Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 35; no. 11; pp. 2651 - 2664 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Los Alamitos, CA
IEEE
01.11.2013
IEEE Computer Society |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions. |
|---|---|
| AbstractList | A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions. A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions. |
| Author | Davis, L. S. Zhuolin Jiang Zhe Lin |
| Author_xml | – sequence: 1 surname: Zhuolin Jiang fullname: Zhuolin Jiang email: zhuolin@umiacs.umd.edu organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA – sequence: 2 surname: Zhe Lin fullname: Zhe Lin email: zlin@adobe.com organization: Adv. Technol. Labs., Adobe, San Jose, CA, USA – sequence: 3 givenname: L. S. surname: Davis fullname: Davis, L. S. email: lsd@umiacs.umd.edu organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27896023$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24051726$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10U1r3DAQBmBREpLNx7GnQvGlkIs3M7JlS72FzSdxaUi2vRpZHgcVr5xK3kD-fbTZzRYKOQmJZ6TRvAdsxw2OGPuMMEUEdTq_O_txM-WA2VTKT2zCsYBUccV32ASw4KmUXO6zgxD-AGAuINtj-zwHgSUvJqyqdEN9MhtcsGEkNya36cPv8-9JRdo76x4TnZzbYLxdWKdH-0xxa0Y7OO1fkm7wyT2Z4dHZ1dER2-10H-h4sx6yX5cX89l1Wv28upmdVanJQY0pqpI64Ng0phO6xFYozTk3UqEQskQOpTDQ8kKC4BJM01FLiG3RiqaVoLJDdrK-98kPf5cUxnoRW6S-146GZagxz_IyFyIvI_26octmQW39FD8SO6_fJxDBtw3Qwei-89oZG_65UqoCeBZdunbGDyF46rYEoV4lUb8lUa-SqKWMPvvPGzvq1ZRGr23_YdWXdZUlou0LhcAiBpe9AiyRknE |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_109306 crossref_primary_10_1109_TNNLS_2022_3165217 crossref_primary_10_1016_j_imavis_2016_03_010 crossref_primary_10_1007_s13042_015_0413_y crossref_primary_10_1109_TNNLS_2017_2712801 crossref_primary_10_1016_j_inffus_2014_10_004 crossref_primary_10_1109_TBME_2017_2783305 crossref_primary_10_1109_ACCESS_2020_3008841 crossref_primary_10_1109_LGRS_2021_3129773 crossref_primary_10_1109_TNNLS_2020_3029033 crossref_primary_10_1016_j_neucom_2020_01_018 crossref_primary_10_1016_j_neucom_2016_01_076 crossref_primary_10_1177_0278364917704707 crossref_primary_10_1109_TCYB_2016_2581861 crossref_primary_10_1016_j_measurement_2021_110017 crossref_primary_10_1109_TPAMI_2016_2564409 crossref_primary_10_1016_j_neucom_2021_12_063 crossref_primary_10_1007_s11042_020_08918_2 crossref_primary_10_1016_j_neunet_2018_08_003 crossref_primary_10_1109_LGRS_2019_2899121 crossref_primary_10_1109_TGRS_2015_2399978 crossref_primary_10_1016_j_neucom_2019_05_004 crossref_primary_10_1109_TCSVT_2018_2890511 crossref_primary_10_1109_TSP_2021_3062988 crossref_primary_10_1016_j_sigpro_2016_10_022 crossref_primary_10_1109_TCYB_2022_3178878 crossref_primary_10_1109_JSEN_2021_3139844 crossref_primary_10_1109_TGRS_2023_3274296 crossref_primary_10_1016_j_knosys_2025_113765 crossref_primary_10_3233_JIFS_231290 crossref_primary_10_1016_j_isprsjprs_2018_07_004 crossref_primary_10_1155_2022_8479040 crossref_primary_10_1109_ACCESS_2017_2786672 crossref_primary_10_1016_j_patcog_2015_08_012 crossref_primary_10_1109_MIS_2016_30 crossref_primary_10_1016_j_patcog_2022_108590 crossref_primary_10_1109_TPAMI_2019_2917685 crossref_primary_10_1109_LGRS_2019_2949721 crossref_primary_10_1177_1729881417714211 crossref_primary_10_1109_TGRS_2017_2761893 crossref_primary_10_3390_rs8080683 crossref_primary_10_1007_s10462_016_9537_z crossref_primary_10_1016_j_dsp_2019_08_003 crossref_primary_10_1109_ACCESS_2021_3078232 crossref_primary_10_1117_1_JEI_31_4_043048 crossref_primary_10_1109_TCSVT_2017_2746684 crossref_primary_10_1016_j_knosys_2016_09_018 crossref_primary_10_1007_s00422_013_0579_x crossref_primary_10_1109_TGRS_2020_3005623 crossref_primary_10_1109_TCSVT_2019_2902672 crossref_primary_10_1016_j_neucom_2018_12_024 crossref_primary_10_1016_j_bspc_2023_105856 crossref_primary_10_1186_s12864_020_07079_8 crossref_primary_10_1109_TCSVT_2018_2862151 crossref_primary_10_1109_TIP_2017_2686014 crossref_primary_10_1016_j_ins_2022_08_081 crossref_primary_10_1016_j_eswa_2016_10_019 crossref_primary_10_1109_TAFFC_2018_2854166 crossref_primary_10_1109_TIP_2020_3024728 crossref_primary_10_1038_s43586_024_00346_y crossref_primary_10_1007_s00521_019_04590_2 crossref_primary_10_1016_j_cam_2023_115685 crossref_primary_10_1109_TCST_2022_3210407 crossref_primary_10_1016_j_jvcir_2016_08_002 crossref_primary_10_1016_j_neucom_2017_10_019 crossref_primary_10_1049_iet_ipr_2019_0683 crossref_primary_10_1016_j_knosys_2020_106716 crossref_primary_10_1109_TCSVT_2016_2515738 crossref_primary_10_1109_TIP_2015_2417502 crossref_primary_10_1049_iet_cvi_2018_5127 crossref_primary_10_1109_TIP_2016_2523340 crossref_primary_10_1109_ACCESS_2020_3038695 crossref_primary_10_1109_TIP_2017_2745684 crossref_primary_10_1109_JSTSP_2018_2838549 crossref_primary_10_1109_LGRS_2020_3008212 crossref_primary_10_1109_TGRS_2022_3148738 crossref_primary_10_1016_j_imavis_2019_02_012 crossref_primary_10_1109_TGRS_2020_2983420 crossref_primary_10_1109_JIOT_2020_3031390 crossref_primary_10_1007_s11265_016_1105_x crossref_primary_10_1007_s13042_020_01067_w crossref_primary_10_1109_ACCESS_2019_2912932 crossref_primary_10_1109_TNNLS_2020_2979748 crossref_primary_10_1109_TNNLS_2020_2997289 crossref_primary_10_1109_LSP_2021_3086396 crossref_primary_10_1109_ACCESS_2023_3347339 crossref_primary_10_1117_1_JEI_31_3_033028 crossref_primary_10_1109_JSEN_2025_3553757 crossref_primary_10_1109_TIP_2020_3001424 crossref_primary_10_1007_s11227_024_06663_z crossref_primary_10_3390_jimaging4050068 crossref_primary_10_1109_ACCESS_2020_2978875 crossref_primary_10_3390_app14010306 crossref_primary_10_1016_j_jvcir_2016_07_015 crossref_primary_10_1016_j_patcog_2025_111775 crossref_primary_10_1016_j_neucom_2016_05_101 crossref_primary_10_1016_j_neucom_2020_01_101 crossref_primary_10_1109_TBME_2018_2812602 crossref_primary_10_3389_fncom_2017_00117 crossref_primary_10_1016_j_cviu_2015_01_006 crossref_primary_10_1109_TCSVT_2019_2923007 crossref_primary_10_1016_j_infrared_2015_05_014 crossref_primary_10_1155_2014_189317 crossref_primary_10_1109_ACCESS_2019_2953366 crossref_primary_10_1109_TIP_2017_2651396 crossref_primary_10_1007_s11042_017_5542_8 crossref_primary_10_1016_j_jvcir_2022_103728 crossref_primary_10_1109_JSTSP_2015_2423260 crossref_primary_10_1016_j_imavis_2016_02_003 crossref_primary_10_1016_j_jvcir_2021_103228 crossref_primary_10_1007_s11760_018_1313_x crossref_primary_10_1109_TMM_2017_2716835 crossref_primary_10_1109_ACCESS_2018_2868133 crossref_primary_10_1016_j_neunet_2018_07_016 crossref_primary_10_1007_s00500_016_2131_0 crossref_primary_10_1016_j_dsp_2016_10_017 crossref_primary_10_1016_j_neucom_2017_07_003 crossref_primary_10_1109_ACCESS_2020_2968817 crossref_primary_10_1016_j_engappai_2018_04_006 crossref_primary_10_1016_j_neucom_2018_05_036 crossref_primary_10_1016_j_sigpro_2021_108167 crossref_primary_10_1109_TIP_2021_3104179 crossref_primary_10_1109_JSEN_2021_3049953 crossref_primary_10_1109_JIOT_2019_2911669 crossref_primary_10_1016_j_neucom_2020_07_148 crossref_primary_10_1016_j_patcog_2017_06_038 crossref_primary_10_1016_j_ress_2025_110905 crossref_primary_10_3389_fpsyg_2021_721266 crossref_primary_10_3390_s21041442 crossref_primary_10_1109_TNNLS_2017_2740224 crossref_primary_10_1109_TSMC_2016_2531675 crossref_primary_10_1049_iet_syb_2017_0013 crossref_primary_10_1109_TCYB_2021_3084931 crossref_primary_10_1109_TNNLS_2017_2742528 crossref_primary_10_3390_app15189943 crossref_primary_10_1016_j_dsp_2017_06_023 crossref_primary_10_1016_j_neucom_2019_06_011 crossref_primary_10_1145_3458927 crossref_primary_10_1007_s10044_021_01046_z crossref_primary_10_1016_j_jvcir_2018_06_014 crossref_primary_10_1016_j_knosys_2021_107195 crossref_primary_10_1016_j_neunet_2019_11_015 crossref_primary_10_1007_s00371_022_02441_1 crossref_primary_10_1016_j_ins_2022_07_070 crossref_primary_10_1109_TBME_2016_2631620 crossref_primary_10_1109_ACCESS_2019_2932420 crossref_primary_10_1007_s10044_016_0541_3 crossref_primary_10_1016_j_neucom_2020_09_088 crossref_primary_10_1109_TMM_2017_2763321 crossref_primary_10_1016_j_asoc_2021_108030 crossref_primary_10_1016_j_eswa_2013_11_036 crossref_primary_10_1016_j_neucom_2016_01_026 crossref_primary_10_1016_j_neunet_2022_11_017 crossref_primary_10_1109_TNNLS_2016_2580572 crossref_primary_10_1016_j_neucom_2018_09_022 crossref_primary_10_1049_iet_bmt_2016_0081 crossref_primary_10_1016_j_specom_2016_09_004 crossref_primary_10_1016_j_specom_2016_09_003 crossref_primary_10_1109_TSP_2020_2984895 crossref_primary_10_1109_TSP_2018_2865442 crossref_primary_10_1016_j_engappai_2023_106640 crossref_primary_10_1049_iet_cvi_2017_0422 crossref_primary_10_3389_fnins_2021_797378 crossref_primary_10_1016_j_neucom_2017_08_068 crossref_primary_10_1016_j_ymssp_2022_109103 crossref_primary_10_12677_SEA_2022_112024 crossref_primary_10_1109_TCYB_2020_3025757 crossref_primary_10_1155_2017_6784764 crossref_primary_10_1016_j_ijleo_2015_08_168 crossref_primary_10_1016_j_jvcir_2018_11_030 crossref_primary_10_1118_1_4942376 crossref_primary_10_1016_j_dsp_2025_105020 crossref_primary_10_3390_rs13030361 crossref_primary_10_1109_ACCESS_2019_2935164 crossref_primary_10_1109_LSP_2017_2731791 crossref_primary_10_1109_TCYB_2017_2747998 crossref_primary_10_1049_iet_its_2018_5316 crossref_primary_10_1049_iet_rsn_2019_0550 crossref_primary_10_1145_3572910 crossref_primary_10_1177_1550147718809020 crossref_primary_10_1016_j_ins_2023_03_128 crossref_primary_10_1016_j_patcog_2016_08_025 crossref_primary_10_1007_s11760_017_1194_4 crossref_primary_10_1109_TCYB_2015_2492468 crossref_primary_10_1109_JSTARS_2018_2877769 crossref_primary_10_1109_TMM_2023_3266610 crossref_primary_10_1016_j_neunet_2022_08_031 crossref_primary_10_1007_s10489_021_02273_x crossref_primary_10_1109_TGRS_2016_2598577 crossref_primary_10_1016_j_knosys_2019_06_031 crossref_primary_10_1109_TFUZZ_2018_2856081 crossref_primary_10_3390_sym13030415 crossref_primary_10_1016_j_patcog_2022_109155 crossref_primary_10_1109_TMM_2017_2785227 crossref_primary_10_1016_j_jprocont_2020_08_003 crossref_primary_10_1155_2013_925341 crossref_primary_10_1002_mrc_4532 crossref_primary_10_1016_j_patcog_2016_08_031 crossref_primary_10_3233_JIFS_233753 crossref_primary_10_1007_s11063_017_9691_6 crossref_primary_10_1016_j_bspc_2022_104314 crossref_primary_10_1016_j_jvcir_2020_102799 crossref_primary_10_1109_ACCESS_2015_2430359 crossref_primary_10_1109_TNNLS_2019_2893190 crossref_primary_10_1016_j_image_2022_116870 crossref_primary_10_1007_s11042_022_12614_8 crossref_primary_10_1109_TIE_2019_2898618 crossref_primary_10_1016_j_ifacol_2015_09_595 crossref_primary_10_3390_rs15112832 crossref_primary_10_1007_s13042_018_00903_4 crossref_primary_10_1016_j_engappai_2022_105137 crossref_primary_10_1111_cgf_15082 crossref_primary_10_1109_ACCESS_2018_2823979 crossref_primary_10_1109_LSP_2017_2756998 crossref_primary_10_1016_j_optlastec_2023_110401 crossref_primary_10_1109_TMM_2020_3017916 crossref_primary_10_3390_app142210082 crossref_primary_10_1109_TSP_2018_2807422 crossref_primary_10_3390_app12136650 crossref_primary_10_1016_j_neunet_2018_02_002 crossref_primary_10_1016_j_knosys_2022_108279 crossref_primary_10_1109_TNNLS_2017_2693221 crossref_primary_10_1016_j_image_2025_117356 crossref_primary_10_1109_TNNLS_2020_3026621 crossref_primary_10_1145_3078846 crossref_primary_10_1016_j_neucom_2017_07_041 crossref_primary_10_1080_09720529_2020_1726079 crossref_primary_10_1109_TIP_2016_2619260 crossref_primary_10_1016_j_cviu_2015_06_001 crossref_primary_10_1016_j_jprocont_2021_09_002 crossref_primary_10_1088_1742_6596_787_1_012020 crossref_primary_10_1109_ACCESS_2020_2982591 crossref_primary_10_1007_s00138_023_01423_0 crossref_primary_10_1109_JIOT_2022_3178160 crossref_primary_10_1016_j_patcog_2015_03_012 crossref_primary_10_1109_TIP_2017_2691549 crossref_primary_10_1016_j_procs_2018_01_105 crossref_primary_10_1109_TKDE_2020_3046114 crossref_primary_10_1371_journal_pone_0142403 crossref_primary_10_1080_1206212X_2020_1712775 crossref_primary_10_1016_j_patcog_2020_107634 crossref_primary_10_1109_TCST_2023_3329696 crossref_primary_10_1109_TII_2019_2909305 crossref_primary_10_1016_j_patcog_2018_01_002 crossref_primary_10_3390_s23115179 crossref_primary_10_1016_j_knosys_2025_113380 crossref_primary_10_1007_s10489_021_02557_2 crossref_primary_10_1016_j_patrec_2016_04_014 crossref_primary_10_1080_00949655_2017_1336241 crossref_primary_10_1016_j_neucom_2018_05_122 crossref_primary_10_1190_geo2022_0198_1 crossref_primary_10_1016_j_cviu_2019_06_003 crossref_primary_10_1109_LSENS_2022_3142349 crossref_primary_10_1007_s00371_018_1603_x crossref_primary_10_1016_j_sigpro_2018_01_013 crossref_primary_10_1109_TCYB_2018_2883673 crossref_primary_10_3390_rs11232846 crossref_primary_10_1016_j_patcog_2016_11_001 crossref_primary_10_1109_TIP_2016_2549459 crossref_primary_10_1016_j_asoc_2021_107907 crossref_primary_10_1016_j_image_2023_116955 crossref_primary_10_1145_3449360 crossref_primary_10_1007_s11063_023_11234_z crossref_primary_10_1109_JSTARS_2017_2671021 crossref_primary_10_1109_TIFS_2018_2825940 crossref_primary_10_1145_3588575 crossref_primary_10_3390_e25030499 crossref_primary_10_1145_3502729 crossref_primary_10_1109_LSP_2017_2734860 crossref_primary_10_1109_TASE_2022_3223723 crossref_primary_10_1007_s00521_016_2764_z crossref_primary_10_1109_TIFS_2017_2680403 crossref_primary_10_1016_j_knosys_2023_110465 crossref_primary_10_1109_TPAMI_2016_2527652 crossref_primary_10_1109_ACCESS_2019_2905552 crossref_primary_10_1109_TIP_2016_2548242 crossref_primary_10_1016_j_patrec_2018_06_019 crossref_primary_10_1109_ACCESS_2022_3222531 crossref_primary_10_1016_j_engappai_2017_06_026 crossref_primary_10_1109_LGRS_2017_2651150 crossref_primary_10_1080_08839514_2023_2180821 crossref_primary_10_1007_s11042_020_08965_9 crossref_primary_10_1007_s11063_019_10015_x crossref_primary_10_1016_j_patcog_2019_107014 crossref_primary_10_1109_TGRS_2017_2751061 crossref_primary_10_1016_j_patcog_2020_107690 crossref_primary_10_1109_TPAMI_2016_2636827 crossref_primary_10_1016_j_patcog_2017_07_013 crossref_primary_10_1109_TMM_2020_3003783 crossref_primary_10_1109_TII_2015_2496272 crossref_primary_10_3389_fonc_2021_725320 crossref_primary_10_1109_TIP_2015_2428055 crossref_primary_10_1016_j_jnucmat_2019_05_040 crossref_primary_10_1016_j_neucom_2015_01_024 crossref_primary_10_1109_TIP_2019_2919409 crossref_primary_10_1049_ipr2_12155 crossref_primary_10_1109_JIOT_2021_3080084 crossref_primary_10_1016_j_jvcir_2017_02_007 crossref_primary_10_1007_s13278_018_0519_9 crossref_primary_10_1109_TIP_2019_2894966 crossref_primary_10_1016_j_patcog_2016_07_042 crossref_primary_10_1109_TIP_2018_2881828 crossref_primary_10_1109_TSMC_2017_2676180 crossref_primary_10_1038_s41598_017_18860_3 crossref_primary_10_1109_TCSVT_2018_2886600 crossref_primary_10_1109_TGRS_2017_2727067 crossref_primary_10_1016_j_neucom_2021_01_111 crossref_primary_10_1109_JIOT_2022_3231862 crossref_primary_10_1109_TIP_2015_2496275 crossref_primary_10_1007_s13042_023_01957_9 crossref_primary_10_1016_j_dsp_2022_103896 crossref_primary_10_1016_j_sigpro_2019_03_007 crossref_primary_10_1016_j_sigpro_2020_107634 crossref_primary_10_1109_TGRS_2019_2931134 crossref_primary_10_1109_TIM_2021_3097416 crossref_primary_10_1177_0040517520921469 crossref_primary_10_1007_s00521_018_3479_0 crossref_primary_10_1016_j_cmpb_2017_02_007 crossref_primary_10_1109_TCSVT_2016_2589858 crossref_primary_10_1109_TGRS_2022_3203468 crossref_primary_10_1109_MMUL_2014_53 crossref_primary_10_1109_TNNLS_2019_2910146 crossref_primary_10_1109_TIM_2021_3125969 crossref_primary_10_1016_j_patcog_2019_02_018 crossref_primary_10_1016_j_patrec_2016_03_021 crossref_primary_10_1109_JSTARS_2015_2404578 crossref_primary_10_1109_TIM_2025_3561431 crossref_primary_10_1016_j_renene_2020_01_093 crossref_primary_10_1109_JSTARS_2019_2949621 crossref_primary_10_1016_j_neucom_2016_04_044 crossref_primary_10_1016_j_patcog_2016_12_021 crossref_primary_10_1016_j_patcog_2020_107793 crossref_primary_10_1007_s13246_022_01135_1 crossref_primary_10_1016_j_dsp_2021_103227 crossref_primary_10_1016_j_patcog_2016_12_015 crossref_primary_10_1109_TCCN_2022_3193403 crossref_primary_10_1109_TIP_2017_2703101 crossref_primary_10_1016_j_patcog_2016_12_017 crossref_primary_10_1016_j_neucom_2020_01_041 crossref_primary_10_1155_2020_7562140 crossref_primary_10_3390_rs9040386 crossref_primary_10_1016_j_patcog_2015_04_014 crossref_primary_10_1109_TII_2017_2653184 crossref_primary_10_1016_j_neucom_2019_09_045 crossref_primary_10_1007_s10044_021_00987_9 crossref_primary_10_1109_ACCESS_2021_3120635 crossref_primary_10_1155_2019_1262171 crossref_primary_10_1038_s41598_023_47420_1 crossref_primary_10_1016_j_dsp_2025_105530 crossref_primary_10_1007_s11042_022_13203_5 crossref_primary_10_3390_rs12010135 crossref_primary_10_1177_0954406217704475 crossref_primary_10_1109_TII_2017_2777144 crossref_primary_10_1016_j_knosys_2021_106794 crossref_primary_10_1109_ACCESS_2020_3044371 crossref_primary_10_1016_j_jsv_2018_01_051 crossref_primary_10_1109_TCYB_2015_2481713 crossref_primary_10_1016_j_patcog_2015_12_005 crossref_primary_10_3389_fpsyg_2021_705528 crossref_primary_10_1007_s00500_021_05723_3 crossref_primary_10_1007_s11042_017_4660_7 crossref_primary_10_1007_s11042_023_15579_4 crossref_primary_10_1016_j_eswa_2018_03_048 crossref_primary_10_1016_j_sigpro_2018_09_002 crossref_primary_10_1016_j_patcog_2016_06_012 crossref_primary_10_1109_TSMC_2022_3193131 crossref_primary_10_1007_s10489_023_04541_4 crossref_primary_10_1016_j_sigpro_2020_107485 crossref_primary_10_1049_iet_cvi_2015_0482 crossref_primary_10_1109_TSP_2016_2550016 crossref_primary_10_1016_j_patcog_2019_04_027 crossref_primary_10_1016_j_ress_2024_110133 crossref_primary_10_1109_TIP_2016_2547180 crossref_primary_10_1186_s13640_019_0411_1 crossref_primary_10_1109_LGRS_2018_2868789 crossref_primary_10_1016_j_jvcir_2016_04_003 crossref_primary_10_1109_TIP_2016_2598654 crossref_primary_10_1007_s12652_021_03262_1 crossref_primary_10_1016_j_neucom_2019_11_073 crossref_primary_10_1177_1748006X231184656 crossref_primary_10_1016_j_patcog_2015_12_017 crossref_primary_10_1109_LGRS_2023_3259971 crossref_primary_10_1109_TII_2020_2983749 crossref_primary_10_1109_TIM_2024_3383498 crossref_primary_10_1109_TGRS_2021_3127536 crossref_primary_10_1109_TNNLS_2022_3183326 crossref_primary_10_1007_s11063_021_10467_0 crossref_primary_10_1109_ACCESS_2019_2902654 crossref_primary_10_1109_TKDE_2019_2893956 crossref_primary_10_1007_s13042_020_01123_5 crossref_primary_10_1109_TIP_2017_2764622 crossref_primary_10_1109_TNNLS_2023_3291793 crossref_primary_10_1007_s10044_019_00858_4 crossref_primary_10_1109_TIP_2017_2765833 crossref_primary_10_1007_s11042_023_15907_8 crossref_primary_10_1109_TASE_2025_3557285 crossref_primary_10_1007_s00371_019_01766_8 crossref_primary_10_1109_ACCESS_2015_2510659 crossref_primary_10_1109_ACCESS_2020_3028905 crossref_primary_10_1109_TGRS_2018_2873302 crossref_primary_10_1109_TNNLS_2021_3120100 crossref_primary_10_1016_j_patcog_2020_107581 crossref_primary_10_1186_s13634_018_0538_8 crossref_primary_10_1007_s11063_018_9894_5 crossref_primary_10_1007_s10489_021_02904_3 crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_1109_TSP_2017_2684746 crossref_primary_10_1007_s12559_019_09650_2 crossref_primary_10_3390_math10162874 crossref_primary_10_1155_2018_1058982 crossref_primary_10_1109_TGRS_2016_2599163 crossref_primary_10_1109_TMM_2016_2566578 crossref_primary_10_3390_app11167701 crossref_primary_10_1016_j_jksuci_2023_01_014 crossref_primary_10_1109_TNNLS_2017_2727526 crossref_primary_10_1016_j_apacoust_2022_108870 crossref_primary_10_1007_s13042_019_00992_9 crossref_primary_10_1007_s11263_017_1007_9 crossref_primary_10_1007_s11517_020_02281_y crossref_primary_10_1007_s11042_021_11322_z crossref_primary_10_1109_MAES_2021_3049857 crossref_primary_10_1007_s11042_023_16772_1 crossref_primary_10_1007_s12559_016_9445_1 crossref_primary_10_1016_j_eswa_2019_04_010 crossref_primary_10_3389_fnins_2021_679847 crossref_primary_10_1049_iet_rsn_2015_0007 crossref_primary_10_1109_TIP_2019_2914376 crossref_primary_10_1109_TNNLS_2018_2796133 crossref_primary_10_1109_TGRS_2022_3211209 crossref_primary_10_1109_TNNLS_2022_3172588 crossref_primary_10_1109_TIP_2017_2771499 crossref_primary_10_3390_s21082602 crossref_primary_10_1109_TII_2022_3168300 crossref_primary_10_1109_TCSVT_2023_3246475 crossref_primary_10_1016_j_neucom_2019_02_001 crossref_primary_10_1109_TNNLS_2024_3453374 crossref_primary_10_1016_j_engappai_2022_105513 crossref_primary_10_1109_TIP_2016_2530313 crossref_primary_10_1016_j_sigpro_2020_107697 crossref_primary_10_1109_LSP_2019_2959225 crossref_primary_10_1016_j_isprsjprs_2019_12_002 crossref_primary_10_1007_s10044_020_00881_w crossref_primary_10_1177_14759217211029016 crossref_primary_10_1109_TKDE_2020_2969354 crossref_primary_10_1109_TGRS_2017_2686444 crossref_primary_10_1016_j_cmpb_2019_105038 crossref_primary_10_1016_j_jvcir_2020_102764 crossref_primary_10_1109_ACCESS_2020_3001202 crossref_primary_10_1016_j_jvcir_2020_102763 crossref_primary_10_1109_TIP_2017_2729885 crossref_primary_10_1016_j_jvcir_2015_09_009 crossref_primary_10_1007_s13369_020_04788_w crossref_primary_10_1109_TSG_2018_2815763 crossref_primary_10_1109_TNNLS_2015_2436951 crossref_primary_10_1016_j_image_2018_01_001 crossref_primary_10_1109_TCSVT_2023_3249796 crossref_primary_10_1109_JSEN_2024_3365706 crossref_primary_10_1109_TIM_2018_2880939 crossref_primary_10_1016_j_neucom_2020_05_082 crossref_primary_10_1109_TNNLS_2017_2648880 crossref_primary_10_1007_s11042_022_12395_0 crossref_primary_10_1016_j_ins_2020_08_097 crossref_primary_10_1016_j_sigpro_2021_107988 crossref_primary_10_1109_LGRS_2016_2528883 crossref_primary_10_3389_fnagi_2022_848511 crossref_primary_10_1109_ACCESS_2020_3030163 crossref_primary_10_1007_s11269_018_2179_y crossref_primary_10_1109_JSEN_2019_2901050 crossref_primary_10_1007_s00500_017_2568_9 crossref_primary_10_1016_j_patrec_2018_09_008 crossref_primary_10_1080_02564602_2017_1283251 crossref_primary_10_1109_LSP_2018_2890765 crossref_primary_10_1016_j_patcog_2018_03_021 crossref_primary_10_1016_j_knosys_2020_106343 crossref_primary_10_1109_TGRS_2020_2976203 crossref_primary_10_1109_TIFS_2017_2765524 crossref_primary_10_1016_j_bspc_2020_102062 crossref_primary_10_1016_j_neucom_2015_07_116 crossref_primary_10_1016_j_engappai_2016_05_005 crossref_primary_10_1016_j_media_2016_10_007 crossref_primary_10_1109_TGRS_2015_2392755 crossref_primary_10_1007_s10489_023_04709_y crossref_primary_10_1109_ACCESS_2018_2862159 crossref_primary_10_1016_j_dsp_2019_04_006 crossref_primary_10_1016_j_neucom_2015_08_128 crossref_primary_10_1109_TII_2022_3205638 crossref_primary_10_1155_2018_1435203 crossref_primary_10_3390_app112210635 crossref_primary_10_1109_TASE_2020_2984334 crossref_primary_10_1016_j_knosys_2018_09_014 crossref_primary_10_1016_j_compeleceng_2019_03_009 crossref_primary_10_1109_TSIPN_2025_3588087 crossref_primary_10_1016_j_jvcir_2020_102868 crossref_primary_10_1155_2021_9340147 crossref_primary_10_1007_s11831_019_09383_3 crossref_primary_10_1109_JSTSP_2018_2879743 crossref_primary_10_1109_TMM_2019_2916093 crossref_primary_10_1587_transinf_2018DAL0002 crossref_primary_10_1007_s11042_017_4893_5 crossref_primary_10_1088_1361_6501_abf619 crossref_primary_10_1109_TCBB_2020_3006699 crossref_primary_10_1109_TPAMI_2017_2757923 crossref_primary_10_1007_s11042_022_12417_x crossref_primary_10_1016_j_ins_2021_10_013 crossref_primary_10_1016_j_jmapro_2023_08_040 crossref_primary_10_1109_LGRS_2016_2608578 crossref_primary_10_1002_spe_3089 crossref_primary_10_1016_j_imavis_2022_104506 crossref_primary_10_1007_s00371_023_03179_0 crossref_primary_10_1134_S1054661818010133 crossref_primary_10_1007_s11042_023_14659_9 crossref_primary_10_1109_JSTARS_2017_2657600 crossref_primary_10_1109_TMM_2017_2685240 crossref_primary_10_1109_ACCESS_2022_3194651 crossref_primary_10_1016_j_bspc_2019_101559 crossref_primary_10_1186_s13636_018_0132_x crossref_primary_10_1016_j_knosys_2020_106124 crossref_primary_10_1016_j_patcog_2017_01_033 crossref_primary_10_1016_j_patrec_2019_12_020 crossref_primary_10_3390_app14104294 crossref_primary_10_1007_s10115_022_01655_y crossref_primary_10_1007_s11548_016_1360_0 crossref_primary_10_1016_j_sigpro_2024_109485 crossref_primary_10_3389_fnagi_2022_916020 crossref_primary_10_1109_TIP_2020_3004246 crossref_primary_10_1109_JSTARS_2020_2987827 crossref_primary_10_1007_s10489_023_04708_z crossref_primary_10_1109_TGRS_2020_3013968 crossref_primary_10_1109_TIM_2024_3406796 crossref_primary_10_1016_j_patrec_2018_04_016 crossref_primary_10_1109_ACCESS_2020_3039625 crossref_primary_10_1109_LGRS_2024_3355424 crossref_primary_10_1007_s11042_017_5269_6 crossref_primary_10_1007_s12652_020_02620_9 crossref_primary_10_1016_j_patcog_2017_02_009 crossref_primary_10_1016_j_ins_2017_09_011 crossref_primary_10_1109_JSTSP_2020_2992430 crossref_primary_10_1016_j_jnlest_2021_100096 crossref_primary_10_1109_ACCESS_2020_2989452 crossref_primary_10_1080_07038992_2021_1937087 crossref_primary_10_1109_TFUZZ_2019_2902111 crossref_primary_10_1016_j_sigpro_2024_109398 crossref_primary_10_1109_JSEN_2019_2915379 crossref_primary_10_1109_TNNLS_2018_2861839 crossref_primary_10_1007_s11063_019_10106_9 crossref_primary_10_1016_j_cmpb_2017_07_003 crossref_primary_10_1016_j_ifacol_2017_08_308 crossref_primary_10_1109_ACCESS_2020_2981617 crossref_primary_10_1007_s10044_020_00939_9 crossref_primary_10_1007_s11760_023_02666_0 crossref_primary_10_1016_j_ymssp_2024_111777 crossref_primary_10_1109_TIM_2022_3187735 crossref_primary_10_1109_TMM_2018_2867720 crossref_primary_10_1109_TNNLS_2019_2954545 crossref_primary_10_1016_j_renene_2023_119373 crossref_primary_10_1049_cit2_12115 crossref_primary_10_1007_s10489_022_04336_z crossref_primary_10_1016_j_neucom_2016_09_037 crossref_primary_10_1016_j_neucom_2017_01_071 crossref_primary_10_1007_s10115_019_01400_y crossref_primary_10_1109_TII_2022_3161640 crossref_primary_10_1109_TIM_2024_3436126 crossref_primary_10_1109_TNNLS_2015_2504538 crossref_primary_10_1016_j_patcog_2023_109656 crossref_primary_10_1177_14759217241263278 crossref_primary_10_1007_s13369_018_3132_3 crossref_primary_10_1190_geo2019_0710_1 crossref_primary_10_1016_j_patcog_2017_03_034 crossref_primary_10_1109_TCSS_2022_3153660 crossref_primary_10_1109_TIE_2017_2748034 crossref_primary_10_3389_fnins_2019_01248 crossref_primary_10_1007_s10489_019_01612_3 crossref_primary_10_1109_TASE_2025_3582733 crossref_primary_10_1177_10775463221113733 crossref_primary_10_1016_j_patcog_2016_01_023 crossref_primary_10_1109_TIM_2021_3126390 crossref_primary_10_1016_j_patcog_2016_01_028 crossref_primary_10_1109_TNNLS_2017_2772264 crossref_primary_10_1109_TMM_2017_2685179 crossref_primary_10_1016_j_patcog_2016_01_026 crossref_primary_10_1109_ACCESS_2016_2611583 crossref_primary_10_1016_j_neucom_2015_07_032 crossref_primary_10_1007_s11042_021_11244_w crossref_primary_10_1016_j_neucom_2015_09_091 crossref_primary_10_1016_j_neucom_2022_08_069 crossref_primary_10_1109_ACCESS_2024_3378598 crossref_primary_10_1016_j_neucom_2015_06_117 crossref_primary_10_1109_ACCESS_2020_3036250 crossref_primary_10_1016_j_bspc_2024_106954 crossref_primary_10_1016_j_media_2020_101826 crossref_primary_10_1016_j_dsp_2023_104029 crossref_primary_10_1038_s41598_018_27364_7 crossref_primary_10_1109_TSMC_2016_2637279 crossref_primary_10_1016_j_neucom_2025_131408 crossref_primary_10_1016_j_ins_2018_01_031 crossref_primary_10_1109_ACCESS_2017_2776126 crossref_primary_10_1007_s11760_020_01700_9 crossref_primary_10_1117_1_JMI_9_5_052403 crossref_primary_10_3390_pr10091850 crossref_primary_10_1016_j_neucom_2015_07_124 crossref_primary_10_1016_j_ins_2024_120862 crossref_primary_10_1007_s13042_020_01188_2 crossref_primary_10_1109_TIP_2016_2635444 crossref_primary_10_1177_14759217231220220 crossref_primary_10_1007_s10044_018_0704_5 crossref_primary_10_1155_2019_6957415 crossref_primary_10_1016_j_eswa_2024_123225 crossref_primary_10_1364_AO_57_007287 crossref_primary_10_3390_rs11222676 crossref_primary_10_26636_jtit_2018_121317 crossref_primary_10_1016_j_patcog_2018_12_023 crossref_primary_10_1109_ACCESS_2019_2930288 crossref_primary_10_1007_s11760_019_01429_0 crossref_primary_10_1109_TGRS_2022_3151335 crossref_primary_10_1016_j_compbiomed_2023_107114 crossref_primary_10_1016_j_patcog_2021_108346 crossref_primary_10_1364_AO_55_001381 crossref_primary_10_1109_ACCESS_2018_2791578 crossref_primary_10_1587_transinf_2019EDP7296 crossref_primary_10_1109_TBDATA_2021_3110862 crossref_primary_10_1016_j_neunet_2019_07_003 crossref_primary_10_1016_j_neucom_2016_08_146 crossref_primary_10_1016_j_chemolab_2023_104817 crossref_primary_10_1109_TIM_2020_2998875 crossref_primary_10_1109_TNNLS_2023_3343937 crossref_primary_10_1109_TCYB_2025_3550175 crossref_primary_10_1016_j_ins_2016_09_059 crossref_primary_10_1109_TPAMI_2017_2663423 crossref_primary_10_1007_s00521_018_3529_7 crossref_primary_10_1109_TGRS_2015_2451002 crossref_primary_10_1007_s11042_018_6417_3 crossref_primary_10_1016_j_renene_2021_04_019 crossref_primary_10_1109_TMM_2024_3521720 crossref_primary_10_1016_j_knosys_2025_113853 crossref_primary_10_1109_ACCESS_2015_2505243 crossref_primary_10_1109_TNNLS_2021_3089566 crossref_primary_10_1016_j_ins_2024_120444 crossref_primary_10_1016_j_media_2022_102456 crossref_primary_10_3389_fnins_2021_687496 crossref_primary_10_3390_s18092940 crossref_primary_10_1109_TIP_2017_2718187 crossref_primary_10_1016_j_patrec_2015_12_003 crossref_primary_10_1109_TCSVT_2019_2918852 crossref_primary_10_1007_s11263_016_0899_0 crossref_primary_10_1016_j_ins_2021_06_008 crossref_primary_10_1016_j_neunet_2023_05_022 crossref_primary_10_1109_ACCESS_2019_2945586 crossref_primary_10_1007_s00371_021_02160_z crossref_primary_10_1109_TNNLS_2021_3057439 crossref_primary_10_1137_19M1285469 crossref_primary_10_1109_TGRS_2018_2832228 crossref_primary_10_1109_TIP_2016_2623487 crossref_primary_10_1016_j_neunet_2024_106628 crossref_primary_10_1016_j_patcog_2021_108007 crossref_primary_10_1016_j_jmapro_2025_04_053 crossref_primary_10_1016_j_neucom_2024_129322 crossref_primary_10_1109_TPAMI_2019_2921031 crossref_primary_10_3390_aerospace8050134 crossref_primary_10_1109_JSTARS_2023_3259469 crossref_primary_10_1109_TIP_2015_2416634 crossref_primary_10_1007_s11760_019_01501_9 crossref_primary_10_1109_TII_2020_3016317 crossref_primary_10_1016_j_neucom_2019_12_071 crossref_primary_10_1016_j_neucom_2018_02_021 crossref_primary_10_1109_TNNLS_2018_2890787 crossref_primary_10_1007_s10044_016_0547_x crossref_primary_10_1109_TSP_2016_2634546 crossref_primary_10_1109_TSMC_2022_3170443 crossref_primary_10_1007_s11760_020_01755_8 crossref_primary_10_4018_IJDA_297521 crossref_primary_10_1109_TSP_2018_2846226 crossref_primary_10_1016_j_eswa_2020_113500 crossref_primary_10_1109_TNNLS_2023_3256390 crossref_primary_10_3390_e23091164 crossref_primary_10_1016_j_patrec_2015_05_005 crossref_primary_10_1016_j_chemolab_2023_104919 crossref_primary_10_1109_TCYB_2017_2751741 crossref_primary_10_1109_ACCESS_2022_3159701 crossref_primary_10_1109_TIP_2017_2700761 crossref_primary_10_1109_ACCESS_2019_2949917 crossref_primary_10_1007_s11042_017_4851_2 crossref_primary_10_1007_s10489_021_02258_w crossref_primary_10_1109_TPAMI_2016_2545661 crossref_primary_10_1016_j_cja_2021_04_012 crossref_primary_10_1016_j_neucom_2016_01_092 crossref_primary_10_1007_s11042_022_14295_9 crossref_primary_10_1016_j_image_2019_05_009 crossref_primary_10_1109_TMI_2015_2493530 crossref_primary_10_1016_j_sigpro_2018_06_005 crossref_primary_10_1109_TIP_2020_2965289 crossref_primary_10_1109_TNNLS_2016_2572204 crossref_primary_10_1109_TKDE_2019_2940576 crossref_primary_10_1364_AO_58_008471 crossref_primary_10_1007_s11042_018_7083_1 crossref_primary_10_1016_j_neunet_2019_07_013 crossref_primary_10_1016_j_patcog_2018_05_024 crossref_primary_10_1016_j_sigpro_2016_03_013 crossref_primary_10_1371_journal_pone_0199141 crossref_primary_10_1109_TCSVT_2021_3087486 crossref_primary_10_3390_electronics11193155 crossref_primary_10_1155_2020_8838454 crossref_primary_10_1109_TETCI_2024_3449924 crossref_primary_10_1016_j_jfranklin_2020_01_007 crossref_primary_10_1016_j_jvcir_2016_11_002 crossref_primary_10_1109_JSTSP_2016_2555241 crossref_primary_10_3390_electronics11060847 crossref_primary_10_1016_j_ipm_2021_102534 crossref_primary_10_1016_j_neucom_2017_01_041 crossref_primary_10_1109_TCSVT_2022_3197746 crossref_primary_10_1109_LSP_2018_2798406 |
| Cites_doi | 10.1109/TPAMI.2008.79 10.1109/TPAMI.2011.156 10.1145/1273496.1273592 10.1109/CVPR.2010.5539958 10.1017/CBO9780511569920.005 10.1109/CVPR.2012.6247806 10.1109/CVPR.2009.5206757 10.1109/TPAMI.2008.138 10.1109/cvpr.2008.4587647 10.7551/mitpress/7503.003.0081 10.1109/TSP.2006.881199 10.1109/ICCV.2011.6126346 10.1109/CVPR.2008.4587598 10.1109/ICCV.2011.6126286 10.18772/10539/20690 10.1007/978-3-540-88682-2_15 10.1007/978-3-540-88690-7_52 10.1109/CVPR.2011.5995624 10.1109/CVPR.2010.5539963 10.1109/CVPR.2010.5539989 10.1109/TIT.2007.909108 10.1109/CVPR.2009.5206545 10.7551/mitpress/7503.003.0105 10.1109/CVPR.2008.4587408 10.1109/TIT.2005.858979 10.1109/CVPR.2008.4587723 10.1109/34.927464 10.1109/ICCV.2009.5459201 10.1007/978-3-540-88690-7_4 10.1109/CVPR.2006.68 10.1109/ICCV.2011.6126307 10.1137/S0895479897326432 10.1109/CVPR.2010.5539881 10.1109/CVPR.2010.5539883 10.1109/CVPR.2008.4587652 10.1109/cvpr.2011.5995496 10.1109/ICCV.2005.171 10.1109/TPAMI.2007.70755 10.1109/cvpr.2010.5539943 10.1109/CVPR.2006.301 10.1109/JPROC.2010.2044470 10.1109/cvpr.2008.4587504 10.1109/CVPR.2008.4587727 10.1109/cvpr.2004.383 10.1109/CVPR.2010.5539964 10.1109/CVPR.2012.6248082 10.1109/CVPR.2008.4587841 10.1007/978-3-642-15561-1_12 10.1109/CVPR.2012.6247940 10.1109/CVPR.2012.6248091 10.1109/TIP.2006.881969 10.7551/mitpress/7503.003.0147 10.1109/ISCAS.1999.779928 10.1109/CVPR.2010.5540018 10.1145/1553374.1553533 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TPAMI.2013.88 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2664 |
| ExternalDocumentID | 24051726 27896023 10_1109_TPAMI_2013_88 6516503 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c409t-197ef021bbcf5a71d59a222c891558712075c0d26805280cbfede11d6d5bd8093 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1049 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324830900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sun Nov 09 14:07:04 EST 2025 Mon Jul 21 05:48:26 EDT 2025 Wed Apr 02 07:35:46 EDT 2025 Sat Nov 29 08:10:34 EST 2025 Tue Nov 18 22:12:50 EST 2025 Tue Aug 26 16:41:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Computer vision Discriminant analysis Dictionaries Form defect Pattern recognition Object recognition incremental dictionary learning label consistent K-SVD Experimental result Image matching Supervised learning Scene analysis Optimal solution Sparse representation Discriminative dictionary learning Objective function discriminative sparse-code error Learning algorithm Artificial intelligence Multiple classification Singular value decomposition |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-197ef021bbcf5a71d59a222c891558712075c0d26805280cbfede11d6d5bd8093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24051726 |
| PQID | 1434745547 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pascalfrancis_primary_27896023 crossref_citationtrail_10_1109_TPAMI_2013_88 proquest_miscellaneous_1434745547 pubmed_primary_24051726 ieee_primary_6516503 crossref_primary_10_1109_TPAMI_2013_88 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-01 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Los Alamitos, CA |
| PublicationPlace_xml | – name: Los Alamitos, CA – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2013 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 Slonim (ref34) ref51 ref50 ref46 ref45 Krause (ref35) ref48 ref47 ref42 ref44 ref43 Griffin (ref53) ref49 ref8 ref9 ref4 ref6 ref5 ref40 Lian (ref41) ref37 ref36 ref31 Bradley (ref7) ref30 ref33 ref32 Mairal (ref3); 11 ref2 ref1 ref39 Karol (ref13) Jenatton (ref18) ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 Mairal (ref38) ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref6 doi: 10.1109/TPAMI.2008.79 – ident: ref9 doi: 10.1109/TPAMI.2011.156 – ident: ref19 doi: 10.1145/1273496.1273592 – ident: ref53 article-title: Caltech-256 Object Category Data Set – ident: ref37 doi: 10.1109/CVPR.2010.5539958 – ident: ref47 doi: 10.1017/CBO9780511569920.005 – ident: ref49 doi: 10.1109/CVPR.2012.6247806 – ident: ref5 doi: 10.1109/CVPR.2009.5206757 – ident: ref31 doi: 10.1109/TPAMI.2008.138 – ident: ref4 doi: 10.1109/cvpr.2008.4587647 – ident: ref40 doi: 10.7551/mitpress/7503.003.0081 – ident: ref11 doi: 10.1109/TSP.2006.881199 – ident: ref28 doi: 10.1109/ICCV.2011.6126346 – ident: ref56 doi: 10.1109/CVPR.2008.4587598 – ident: ref21 doi: 10.1109/ICCV.2011.6126286 – ident: ref51 doi: 10.18772/10539/20690 – ident: ref33 doi: 10.1007/978-3-540-88682-2_15 – ident: ref58 doi: 10.1007/978-3-540-88690-7_52 – ident: ref61 doi: 10.1109/CVPR.2011.5995624 – ident: ref39 doi: 10.1109/CVPR.2010.5539963 – volume-title: Proc. Conf. Neural Information Processing Systems ident: ref34 article-title: Agglomerative Information Bottleneck – ident: ref16 doi: 10.1109/CVPR.2010.5539989 – ident: ref44 doi: 10.1109/TIT.2007.909108 – ident: ref20 doi: 10.1109/CVPR.2009.5206545 – volume-title: Proc. Int’l Conf. Machine Learning ident: ref13 article-title: Learning Fast Approximations of Sparse Coding – ident: ref10 doi: 10.7551/mitpress/7503.003.0105 – ident: ref15 doi: 10.1109/CVPR.2008.4587408 – ident: ref46 doi: 10.1109/TIT.2005.858979 – ident: ref30 doi: 10.1109/CVPR.2008.4587723 – volume: 11 start-page: 19 volume-title: J. Machine Learning Research ident: ref3 article-title: Online Learning for Matrix Factorization and Sparse Coding – ident: ref50 doi: 10.1109/34.927464 – ident: ref60 doi: 10.1109/ICCV.2009.5459201 – ident: ref24 doi: 10.1007/978-3-540-88690-7_4 – ident: ref48 doi: 10.1109/CVPR.2006.68 – ident: ref32 doi: 10.1109/ICCV.2011.6126307 – ident: ref45 doi: 10.1137/S0895479897326432 – ident: ref62 doi: 10.1109/CVPR.2010.5539881 – volume-title: Proc. IEEE Conf. Computer Vision and Pattern Recognition ident: ref41 article-title: Probabilistic Models for Supervised Dictinary Learning – ident: ref64 doi: 10.1109/CVPR.2010.5539883 – ident: ref14 doi: 10.1109/CVPR.2008.4587652 – ident: ref63 doi: 10.1109/cvpr.2011.5995496 – ident: ref29 doi: 10.1109/ICCV.2005.171 – volume-title: Proc. Conf. Neural Information Processing Systems ident: ref7 article-title: Differential Sparse Coding – ident: ref27 doi: 10.1109/TPAMI.2007.70755 – ident: ref59 doi: 10.1109/cvpr.2010.5539943 – ident: ref55 doi: 10.1109/CVPR.2006.301 – ident: ref43 doi: 10.1109/JPROC.2010.2044470 – ident: ref23 doi: 10.1109/cvpr.2008.4587504 – ident: ref54 doi: 10.1109/CVPR.2008.4587727 – ident: ref52 doi: 10.1109/cvpr.2004.383 – ident: ref25 doi: 10.1109/CVPR.2010.5539964 – ident: ref36 doi: 10.1109/CVPR.2012.6248082 – ident: ref57 doi: 10.1109/CVPR.2008.4587841 – volume-title: Proc. Conf. Neural Information Processing Systems ident: ref38 article-title: Supervised Dictionary Learning – ident: ref42 doi: 10.1007/978-3-642-15561-1_12 – ident: ref8 doi: 10.1109/CVPR.2012.6247940 – volume-title: Proc. Int’l Conf. Machine Learning ident: ref18 article-title: Proximal Methods for Sparse Hierarchical Dictionary Learning – ident: ref26 doi: 10.1109/CVPR.2012.6248091 – ident: ref1 doi: 10.1109/TIP.2006.881969 – volume-title: Proc. Int’l Conf. Machine Learning ident: ref35 article-title: Submodular Dictionary Selection for Sparse Representation – ident: ref2 doi: 10.7551/mitpress/7503.003.0147 – ident: ref17 doi: 10.1109/ISCAS.1999.779928 – ident: ref12 doi: 10.1109/CVPR.2010.5540018 – ident: ref22 doi: 10.1145/1553374.1553533 |
| SSID | ssj0014503 |
| Score | 2.6393027 |
| Snippet | A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2651 |
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Artificial intelligence Biometry - methods Classification algorithms Coding, codes Computer science; control theory; systems Dictionaries Discriminant Analysis Discriminative dictionary learning discriminative sparse-code error Exact sciences and technology Face - anatomy & histology Humans Image Interpretation, Computer-Assisted - methods Image reconstruction incremental dictionary learning Information, signal and communications theory label consistent K-SVD Linear programming Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Signal and communications theory supervised learning Support Vector Machine Telecommunications and information theory Testing Training |
| Title | Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition |
| URI | https://ieeexplore.ieee.org/document/6516503 https://www.ncbi.nlm.nih.gov/pubmed/24051726 https://www.proquest.com/docview/1434745547 |
| Volume | 35 |
| WOSCitedRecordID | wos000324830900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7Bqgc4sC2vppSVK1WcCGw2duxwW0FRERStykN7ixzbqVZaZdE-KvXfd8bJhkWCA7c8HMXyjONv4pnvA_guLS5qnChnYydDrqIo1Kl0YaIwwI2lElwbLzYhb2_VcJgO1uC4qYVxzvnkM3dCh34v307Mgn6VnSYiQkARr8O6lElVq9XsGHDhVZARweAMxzDimU_z9H7Q_3VFWVwxugWx_3IipiI6hZWlyGurUGaknuHgFJWqxduw0y8_l-33dfwjbNUwk_Urv_gEa67chvZSwoHVM3obNlf4CHfg5kbnbsy8iCdav5yz6_Du8eKM1Sysf5hmFyP60FACDX0o8dQXRujpP4bwl_1e5iNNyl14uPxxf_4zrOUWQoNB3jyM0EYFLvl5bgqhZWRFqhE9GEUU8hhX9RBdmK7tJaSCoLomL5x1UWQTK3Krumm8B61yUrrPwCxPc5ELFxcm4a4nlM4pLuwZ7fC6FQEcL0c-MzUXOUlijDMfk3TTzNssI5tlSgVw1DR_qkg43mq4Q4PfNKrHPYDOC7M296kMOEHUEsC3pZ0znF60Z6JLN1nMMDKKueSIuWQA-5UDPD9d-9GX1996ABvUrapw8Su05tOFO4QP5u98NJt20IeHquN9-D9cyupy |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-VggQ80NHBCLBiJMTTsjWJnTi8TYypVT9UbQXtLXJsB02a0qkfSPz33DlpViT6wFs-HMXynePfxXe_H8CnxOCixolyNrKJz2UQ-CpNrB9LDHCjRAqutBObSKZTeXOTzlpw0tTCWGtd8pk9pUO3l28WekO_ys5iESCgiB7BY1LOSqtqrWbPgAung4wYBuc4BhIPjJpn89n5ZEh5XBE6BvH_cqKmIkKFncXIqatQbqRa4fAUla7FfuDpFqDLzv91_QBe1ECTnVee8RJatuxCZyviwOo53YXnO4yEhzAeq9zeMSfjifYv12zkX_-4-MJqHtafTLGLW_rUUAoNfSrx1JVGqOVvhgCYXW0zkhblK_h--W3-deDXggu-xjBv7QdopQIX_TzXhVBJYESqED9oSSTyGFmFiC9034Qx6SDIvs4La2wQmNiI3Mh-Gr2Gdrko7Rtghqe5yIWNCh1zGwqpcooMQ60sXjfCg5PtyGe6ZiMnUYy7zEUl_TRzNsvIZpmUHnxumt9XNBz7Gh7S4DeN6nH3oPeXWZv7VAgcI27x4OPWzhlOMNo1UaVdbFYYG0U84Yi6Eg-OKgd4eLr2o7f_fusHeDqYT8bZeDgdvYNn1MWqjPE9tNfLjT2GJ_rX-na17DlP_gNCs-zZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Consistent+K-SVD%3A+Learning+a+Discriminative+Dictionary+for+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhuolin+Jiang&rft.au=Zhe+Lin&rft.au=Davis%2C+L.+S.&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=35&rft.issue=11&rft.spage=2651&rft.epage=2664&rft_id=info:doi/10.1109%2FTPAMI.2013.88&rft_id=info%3Apmid%2F24051726&rft.externalDocID=6516503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |