018) Multistage games. In: Handbook of dynamic game theory, pp 157–213
– reference: FacchineiFPangJSFinite-dimensional variational inequalities and complementarity problems2007BerlinSpringer1062.90001
– reference: Dutang C (2013) A survey of GNE computation methods: theory and algorithms. hal-00813531. https://hal.archives-ouvertes.fr/hal-00813531
– reference: FacchineiFFischerAPiccialliVGeneralized Nash equilibrium problems and Newton methodsMath Program20091171–216319424213041166.9001510.1007/s10107-007-0160-2
– reference: KrawczykJNumerical solutions to coupled-constraint (or generalised Nash) equilibrium problemsCMS20074218320423006361134.9130310.1007/s10287-006-0033-9
– reference: BressanANguyenKTStability of feedback solutions for infinite horizon noncooperative differential gamesDyn Games Appl201881427837646901390.9106010.1007/s13235-016-0206-2
– reference: ContrerasJKluschMKrawczykJBNumerical solutions to Nash–Cournot equilibria in coupled constraint electricity marketsIEEE Trans Power Syst200419119520610.1109/TPWRS.2003.820692
– reference: DarbonJLangloisGPMengTOvercoming the curse of dimensionality for some Hamilton–Jacobi partial differential equations via neural network architecturesRes Math Sci20207315041233951445.3511910.1007/s40687-020-00215-6
– reference: FrihaufPKrsticMBasarTNash equilibrium seeking in noncooperative gamesIEEE Trans Autom Control20125751192120729238791369.9101010.1109/TAC.2011.2173412
– reference: ExarchosITheodorouETsiotrasPStochastic differential games: a sampling approach via fbsdesDyn Games Appl2018948650539465541429.9103510.1007/s13235-018-0268-4
– reference: Plaksin A (2020) Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems. arXiv e-prints arXiv:2001.07905
– reference: Bigi G, Castellani M, Pappalardo M, Passacantando M (2018) Nonlinear programming techniques for equilibria. EURO advanced tutorials on operational research. Springer. https://doi.org/10.1007/978-3-030-00205-3
– reference: HaurieAKrawczykJBZaccourGGames and dynamic games2012SingaporeWorld Scientific Publishing Company1396.9100310.1142/8442
– reference: Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch. In: NIPS-W
– reference: Duncan TE, Pasik-Duncan B (2015) Some stochastic differential games with state dependent noise. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, pp 3773–3777
– reference: Murray D, Yakowitz S (1984) Differential dynamic programming and Newton’s method for discrete optimal control problems. J Optim Theory Appl 43(3):395–414
– reference: DarbonJMengTOn some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton–Jacobi partial differential equationsJ Comput Phys2021425109907416606210.1016/j.jcp.2020.109907
– reference: EngwerdaJFeedback Nash equilibria in the scalar infinite horizon LQ-gameAutomatica200036113513918336810951.9101410.1016/S0005-1098(99)00119-3
– reference: Berridge S, Krawczyk JB (1997) Relaxation algorithms in finding Nash equilibria. Available at SSRN 66448
– reference: IsaacsRDifferential games: a mathematical theory with applications to warfare and pursuit, control and optimization1999ChelmsfordCourier Corporation1233.91001
– reference: Zazo S, Valcarcel S, Matilde S, Zazo J et al (2015) A new framework for solving dynamic scheduling games. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp 2071–2075
– reference: EngwerdaJFeedback Nash equilibria for linear quadratic descriptor differential gamesAutomatica201248462563129015711238.4905610.1016/j.automatica.2012.01.004
– reference: Frihauf P, Krstic M, Başar T (2013) Nash equilibrium seeking for dynamic systems with non-quadratic payoffs. In: Advances in dynamic games. Springer, pp 179–198
– reference: FacchineiFKanzowCGeneralized Nash equilibrium problems4OR20075317321023534151211.9116210.1007/s10288-007-0054-4
– reference: Basar T, Haurie A, Zaccour G (2018) Nonzero-sum differential games. In Basar T, Zaccour G (eds) Handbook of dynamic game theory. Springer, pp 61–110
– reference: Dunn JC, Bertsekas DP (1989) Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems. J Optim Theory Appl 63(1):23–38
– reference: Zazo S, Macua SV, Sánchez-Fernández M, Zazo J (2015) Dynamic potential games in communications: fundamentals and applications. arXiv preprint arXiv:1509.01313
– reference: Sethi SP (2019) Differential games. In: Optimal control theory. Springer, pp 385–407
– reference: González-SánchezDHernández-LermaOA survey of static and dynamic potential gamesSci China Math201659112075210235618291371.9100910.1007/s11425-016-0264-6
– reference: BasarTOn the uniqueness of the Nash solution in linear-quadratic differential gamesInt J Game Theory197652–365904413770354.9010110.1007/BF01753310
– reference: NocedalJWrightSJNumerical optimization20062BerlinSpringer1104.65059
– reference: BuckdahnRCardaliaguetPQuincampoixMSome recent aspects of differential game theoryDyn Games Appl2011117411428007861214.9101310.1007/s13235-010-0005-0
– reference: FacchineiFFischerAPiccialliVOn generalized Nash games and variational inequalitiesOper Res Lett200735215916423113951303.9102010.1016/j.orl.2006.03.004
– reference: ZazoSMacuaSVSánchez-FernándezMZazoJDynamic potential games with constraints: fundamentals and applications in communicationsIEEE Trans Signal Process201664143806382135157181414.9472410.1109/TSP.2016.2551693
– reference: BressanANoncooperative differential gamesMilan J Math201179235742728620231238.4905510.1007/s00032-011-0163-6
– reference: DiehlMBjornbergJRobust dynamic programming for min-max model predictive control of constrained uncertain systemsIEEE Trans Autom Control200449122253225721067551365.9313110.1109/TAC.2004.838489
– reference: Sun W, Theodorou EA, Tsiotras P (2015) Game theoretic continuous time differential dynamic programming. In: American Control Conference (ACC), 2015. IEEE, pp 5593–5598
– reference: Lin W (2013) Differential games for multi-agent systems under distributed information. Ph.D. thesis, University of Central Florida information
– reference: KrikelisNRekasiusZOn the solution of the optimal linear control problems under conflict of interestIEEE Trans Autom Control197116214014729081010.1109/TAC.1971.1099685
– reference: KushnerHJNumerical approximations for stochastic differential gamesSIAM J Control Optim200241245748619202671014.6003510.1137/S0363012901389457
– reference: EngwerdaJA numerical algorithm to calculate the unique feedback Nash equilibrium in a large scalar LQ differential gameDyn Games Appl20177463565636984451391.9104810.1007/s13235-016-0201-7
– reference: MazalovVVRettievaANAvrachenkovKELinear-quadratic discrete-time dynamic potential gamesAutom Remote Control20177881537154437025661405.9149310.1134/S0005117917080136
– reference: Nakamura-ZimmererTGongQKangWAdaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equationsSIAM J Sci Comput2021432A1221A124742411901467.4902810.1137/19M1288802
– reference: González-SánchezDHernández-LermaODiscrete-time stochastic control and dynamic potential games: the Euler-equation approach2013BerlinSpringer1344.9300110.1007/978-3-319-01059-5
– reference: KrawczykJBCoupled constraint Nash equilibria in environmental gamesResour Energy Econ200527215718110.1016/j.reseneeco.2004.08.001
– reference: LiaoLZShoemakerCAConvergence in unconstrained discrete-time differential dynamic programmingIEEE Trans Autom Control199136669270611196610760.4901610.1109/9.86943
– reference: Tassa Y (2011) Theory and implementation of biomimetic motor controllers. Hebrew University of Jerusalem
– reference: Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/
– reference: Pan Y, Ozguner U (2004) Sliding mode extremum seeking control for linear quadratic dynamic game. In: Proceedings of the 2004 American Control Conference, vol 1. IEEE, pp 614–619
– reference: BasarTOlsderGJDynamic noncooperative game theory1999PhiladelphiaSIAM0946.91001
– reference: Dechert WD (1997) Non cooperative dynamic games: a control theoretic approach. Unpublished, available on request to the author
– reference: FrihaufPKrsticMBaşarTFinite-horizon LQ control for unknown discrete-time linear systems via extremum seekingEur J Control201319539940733001591293.4908010.1016/j.ejcon.2013.05.015
– reference: Sun W, Theodorou EA, Tsiotras P (2016) Stochastic game theoretic trajectory optimization in continuous time. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, pp 6167–6172
– reference: González-SánchezDHernández-LermaODynamic potential games: the discrete-time stochastic caseDyn Games Appl20144330932832460321302.9101910.1007/s13235-014-0105-3
– reference: KrawczykJBUryasevSRelaxation algorithms to find Nash equilibria with economic applicationsEnviron Model Assess200051637310.1023/A:1019097208499
– reference: BausoDGame theory with engineering applications2016PhiladelphiaSIAM1337.9100210.1137/1.9781611974287
– reference: Basar T, Zaccour G (2018) Handbook of Dynamic Game Theory. Springer
– volume: 5
  start-page: 173
  issue: 3
  year: 2007
  ident: 399_CR30
  publication-title: 4OR
  doi: 10.1007/s10288-007-0054-4
– ident: 399_CR14
  doi: 10.1007/978-3-319-27335-8_34-1
– volume: 35
  start-page: 159
  issue: 2
  year: 2007
  ident: 399_CR28
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2006.03.004
– volume: 4
  start-page: 309
  issue: 3
  year: 2014
  ident: 399_CR36
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-014-0105-3
– volume: 79
  start-page: 357
  issue: 2
  year: 2011
  ident: 399_CR10
  publication-title: Milan J Math
  doi: 10.1007/s00032-011-0163-6
– ident: 399_CR6
  doi: 10.1007/978-3-319-44374-4
– volume: 33
  start-page: 773
  issue: 5
  year: 1984
  ident: 399_CR26
  publication-title: Indiana Univ Math J
  doi: 10.1512/iumj.1984.33.33040
– volume: 1
  start-page: 74
  issue: 1
  year: 2011
  ident: 399_CR12
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-010-0005-0
– ident: 399_CR57
  doi: 10.1007/978-3-319-98237-3_13
– ident: 399_CR18
– volume: 49
  start-page: 2253
  issue: 12
  year: 2004
  ident: 399_CR19
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2004.838489
– volume: 36
  start-page: 135
  issue: 1
  year: 2000
  ident: 399_CR23
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00119-3
– volume: 7
  start-page: 635
  issue: 4
  year: 2017
  ident: 399_CR24
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-016-0201-7
– ident: 399_CR21
  doi: 10.1007/BF00940728
– volume: 27
  start-page: 157
  issue: 2
  year: 2005
  ident: 399_CR42
  publication-title: Resour Energy Econ
  doi: 10.1016/j.reseneeco.2004.08.001
– volume: 41
  start-page: 457
  issue: 2
  year: 2002
  ident: 399_CR46
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012901389457
– ident: 399_CR53
  doi: 10.1109/TCST.2012.2231960
– ident: 399_CR34
  doi: 10.1007/978-0-8176-8355-9_9
– volume: 43
  start-page: A1221
  issue: 2
  year: 2021
  ident: 399_CR51
  publication-title: SIAM J Sci Comput
  doi: 10.1137/19M1288802
– volume: 9
  start-page: 486
  year: 2018
  ident: 399_CR27
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-018-0268-4
– volume-title: Game theory with engineering applications
  year: 2016
  ident: 399_CR7
  doi: 10.1137/1.9781611974287
– ident: 399_CR20
  doi: 10.1109/CDC.2015.7402805
– volume-title: Finite-dimensional variational inequalities and complementarity problems
  year: 2007
  ident: 399_CR31
– volume: 19
  start-page: 399
  issue: 5
  year: 2013
  ident: 399_CR33
  publication-title: Eur J Control
  doi: 10.1016/j.ejcon.2013.05.015
– volume-title: Discrete-time stochastic control and dynamic potential games: the Euler-equation approach
  year: 2013
  ident: 399_CR35
  doi: 10.1007/978-3-319-01059-5
– ident: 399_CR22
– volume: 117
  start-page: 163
  issue: 1–2
  year: 2009
  ident: 399_CR29
  publication-title: Math Program
  doi: 10.1007/s10107-007-0160-2
– ident: 399_CR54
– ident: 399_CR56
  doi: 10.1007/s10957-020-01742-6
– ident: 399_CR61
  doi: 10.1109/TSP.2016.2551693
– volume-title: Numerical optimization
  year: 2006
  ident: 399_CR52
– volume: 59
  start-page: 2075
  issue: 11
  year: 2016
  ident: 399_CR37
  publication-title: Sci China Math
  doi: 10.1007/s11425-016-0264-6
– ident: 399_CR63
  doi: 10.1109/ICASSP.2015.7178335
– volume: 5
  start-page: 65
  issue: 2–3
  year: 1976
  ident: 399_CR3
  publication-title: Int J Game Theory
  doi: 10.1007/BF01753310
– ident: 399_CR60
– volume: 16
  start-page: 140
  issue: 2
  year: 1971
  ident: 399_CR45
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.1971.1099685
– ident: 399_CR48
– volume: 19
  start-page: 195
  issue: 1
  year: 2004
  ident: 399_CR15
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2003.820692
– volume: 4
  start-page: 183
  issue: 2
  year: 2007
  ident: 399_CR41
  publication-title: CMS
  doi: 10.1007/s10287-006-0033-9
– volume: 36
  start-page: 692
  issue: 6
  year: 1991
  ident: 399_CR47
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.86943
– ident: 399_CR9
  doi: 10.1007/978-3-030-00205-3
– volume: 48
  start-page: 625
  issue: 4
  year: 2012
  ident: 399_CR25
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.01.004
– ident: 399_CR59
  doi: 10.1109/CDC.2016.7799217
– volume: 8
  start-page: 42
  issue: 1
  year: 2018
  ident: 399_CR11
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-016-0206-2
– volume: 78
  start-page: 1537
  issue: 8
  year: 2017
  ident: 399_CR49
  publication-title: Autom Remote Control
  doi: 10.1134/S0005117917080136
– ident: 399_CR55
– volume-title: Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization
  year: 1999
  ident: 399_CR39
– ident: 399_CR4
  doi: 10.1007/978-3-319-44374-4_5
– volume: 5
  start-page: 63
  issue: 1
  year: 2000
  ident: 399_CR44
  publication-title: Environ Model Assess
  doi: 10.1023/A:1019097208499
– ident: 399_CR13
– volume: 425
  start-page: 109907
  year: 2021
  ident: 399_CR17
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109907
– volume-title: Games and dynamic games
  year: 2012
  ident: 399_CR38
  doi: 10.1142/8442
– volume: 57
  start-page: 1192
  issue: 5
  year: 2012
  ident: 399_CR32
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2173412
– volume: 64
  start-page: 3806
  issue: 14
  year: 2016
  ident: 399_CR62
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2016.2551693
– volume-title: Dynamic noncooperative game theory
  year: 1999
  ident: 399_CR5
– volume: 7
  start-page: 1
  issue: 3
  year: 2020
  ident: 399_CR16
  publication-title: Res Math Sci
  doi: 10.1007/s40687-020-00215-6
– ident: 399_CR50
  doi: 10.1007/BF00934463
– ident: 399_CR2
  doi: 10.1007/s12532-018-0139-4
– ident: 399_CR8
  doi: 10.2139/ssrn.66448
– ident: 399_CR1
– ident: 399_CR43
  doi: 10.1007/978-3-319-44374-4_3
– ident: 399_CR58
  doi: 10.1109/ACC.2015.7172215
– volume: 63
  start-page: 902
  issue: 3
  year: 2018
  ident: 399_CR40
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2017.2719158
SSID ssj0000461657
Score 2.24378
Snippet Dynamic games arise when multiple agents with differing objectives control a dynamic system. They model a wide variety of applications in economics, defense,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 394
SubjectTerms Algorithms
Approximation
Communications Engineering
Computer Systems Organization and Communication Networks
Dynamic programming
Dynamical systems
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Game Theory
Games
Management Science
Mathematics
Mathematics and Statistics
Multiagent systems
Networks
Nonlinear dynamics
Operations Research
Optimal control
Social and Behav. Sciences
Title Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games
URI https://link.springer.com/article/10.1007/s13235-021-00399-8
https://www.proquest.com/docview/2666539549
Volume 12
WOSCitedRecordID wos000717416400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 2153-0793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000461657
  issn: 2153-0785
  databaseCode: RSV
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQQIOLAVEoSAfuFFLTpzFOSJK4UCrqlDUW-Q6joTUBtQUzvwGv8eXMM5WgQAJkmMcy_L23ow9bwBOI8RErRxcabFwqeP6jArNGZVjm3NfeYhCmc7sjd_ridEo6BdBYWl52708ksx26kWwG7e5iSZG85chrFKxDCsId8IkbBjc3leeFSMh7mUSnwhnnCIGukW0zPfVfEakBc38cjKaAU5n639N3YbNgmCS83xG7MCSTuqwVsYfp3XY6FZKrekupLjLIf17f31LSTfLJt0iJmZnKhMyML54400jMolIu0ilglvChLTzRPakn1_vmmLrCNJfMkyUIZwm74SOSC_X4ZCzqvyVuZS7B8PO5d3FNS0SMVCF5t-cWlIEvraQjKgYXxbZPlNSW7H0AxVYQexwHNOxp1lkecJxtefGNtMKuYAQQcz4PtSSx0QfALF9V-KDdqnLnDH-7aA9GEWBjjlWqewGWOVghKpQKTeNnoQLfWXTuSF2bph1bigacFb985RrdPxaulmOcVis1zREmmI0etFYbkCrHNPF559rO_xb8SNYt038RObGaUJtPnvWx7CqXuYP6ewkm8cfhpLrvw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BQSocWAqIQgEfuNFITpzFOSJKAdFGVWlRb1HqOBJSG1BTOPMb_B5fwjhbBQIkSI5eZHlsz5ux5w3AaYg6UQoTd1rELc20HKpxyagWjA3GHGGjFkp5ZjuO5_HRyO3lQWFJ8dq9uJJMT-pFsBszmIomRvOXolrV-DKsmKixFGN-_-6-9KwoCnE7pfjEQqahDrTyaJnvu_mskRYw88vNaKpw2pv_G-oWbOQAk5xnK2IblmRcg2oRf5zUYL1bMrUmO5DgKYfw7_31LSHdNJt0k6iYnWkQk77yxStvGgnikLTyVCp4JExIK0tkT3rZ864pjo4g_CXDWCjAqfJOyJB4GQ9HMCvrX6lHubswbF8OLq61PBGDJtD8m2t6wF1H6ghGRIQ_DQ2HikDqUeC4wtXdyGQo07Etaajb3LSkbUUGlQKxAOduRNkeVOLHWO4DMRwrwA_tUouaY2xtoj0Yhq6MGHYpjDrohTB8kbOUq0FP_AW_sppcHyfXTyfX53U4K9s8ZRwdv9ZuFDL28_2a-AhTFEcvGst1aBYyXRT_3NvB36qfQPV60O34nRvv9hDWDBVLkbp0GlCZz57lEayKl_lDMjtO1_QHm1Tuow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQSwHlgKiUMAHbjSqE2dxjohSQLRVBRT1FqWOIyG1oWoCZ36D3-NLGGdpAQESIjnGtiyPnXkznnkDcBygTpTCxJMWckszLYdqXDKq-QODMUfYqIVSntmW0-nwft_tfsjiT6PdiyvJLKdBsTRFSX0chPVZ4hszmMosRlOYoorV-DwsmCqQXtnrt_dTL4uiE7dTuk9UbUxDfWjlmTPfD_NZO80g55db0lT5NNf_P-0NWMuBJznNdsomzMmoDMtFXnJchtX2lME13oIY_34IC99eXmPSTqtM14jK5Rn5EblRPnrlZSN-FJBGXmIFfxVD0sgK3JNuFvY1wpkShMWkFwkFRFU9ChmQTsbP4U-m7S9UsO429Jrnd2eXWl6gQRNoFiaa7nPXkTqCFBHiSwPDocKXeug7rnB1NzQZynpgSxroNjctaVuhQaVAjMC5G1K2A6XoMZK7QAzH8vFBe9Wi5gB7ozTNIHBlyHBIYVRALwTjiZy9XE166M14l9Xieri4Xrq4Hq_AybTPOOPu-LV1tZC3l5_j2EP4orh70YiuQK2Q7-zzz6Pt_a35ESx1G02vddW53ocVQ6VYpJ6eKpSSyZM8gEXxnDzEk8N0e78Df4b3hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton%E2%80%99s+Method%2C+Bellman+Recursion+and+Differential+Dynamic+Programming+for+Unconstrained+Nonlinear+Dynamic+Games&rft.jtitle=Dynamic+games+and+applications&rft.au=Di%2C+Bolei&rft.au=Lamperski%2C+Andrew&rft.date=2022-06-01&rft.pub=Springer+US&rft.issn=2153-0785&rft.eissn=2153-0793&rft.volume=12&rft.issue=2&rft.spage=394&rft.epage=442&rft_id=info:doi/10.1007%2Fs13235-021-00399-8&rft.externalDocID=10_1007_s13235_021_00399_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-0785&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-0785&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-0785&client=summon