Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition

A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 35; no. 11; pp. 2651 - 2664
Main Authors: Zhuolin Jiang, Zhe Lin, Davis, L. S.
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01.11.2013
IEEE Computer Society
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
AbstractList A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.
Author Davis, L. S.
Zhuolin Jiang
Zhe Lin
Author_xml – sequence: 1
  surname: Zhuolin Jiang
  fullname: Zhuolin Jiang
  email: zhuolin@umiacs.umd.edu
  organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
– sequence: 2
  surname: Zhe Lin
  fullname: Zhe Lin
  email: zlin@adobe.com
  organization: Adv. Technol. Labs., Adobe, San Jose, CA, USA
– sequence: 3
  givenname: L. S.
  surname: Davis
  fullname: Davis, L. S.
  email: lsd@umiacs.umd.edu
  organization: Inst. for Adv. Comput. Studies, Univ. of Maryland, College Park, MD, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27896023$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24051726$$D View this record in MEDLINE/PubMed
BookMark eNp10U1r3DAQBmBREpLNx7GnQvGlkIs3M7JlS72FzSdxaUi2vRpZHgcVr5xK3kD-fbTZzRYKOQmJZ6TRvAdsxw2OGPuMMEUEdTq_O_txM-WA2VTKT2zCsYBUccV32ASw4KmUXO6zgxD-AGAuINtj-zwHgSUvJqyqdEN9MhtcsGEkNya36cPv8-9JRdo76x4TnZzbYLxdWKdH-0xxa0Y7OO1fkm7wyT2Z4dHZ1dER2-10H-h4sx6yX5cX89l1Wv28upmdVanJQY0pqpI64Ng0phO6xFYozTk3UqEQskQOpTDQ8kKC4BJM01FLiG3RiqaVoLJDdrK-98kPf5cUxnoRW6S-146GZagxz_IyFyIvI_26octmQW39FD8SO6_fJxDBtw3Qwei-89oZG_65UqoCeBZdunbGDyF46rYEoV4lUb8lUa-SqKWMPvvPGzvq1ZRGr23_YdWXdZUlou0LhcAiBpe9AiyRknE
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_knosys_2022_109306
crossref_primary_10_1109_TNNLS_2022_3165217
crossref_primary_10_1016_j_imavis_2016_03_010
crossref_primary_10_1007_s13042_015_0413_y
crossref_primary_10_1109_TNNLS_2017_2712801
crossref_primary_10_1016_j_inffus_2014_10_004
crossref_primary_10_1109_TBME_2017_2783305
crossref_primary_10_1109_ACCESS_2020_3008841
crossref_primary_10_1109_LGRS_2021_3129773
crossref_primary_10_1109_TNNLS_2020_3029033
crossref_primary_10_1016_j_neucom_2020_01_018
crossref_primary_10_1016_j_neucom_2016_01_076
crossref_primary_10_1177_0278364917704707
crossref_primary_10_1109_TCYB_2016_2581861
crossref_primary_10_1016_j_measurement_2021_110017
crossref_primary_10_1109_TPAMI_2016_2564409
crossref_primary_10_1016_j_neucom_2021_12_063
crossref_primary_10_1007_s11042_020_08918_2
crossref_primary_10_1016_j_neunet_2018_08_003
crossref_primary_10_1109_LGRS_2019_2899121
crossref_primary_10_1109_TGRS_2015_2399978
crossref_primary_10_1016_j_neucom_2019_05_004
crossref_primary_10_1109_TCSVT_2018_2890511
crossref_primary_10_1109_TSP_2021_3062988
crossref_primary_10_1016_j_sigpro_2016_10_022
crossref_primary_10_1109_TCYB_2022_3178878
crossref_primary_10_1109_JSEN_2021_3139844
crossref_primary_10_1109_TGRS_2023_3274296
crossref_primary_10_1016_j_knosys_2025_113765
crossref_primary_10_3233_JIFS_231290
crossref_primary_10_1016_j_isprsjprs_2018_07_004
crossref_primary_10_1155_2022_8479040
crossref_primary_10_1109_ACCESS_2017_2786672
crossref_primary_10_1016_j_patcog_2015_08_012
crossref_primary_10_1109_MIS_2016_30
crossref_primary_10_1016_j_patcog_2022_108590
crossref_primary_10_1109_TPAMI_2019_2917685
crossref_primary_10_1109_LGRS_2019_2949721
crossref_primary_10_1177_1729881417714211
crossref_primary_10_1109_TGRS_2017_2761893
crossref_primary_10_3390_rs8080683
crossref_primary_10_1007_s10462_016_9537_z
crossref_primary_10_1016_j_dsp_2019_08_003
crossref_primary_10_1109_ACCESS_2021_3078232
crossref_primary_10_1117_1_JEI_31_4_043048
crossref_primary_10_1109_TCSVT_2017_2746684
crossref_primary_10_1016_j_knosys_2016_09_018
crossref_primary_10_1007_s00422_013_0579_x
crossref_primary_10_1109_TGRS_2020_3005623
crossref_primary_10_1109_TCSVT_2019_2902672
crossref_primary_10_1016_j_neucom_2018_12_024
crossref_primary_10_1016_j_bspc_2023_105856
crossref_primary_10_1186_s12864_020_07079_8
crossref_primary_10_1109_TCSVT_2018_2862151
crossref_primary_10_1109_TIP_2017_2686014
crossref_primary_10_1016_j_ins_2022_08_081
crossref_primary_10_1016_j_eswa_2016_10_019
crossref_primary_10_1109_TAFFC_2018_2854166
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1038_s43586_024_00346_y
crossref_primary_10_1007_s00521_019_04590_2
crossref_primary_10_1016_j_cam_2023_115685
crossref_primary_10_1109_TCST_2022_3210407
crossref_primary_10_1016_j_jvcir_2016_08_002
crossref_primary_10_1016_j_neucom_2017_10_019
crossref_primary_10_1049_iet_ipr_2019_0683
crossref_primary_10_1016_j_knosys_2020_106716
crossref_primary_10_1109_TCSVT_2016_2515738
crossref_primary_10_1109_TIP_2015_2417502
crossref_primary_10_1049_iet_cvi_2018_5127
crossref_primary_10_1109_TIP_2016_2523340
crossref_primary_10_1109_ACCESS_2020_3038695
crossref_primary_10_1109_TIP_2017_2745684
crossref_primary_10_1109_JSTSP_2018_2838549
crossref_primary_10_1109_LGRS_2020_3008212
crossref_primary_10_1109_TGRS_2022_3148738
crossref_primary_10_1016_j_imavis_2019_02_012
crossref_primary_10_1109_TGRS_2020_2983420
crossref_primary_10_1109_JIOT_2020_3031390
crossref_primary_10_1007_s11265_016_1105_x
crossref_primary_10_1007_s13042_020_01067_w
crossref_primary_10_1109_ACCESS_2019_2912932
crossref_primary_10_1109_TNNLS_2020_2979748
crossref_primary_10_1109_TNNLS_2020_2997289
crossref_primary_10_1109_LSP_2021_3086396
crossref_primary_10_1109_ACCESS_2023_3347339
crossref_primary_10_1117_1_JEI_31_3_033028
crossref_primary_10_1109_JSEN_2025_3553757
crossref_primary_10_1109_TIP_2020_3001424
crossref_primary_10_1007_s11227_024_06663_z
crossref_primary_10_3390_jimaging4050068
crossref_primary_10_1109_ACCESS_2020_2978875
crossref_primary_10_3390_app14010306
crossref_primary_10_1016_j_jvcir_2016_07_015
crossref_primary_10_1016_j_patcog_2025_111775
crossref_primary_10_1016_j_neucom_2016_05_101
crossref_primary_10_1016_j_neucom_2020_01_101
crossref_primary_10_1109_TBME_2018_2812602
crossref_primary_10_3389_fncom_2017_00117
crossref_primary_10_1016_j_cviu_2015_01_006
crossref_primary_10_1109_TCSVT_2019_2923007
crossref_primary_10_1016_j_infrared_2015_05_014
crossref_primary_10_1155_2014_189317
crossref_primary_10_1109_ACCESS_2019_2953366
crossref_primary_10_1109_TIP_2017_2651396
crossref_primary_10_1007_s11042_017_5542_8
crossref_primary_10_1016_j_jvcir_2022_103728
crossref_primary_10_1109_JSTSP_2015_2423260
crossref_primary_10_1016_j_imavis_2016_02_003
crossref_primary_10_1016_j_jvcir_2021_103228
crossref_primary_10_1007_s11760_018_1313_x
crossref_primary_10_1109_TMM_2017_2716835
crossref_primary_10_1109_ACCESS_2018_2868133
crossref_primary_10_1016_j_neunet_2018_07_016
crossref_primary_10_1007_s00500_016_2131_0
crossref_primary_10_1016_j_dsp_2016_10_017
crossref_primary_10_1016_j_neucom_2017_07_003
crossref_primary_10_1109_ACCESS_2020_2968817
crossref_primary_10_1016_j_engappai_2018_04_006
crossref_primary_10_1016_j_neucom_2018_05_036
crossref_primary_10_1016_j_sigpro_2021_108167
crossref_primary_10_1109_TIP_2021_3104179
crossref_primary_10_1109_JSEN_2021_3049953
crossref_primary_10_1109_JIOT_2019_2911669
crossref_primary_10_1016_j_neucom_2020_07_148
crossref_primary_10_1016_j_patcog_2017_06_038
crossref_primary_10_1016_j_ress_2025_110905
crossref_primary_10_3389_fpsyg_2021_721266
crossref_primary_10_3390_s21041442
crossref_primary_10_1109_TNNLS_2017_2740224
crossref_primary_10_1109_TSMC_2016_2531675
crossref_primary_10_1049_iet_syb_2017_0013
crossref_primary_10_1109_TCYB_2021_3084931
crossref_primary_10_1109_TNNLS_2017_2742528
crossref_primary_10_3390_app15189943
crossref_primary_10_1016_j_dsp_2017_06_023
crossref_primary_10_1016_j_neucom_2019_06_011
crossref_primary_10_1145_3458927
crossref_primary_10_1007_s10044_021_01046_z
crossref_primary_10_1016_j_jvcir_2018_06_014
crossref_primary_10_1016_j_knosys_2021_107195
crossref_primary_10_1016_j_neunet_2019_11_015
crossref_primary_10_1007_s00371_022_02441_1
crossref_primary_10_1016_j_ins_2022_07_070
crossref_primary_10_1109_TBME_2016_2631620
crossref_primary_10_1109_ACCESS_2019_2932420
crossref_primary_10_1007_s10044_016_0541_3
crossref_primary_10_1016_j_neucom_2020_09_088
crossref_primary_10_1109_TMM_2017_2763321
crossref_primary_10_1016_j_asoc_2021_108030
crossref_primary_10_1016_j_eswa_2013_11_036
crossref_primary_10_1016_j_neucom_2016_01_026
crossref_primary_10_1016_j_neunet_2022_11_017
crossref_primary_10_1109_TNNLS_2016_2580572
crossref_primary_10_1016_j_neucom_2018_09_022
crossref_primary_10_1049_iet_bmt_2016_0081
crossref_primary_10_1016_j_specom_2016_09_004
crossref_primary_10_1016_j_specom_2016_09_003
crossref_primary_10_1109_TSP_2020_2984895
crossref_primary_10_1109_TSP_2018_2865442
crossref_primary_10_1016_j_engappai_2023_106640
crossref_primary_10_1049_iet_cvi_2017_0422
crossref_primary_10_3389_fnins_2021_797378
crossref_primary_10_1016_j_neucom_2017_08_068
crossref_primary_10_1016_j_ymssp_2022_109103
crossref_primary_10_12677_SEA_2022_112024
crossref_primary_10_1109_TCYB_2020_3025757
crossref_primary_10_1155_2017_6784764
crossref_primary_10_1016_j_ijleo_2015_08_168
crossref_primary_10_1016_j_jvcir_2018_11_030
crossref_primary_10_1118_1_4942376
crossref_primary_10_1016_j_dsp_2025_105020
crossref_primary_10_3390_rs13030361
crossref_primary_10_1109_ACCESS_2019_2935164
crossref_primary_10_1109_LSP_2017_2731791
crossref_primary_10_1109_TCYB_2017_2747998
crossref_primary_10_1049_iet_its_2018_5316
crossref_primary_10_1049_iet_rsn_2019_0550
crossref_primary_10_1145_3572910
crossref_primary_10_1177_1550147718809020
crossref_primary_10_1016_j_ins_2023_03_128
crossref_primary_10_1016_j_patcog_2016_08_025
crossref_primary_10_1007_s11760_017_1194_4
crossref_primary_10_1109_TCYB_2015_2492468
crossref_primary_10_1109_JSTARS_2018_2877769
crossref_primary_10_1109_TMM_2023_3266610
crossref_primary_10_1016_j_neunet_2022_08_031
crossref_primary_10_1007_s10489_021_02273_x
crossref_primary_10_1109_TGRS_2016_2598577
crossref_primary_10_1016_j_knosys_2019_06_031
crossref_primary_10_1109_TFUZZ_2018_2856081
crossref_primary_10_3390_sym13030415
crossref_primary_10_1016_j_patcog_2022_109155
crossref_primary_10_1109_TMM_2017_2785227
crossref_primary_10_1016_j_jprocont_2020_08_003
crossref_primary_10_1155_2013_925341
crossref_primary_10_1002_mrc_4532
crossref_primary_10_1016_j_patcog_2016_08_031
crossref_primary_10_3233_JIFS_233753
crossref_primary_10_1007_s11063_017_9691_6
crossref_primary_10_1016_j_bspc_2022_104314
crossref_primary_10_1016_j_jvcir_2020_102799
crossref_primary_10_1109_ACCESS_2015_2430359
crossref_primary_10_1109_TNNLS_2019_2893190
crossref_primary_10_1016_j_image_2022_116870
crossref_primary_10_1007_s11042_022_12614_8
crossref_primary_10_1109_TIE_2019_2898618
crossref_primary_10_1016_j_ifacol_2015_09_595
crossref_primary_10_3390_rs15112832
crossref_primary_10_1007_s13042_018_00903_4
crossref_primary_10_1016_j_engappai_2022_105137
crossref_primary_10_1111_cgf_15082
crossref_primary_10_1109_ACCESS_2018_2823979
crossref_primary_10_1109_LSP_2017_2756998
crossref_primary_10_1016_j_optlastec_2023_110401
crossref_primary_10_1109_TMM_2020_3017916
crossref_primary_10_3390_app142210082
crossref_primary_10_1109_TSP_2018_2807422
crossref_primary_10_3390_app12136650
crossref_primary_10_1016_j_neunet_2018_02_002
crossref_primary_10_1016_j_knosys_2022_108279
crossref_primary_10_1109_TNNLS_2017_2693221
crossref_primary_10_1016_j_image_2025_117356
crossref_primary_10_1109_TNNLS_2020_3026621
crossref_primary_10_1145_3078846
crossref_primary_10_1016_j_neucom_2017_07_041
crossref_primary_10_1080_09720529_2020_1726079
crossref_primary_10_1109_TIP_2016_2619260
crossref_primary_10_1016_j_cviu_2015_06_001
crossref_primary_10_1016_j_jprocont_2021_09_002
crossref_primary_10_1088_1742_6596_787_1_012020
crossref_primary_10_1109_ACCESS_2020_2982591
crossref_primary_10_1007_s00138_023_01423_0
crossref_primary_10_1109_JIOT_2022_3178160
crossref_primary_10_1016_j_patcog_2015_03_012
crossref_primary_10_1109_TIP_2017_2691549
crossref_primary_10_1016_j_procs_2018_01_105
crossref_primary_10_1109_TKDE_2020_3046114
crossref_primary_10_1371_journal_pone_0142403
crossref_primary_10_1080_1206212X_2020_1712775
crossref_primary_10_1016_j_patcog_2020_107634
crossref_primary_10_1109_TCST_2023_3329696
crossref_primary_10_1109_TII_2019_2909305
crossref_primary_10_1016_j_patcog_2018_01_002
crossref_primary_10_3390_s23115179
crossref_primary_10_1016_j_knosys_2025_113380
crossref_primary_10_1007_s10489_021_02557_2
crossref_primary_10_1016_j_patrec_2016_04_014
crossref_primary_10_1080_00949655_2017_1336241
crossref_primary_10_1016_j_neucom_2018_05_122
crossref_primary_10_1190_geo2022_0198_1
crossref_primary_10_1016_j_cviu_2019_06_003
crossref_primary_10_1109_LSENS_2022_3142349
crossref_primary_10_1007_s00371_018_1603_x
crossref_primary_10_1016_j_sigpro_2018_01_013
crossref_primary_10_1109_TCYB_2018_2883673
crossref_primary_10_3390_rs11232846
crossref_primary_10_1016_j_patcog_2016_11_001
crossref_primary_10_1109_TIP_2016_2549459
crossref_primary_10_1016_j_asoc_2021_107907
crossref_primary_10_1016_j_image_2023_116955
crossref_primary_10_1145_3449360
crossref_primary_10_1007_s11063_023_11234_z
crossref_primary_10_1109_JSTARS_2017_2671021
crossref_primary_10_1109_TIFS_2018_2825940
crossref_primary_10_1145_3588575
crossref_primary_10_3390_e25030499
crossref_primary_10_1145_3502729
crossref_primary_10_1109_LSP_2017_2734860
crossref_primary_10_1109_TASE_2022_3223723
crossref_primary_10_1007_s00521_016_2764_z
crossref_primary_10_1109_TIFS_2017_2680403
crossref_primary_10_1016_j_knosys_2023_110465
crossref_primary_10_1109_TPAMI_2016_2527652
crossref_primary_10_1109_ACCESS_2019_2905552
crossref_primary_10_1109_TIP_2016_2548242
crossref_primary_10_1016_j_patrec_2018_06_019
crossref_primary_10_1109_ACCESS_2022_3222531
crossref_primary_10_1016_j_engappai_2017_06_026
crossref_primary_10_1109_LGRS_2017_2651150
crossref_primary_10_1080_08839514_2023_2180821
crossref_primary_10_1007_s11042_020_08965_9
crossref_primary_10_1007_s11063_019_10015_x
crossref_primary_10_1016_j_patcog_2019_107014
crossref_primary_10_1109_TGRS_2017_2751061
crossref_primary_10_1016_j_patcog_2020_107690
crossref_primary_10_1109_TPAMI_2016_2636827
crossref_primary_10_1016_j_patcog_2017_07_013
crossref_primary_10_1109_TMM_2020_3003783
crossref_primary_10_1109_TII_2015_2496272
crossref_primary_10_3389_fonc_2021_725320
crossref_primary_10_1109_TIP_2015_2428055
crossref_primary_10_1016_j_jnucmat_2019_05_040
crossref_primary_10_1016_j_neucom_2015_01_024
crossref_primary_10_1109_TIP_2019_2919409
crossref_primary_10_1049_ipr2_12155
crossref_primary_10_1109_JIOT_2021_3080084
crossref_primary_10_1016_j_jvcir_2017_02_007
crossref_primary_10_1007_s13278_018_0519_9
crossref_primary_10_1109_TIP_2019_2894966
crossref_primary_10_1016_j_patcog_2016_07_042
crossref_primary_10_1109_TIP_2018_2881828
crossref_primary_10_1109_TSMC_2017_2676180
crossref_primary_10_1038_s41598_017_18860_3
crossref_primary_10_1109_TCSVT_2018_2886600
crossref_primary_10_1109_TGRS_2017_2727067
crossref_primary_10_1016_j_neucom_2021_01_111
crossref_primary_10_1109_JIOT_2022_3231862
crossref_primary_10_1109_TIP_2015_2496275
crossref_primary_10_1007_s13042_023_01957_9
crossref_primary_10_1016_j_dsp_2022_103896
crossref_primary_10_1016_j_sigpro_2019_03_007
crossref_primary_10_1016_j_sigpro_2020_107634
crossref_primary_10_1109_TGRS_2019_2931134
crossref_primary_10_1109_TIM_2021_3097416
crossref_primary_10_1177_0040517520921469
crossref_primary_10_1007_s00521_018_3479_0
crossref_primary_10_1016_j_cmpb_2017_02_007
crossref_primary_10_1109_TCSVT_2016_2589858
crossref_primary_10_1109_TGRS_2022_3203468
crossref_primary_10_1109_MMUL_2014_53
crossref_primary_10_1109_TNNLS_2019_2910146
crossref_primary_10_1109_TIM_2021_3125969
crossref_primary_10_1016_j_patcog_2019_02_018
crossref_primary_10_1016_j_patrec_2016_03_021
crossref_primary_10_1109_JSTARS_2015_2404578
crossref_primary_10_1109_TIM_2025_3561431
crossref_primary_10_1016_j_renene_2020_01_093
crossref_primary_10_1109_JSTARS_2019_2949621
crossref_primary_10_1016_j_neucom_2016_04_044
crossref_primary_10_1016_j_patcog_2016_12_021
crossref_primary_10_1016_j_patcog_2020_107793
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_1016_j_dsp_2021_103227
crossref_primary_10_1016_j_patcog_2016_12_015
crossref_primary_10_1109_TCCN_2022_3193403
crossref_primary_10_1109_TIP_2017_2703101
crossref_primary_10_1016_j_patcog_2016_12_017
crossref_primary_10_1016_j_neucom_2020_01_041
crossref_primary_10_1155_2020_7562140
crossref_primary_10_3390_rs9040386
crossref_primary_10_1016_j_patcog_2015_04_014
crossref_primary_10_1109_TII_2017_2653184
crossref_primary_10_1016_j_neucom_2019_09_045
crossref_primary_10_1007_s10044_021_00987_9
crossref_primary_10_1109_ACCESS_2021_3120635
crossref_primary_10_1155_2019_1262171
crossref_primary_10_1038_s41598_023_47420_1
crossref_primary_10_1016_j_dsp_2025_105530
crossref_primary_10_1007_s11042_022_13203_5
crossref_primary_10_3390_rs12010135
crossref_primary_10_1177_0954406217704475
crossref_primary_10_1109_TII_2017_2777144
crossref_primary_10_1016_j_knosys_2021_106794
crossref_primary_10_1109_ACCESS_2020_3044371
crossref_primary_10_1016_j_jsv_2018_01_051
crossref_primary_10_1109_TCYB_2015_2481713
crossref_primary_10_1016_j_patcog_2015_12_005
crossref_primary_10_3389_fpsyg_2021_705528
crossref_primary_10_1007_s00500_021_05723_3
crossref_primary_10_1007_s11042_017_4660_7
crossref_primary_10_1007_s11042_023_15579_4
crossref_primary_10_1016_j_eswa_2018_03_048
crossref_primary_10_1016_j_sigpro_2018_09_002
crossref_primary_10_1016_j_patcog_2016_06_012
crossref_primary_10_1109_TSMC_2022_3193131
crossref_primary_10_1007_s10489_023_04541_4
crossref_primary_10_1016_j_sigpro_2020_107485
crossref_primary_10_1049_iet_cvi_2015_0482
crossref_primary_10_1109_TSP_2016_2550016
crossref_primary_10_1016_j_patcog_2019_04_027
crossref_primary_10_1016_j_ress_2024_110133
crossref_primary_10_1109_TIP_2016_2547180
crossref_primary_10_1186_s13640_019_0411_1
crossref_primary_10_1109_LGRS_2018_2868789
crossref_primary_10_1016_j_jvcir_2016_04_003
crossref_primary_10_1109_TIP_2016_2598654
crossref_primary_10_1007_s12652_021_03262_1
crossref_primary_10_1016_j_neucom_2019_11_073
crossref_primary_10_1177_1748006X231184656
crossref_primary_10_1016_j_patcog_2015_12_017
crossref_primary_10_1109_LGRS_2023_3259971
crossref_primary_10_1109_TII_2020_2983749
crossref_primary_10_1109_TIM_2024_3383498
crossref_primary_10_1109_TGRS_2021_3127536
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1007_s11063_021_10467_0
crossref_primary_10_1109_ACCESS_2019_2902654
crossref_primary_10_1109_TKDE_2019_2893956
crossref_primary_10_1007_s13042_020_01123_5
crossref_primary_10_1109_TIP_2017_2764622
crossref_primary_10_1109_TNNLS_2023_3291793
crossref_primary_10_1007_s10044_019_00858_4
crossref_primary_10_1109_TIP_2017_2765833
crossref_primary_10_1007_s11042_023_15907_8
crossref_primary_10_1109_TASE_2025_3557285
crossref_primary_10_1007_s00371_019_01766_8
crossref_primary_10_1109_ACCESS_2015_2510659
crossref_primary_10_1109_ACCESS_2020_3028905
crossref_primary_10_1109_TGRS_2018_2873302
crossref_primary_10_1109_TNNLS_2021_3120100
crossref_primary_10_1016_j_patcog_2020_107581
crossref_primary_10_1186_s13634_018_0538_8
crossref_primary_10_1007_s11063_018_9894_5
crossref_primary_10_1007_s10489_021_02904_3
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_1109_TSP_2017_2684746
crossref_primary_10_1007_s12559_019_09650_2
crossref_primary_10_3390_math10162874
crossref_primary_10_1155_2018_1058982
crossref_primary_10_1109_TGRS_2016_2599163
crossref_primary_10_1109_TMM_2016_2566578
crossref_primary_10_3390_app11167701
crossref_primary_10_1016_j_jksuci_2023_01_014
crossref_primary_10_1109_TNNLS_2017_2727526
crossref_primary_10_1016_j_apacoust_2022_108870
crossref_primary_10_1007_s13042_019_00992_9
crossref_primary_10_1007_s11263_017_1007_9
crossref_primary_10_1007_s11517_020_02281_y
crossref_primary_10_1007_s11042_021_11322_z
crossref_primary_10_1109_MAES_2021_3049857
crossref_primary_10_1007_s11042_023_16772_1
crossref_primary_10_1007_s12559_016_9445_1
crossref_primary_10_1016_j_eswa_2019_04_010
crossref_primary_10_3389_fnins_2021_679847
crossref_primary_10_1049_iet_rsn_2015_0007
crossref_primary_10_1109_TIP_2019_2914376
crossref_primary_10_1109_TNNLS_2018_2796133
crossref_primary_10_1109_TGRS_2022_3211209
crossref_primary_10_1109_TNNLS_2022_3172588
crossref_primary_10_1109_TIP_2017_2771499
crossref_primary_10_3390_s21082602
crossref_primary_10_1109_TII_2022_3168300
crossref_primary_10_1109_TCSVT_2023_3246475
crossref_primary_10_1016_j_neucom_2019_02_001
crossref_primary_10_1109_TNNLS_2024_3453374
crossref_primary_10_1016_j_engappai_2022_105513
crossref_primary_10_1109_TIP_2016_2530313
crossref_primary_10_1016_j_sigpro_2020_107697
crossref_primary_10_1109_LSP_2019_2959225
crossref_primary_10_1016_j_isprsjprs_2019_12_002
crossref_primary_10_1007_s10044_020_00881_w
crossref_primary_10_1177_14759217211029016
crossref_primary_10_1109_TKDE_2020_2969354
crossref_primary_10_1109_TGRS_2017_2686444
crossref_primary_10_1016_j_cmpb_2019_105038
crossref_primary_10_1016_j_jvcir_2020_102764
crossref_primary_10_1109_ACCESS_2020_3001202
crossref_primary_10_1016_j_jvcir_2020_102763
crossref_primary_10_1109_TIP_2017_2729885
crossref_primary_10_1016_j_jvcir_2015_09_009
crossref_primary_10_1007_s13369_020_04788_w
crossref_primary_10_1109_TSG_2018_2815763
crossref_primary_10_1109_TNNLS_2015_2436951
crossref_primary_10_1016_j_image_2018_01_001
crossref_primary_10_1109_TCSVT_2023_3249796
crossref_primary_10_1109_JSEN_2024_3365706
crossref_primary_10_1109_TIM_2018_2880939
crossref_primary_10_1016_j_neucom_2020_05_082
crossref_primary_10_1109_TNNLS_2017_2648880
crossref_primary_10_1007_s11042_022_12395_0
crossref_primary_10_1016_j_ins_2020_08_097
crossref_primary_10_1016_j_sigpro_2021_107988
crossref_primary_10_1109_LGRS_2016_2528883
crossref_primary_10_3389_fnagi_2022_848511
crossref_primary_10_1109_ACCESS_2020_3030163
crossref_primary_10_1007_s11269_018_2179_y
crossref_primary_10_1109_JSEN_2019_2901050
crossref_primary_10_1007_s00500_017_2568_9
crossref_primary_10_1016_j_patrec_2018_09_008
crossref_primary_10_1080_02564602_2017_1283251
crossref_primary_10_1109_LSP_2018_2890765
crossref_primary_10_1016_j_patcog_2018_03_021
crossref_primary_10_1016_j_knosys_2020_106343
crossref_primary_10_1109_TGRS_2020_2976203
crossref_primary_10_1109_TIFS_2017_2765524
crossref_primary_10_1016_j_bspc_2020_102062
crossref_primary_10_1016_j_neucom_2015_07_116
crossref_primary_10_1016_j_engappai_2016_05_005
crossref_primary_10_1016_j_media_2016_10_007
crossref_primary_10_1109_TGRS_2015_2392755
crossref_primary_10_1007_s10489_023_04709_y
crossref_primary_10_1109_ACCESS_2018_2862159
crossref_primary_10_1016_j_dsp_2019_04_006
crossref_primary_10_1016_j_neucom_2015_08_128
crossref_primary_10_1109_TII_2022_3205638
crossref_primary_10_1155_2018_1435203
crossref_primary_10_3390_app112210635
crossref_primary_10_1109_TASE_2020_2984334
crossref_primary_10_1016_j_knosys_2018_09_014
crossref_primary_10_1016_j_compeleceng_2019_03_009
crossref_primary_10_1109_TSIPN_2025_3588087
crossref_primary_10_1016_j_jvcir_2020_102868
crossref_primary_10_1155_2021_9340147
crossref_primary_10_1007_s11831_019_09383_3
crossref_primary_10_1109_JSTSP_2018_2879743
crossref_primary_10_1109_TMM_2019_2916093
crossref_primary_10_1587_transinf_2018DAL0002
crossref_primary_10_1007_s11042_017_4893_5
crossref_primary_10_1088_1361_6501_abf619
crossref_primary_10_1109_TCBB_2020_3006699
crossref_primary_10_1109_TPAMI_2017_2757923
crossref_primary_10_1007_s11042_022_12417_x
crossref_primary_10_1016_j_ins_2021_10_013
crossref_primary_10_1016_j_jmapro_2023_08_040
crossref_primary_10_1109_LGRS_2016_2608578
crossref_primary_10_1002_spe_3089
crossref_primary_10_1016_j_imavis_2022_104506
crossref_primary_10_1007_s00371_023_03179_0
crossref_primary_10_1134_S1054661818010133
crossref_primary_10_1007_s11042_023_14659_9
crossref_primary_10_1109_JSTARS_2017_2657600
crossref_primary_10_1109_TMM_2017_2685240
crossref_primary_10_1109_ACCESS_2022_3194651
crossref_primary_10_1016_j_bspc_2019_101559
crossref_primary_10_1186_s13636_018_0132_x
crossref_primary_10_1016_j_knosys_2020_106124
crossref_primary_10_1016_j_patcog_2017_01_033
crossref_primary_10_1016_j_patrec_2019_12_020
crossref_primary_10_3390_app14104294
crossref_primary_10_1007_s10115_022_01655_y
crossref_primary_10_1007_s11548_016_1360_0
crossref_primary_10_1016_j_sigpro_2024_109485
crossref_primary_10_3389_fnagi_2022_916020
crossref_primary_10_1109_TIP_2020_3004246
crossref_primary_10_1109_JSTARS_2020_2987827
crossref_primary_10_1007_s10489_023_04708_z
crossref_primary_10_1109_TGRS_2020_3013968
crossref_primary_10_1109_TIM_2024_3406796
crossref_primary_10_1016_j_patrec_2018_04_016
crossref_primary_10_1109_ACCESS_2020_3039625
crossref_primary_10_1109_LGRS_2024_3355424
crossref_primary_10_1007_s11042_017_5269_6
crossref_primary_10_1007_s12652_020_02620_9
crossref_primary_10_1016_j_patcog_2017_02_009
crossref_primary_10_1016_j_ins_2017_09_011
crossref_primary_10_1109_JSTSP_2020_2992430
crossref_primary_10_1016_j_jnlest_2021_100096
crossref_primary_10_1109_ACCESS_2020_2989452
crossref_primary_10_1080_07038992_2021_1937087
crossref_primary_10_1109_TFUZZ_2019_2902111
crossref_primary_10_1016_j_sigpro_2024_109398
crossref_primary_10_1109_JSEN_2019_2915379
crossref_primary_10_1109_TNNLS_2018_2861839
crossref_primary_10_1007_s11063_019_10106_9
crossref_primary_10_1016_j_cmpb_2017_07_003
crossref_primary_10_1016_j_ifacol_2017_08_308
crossref_primary_10_1109_ACCESS_2020_2981617
crossref_primary_10_1007_s10044_020_00939_9
crossref_primary_10_1007_s11760_023_02666_0
crossref_primary_10_1016_j_ymssp_2024_111777
crossref_primary_10_1109_TIM_2022_3187735
crossref_primary_10_1109_TMM_2018_2867720
crossref_primary_10_1109_TNNLS_2019_2954545
crossref_primary_10_1016_j_renene_2023_119373
crossref_primary_10_1049_cit2_12115
crossref_primary_10_1007_s10489_022_04336_z
crossref_primary_10_1016_j_neucom_2016_09_037
crossref_primary_10_1016_j_neucom_2017_01_071
crossref_primary_10_1007_s10115_019_01400_y
crossref_primary_10_1109_TII_2022_3161640
crossref_primary_10_1109_TIM_2024_3436126
crossref_primary_10_1109_TNNLS_2015_2504538
crossref_primary_10_1016_j_patcog_2023_109656
crossref_primary_10_1177_14759217241263278
crossref_primary_10_1007_s13369_018_3132_3
crossref_primary_10_1190_geo2019_0710_1
crossref_primary_10_1016_j_patcog_2017_03_034
crossref_primary_10_1109_TCSS_2022_3153660
crossref_primary_10_1109_TIE_2017_2748034
crossref_primary_10_3389_fnins_2019_01248
crossref_primary_10_1007_s10489_019_01612_3
crossref_primary_10_1109_TASE_2025_3582733
crossref_primary_10_1177_10775463221113733
crossref_primary_10_1016_j_patcog_2016_01_023
crossref_primary_10_1109_TIM_2021_3126390
crossref_primary_10_1016_j_patcog_2016_01_028
crossref_primary_10_1109_TNNLS_2017_2772264
crossref_primary_10_1109_TMM_2017_2685179
crossref_primary_10_1016_j_patcog_2016_01_026
crossref_primary_10_1109_ACCESS_2016_2611583
crossref_primary_10_1016_j_neucom_2015_07_032
crossref_primary_10_1007_s11042_021_11244_w
crossref_primary_10_1016_j_neucom_2015_09_091
crossref_primary_10_1016_j_neucom_2022_08_069
crossref_primary_10_1109_ACCESS_2024_3378598
crossref_primary_10_1016_j_neucom_2015_06_117
crossref_primary_10_1109_ACCESS_2020_3036250
crossref_primary_10_1016_j_bspc_2024_106954
crossref_primary_10_1016_j_media_2020_101826
crossref_primary_10_1016_j_dsp_2023_104029
crossref_primary_10_1038_s41598_018_27364_7
crossref_primary_10_1109_TSMC_2016_2637279
crossref_primary_10_1016_j_neucom_2025_131408
crossref_primary_10_1016_j_ins_2018_01_031
crossref_primary_10_1109_ACCESS_2017_2776126
crossref_primary_10_1007_s11760_020_01700_9
crossref_primary_10_1117_1_JMI_9_5_052403
crossref_primary_10_3390_pr10091850
crossref_primary_10_1016_j_neucom_2015_07_124
crossref_primary_10_1016_j_ins_2024_120862
crossref_primary_10_1007_s13042_020_01188_2
crossref_primary_10_1109_TIP_2016_2635444
crossref_primary_10_1177_14759217231220220
crossref_primary_10_1007_s10044_018_0704_5
crossref_primary_10_1155_2019_6957415
crossref_primary_10_1016_j_eswa_2024_123225
crossref_primary_10_1364_AO_57_007287
crossref_primary_10_3390_rs11222676
crossref_primary_10_26636_jtit_2018_121317
crossref_primary_10_1016_j_patcog_2018_12_023
crossref_primary_10_1109_ACCESS_2019_2930288
crossref_primary_10_1007_s11760_019_01429_0
crossref_primary_10_1109_TGRS_2022_3151335
crossref_primary_10_1016_j_compbiomed_2023_107114
crossref_primary_10_1016_j_patcog_2021_108346
crossref_primary_10_1364_AO_55_001381
crossref_primary_10_1109_ACCESS_2018_2791578
crossref_primary_10_1587_transinf_2019EDP7296
crossref_primary_10_1109_TBDATA_2021_3110862
crossref_primary_10_1016_j_neunet_2019_07_003
crossref_primary_10_1016_j_neucom_2016_08_146
crossref_primary_10_1016_j_chemolab_2023_104817
crossref_primary_10_1109_TIM_2020_2998875
crossref_primary_10_1109_TNNLS_2023_3343937
crossref_primary_10_1109_TCYB_2025_3550175
crossref_primary_10_1016_j_ins_2016_09_059
crossref_primary_10_1109_TPAMI_2017_2663423
crossref_primary_10_1007_s00521_018_3529_7
crossref_primary_10_1109_TGRS_2015_2451002
crossref_primary_10_1007_s11042_018_6417_3
crossref_primary_10_1016_j_renene_2021_04_019
crossref_primary_10_1109_TMM_2024_3521720
crossref_primary_10_1016_j_knosys_2025_113853
crossref_primary_10_1109_ACCESS_2015_2505243
crossref_primary_10_1109_TNNLS_2021_3089566
crossref_primary_10_1016_j_ins_2024_120444
crossref_primary_10_1016_j_media_2022_102456
crossref_primary_10_3389_fnins_2021_687496
crossref_primary_10_3390_s18092940
crossref_primary_10_1109_TIP_2017_2718187
crossref_primary_10_1016_j_patrec_2015_12_003
crossref_primary_10_1109_TCSVT_2019_2918852
crossref_primary_10_1007_s11263_016_0899_0
crossref_primary_10_1016_j_ins_2021_06_008
crossref_primary_10_1016_j_neunet_2023_05_022
crossref_primary_10_1109_ACCESS_2019_2945586
crossref_primary_10_1007_s00371_021_02160_z
crossref_primary_10_1109_TNNLS_2021_3057439
crossref_primary_10_1137_19M1285469
crossref_primary_10_1109_TGRS_2018_2832228
crossref_primary_10_1109_TIP_2016_2623487
crossref_primary_10_1016_j_neunet_2024_106628
crossref_primary_10_1016_j_patcog_2021_108007
crossref_primary_10_1016_j_jmapro_2025_04_053
crossref_primary_10_1016_j_neucom_2024_129322
crossref_primary_10_1109_TPAMI_2019_2921031
crossref_primary_10_3390_aerospace8050134
crossref_primary_10_1109_JSTARS_2023_3259469
crossref_primary_10_1109_TIP_2015_2416634
crossref_primary_10_1007_s11760_019_01501_9
crossref_primary_10_1109_TII_2020_3016317
crossref_primary_10_1016_j_neucom_2019_12_071
crossref_primary_10_1016_j_neucom_2018_02_021
crossref_primary_10_1109_TNNLS_2018_2890787
crossref_primary_10_1007_s10044_016_0547_x
crossref_primary_10_1109_TSP_2016_2634546
crossref_primary_10_1109_TSMC_2022_3170443
crossref_primary_10_1007_s11760_020_01755_8
crossref_primary_10_4018_IJDA_297521
crossref_primary_10_1109_TSP_2018_2846226
crossref_primary_10_1016_j_eswa_2020_113500
crossref_primary_10_1109_TNNLS_2023_3256390
crossref_primary_10_3390_e23091164
crossref_primary_10_1016_j_patrec_2015_05_005
crossref_primary_10_1016_j_chemolab_2023_104919
crossref_primary_10_1109_TCYB_2017_2751741
crossref_primary_10_1109_ACCESS_2022_3159701
crossref_primary_10_1109_TIP_2017_2700761
crossref_primary_10_1109_ACCESS_2019_2949917
crossref_primary_10_1007_s11042_017_4851_2
crossref_primary_10_1007_s10489_021_02258_w
crossref_primary_10_1109_TPAMI_2016_2545661
crossref_primary_10_1016_j_cja_2021_04_012
crossref_primary_10_1016_j_neucom_2016_01_092
crossref_primary_10_1007_s11042_022_14295_9
crossref_primary_10_1016_j_image_2019_05_009
crossref_primary_10_1109_TMI_2015_2493530
crossref_primary_10_1016_j_sigpro_2018_06_005
crossref_primary_10_1109_TIP_2020_2965289
crossref_primary_10_1109_TNNLS_2016_2572204
crossref_primary_10_1109_TKDE_2019_2940576
crossref_primary_10_1364_AO_58_008471
crossref_primary_10_1007_s11042_018_7083_1
crossref_primary_10_1016_j_neunet_2019_07_013
crossref_primary_10_1016_j_patcog_2018_05_024
crossref_primary_10_1016_j_sigpro_2016_03_013
crossref_primary_10_1371_journal_pone_0199141
crossref_primary_10_1109_TCSVT_2021_3087486
crossref_primary_10_3390_electronics11193155
crossref_primary_10_1155_2020_8838454
crossref_primary_10_1109_TETCI_2024_3449924
crossref_primary_10_1016_j_jfranklin_2020_01_007
crossref_primary_10_1016_j_jvcir_2016_11_002
crossref_primary_10_1109_JSTSP_2016_2555241
crossref_primary_10_3390_electronics11060847
crossref_primary_10_1016_j_ipm_2021_102534
crossref_primary_10_1016_j_neucom_2017_01_041
crossref_primary_10_1109_TCSVT_2022_3197746
crossref_primary_10_1109_LSP_2018_2798406
Cites_doi 10.1109/TPAMI.2008.79
10.1109/TPAMI.2011.156
10.1145/1273496.1273592
10.1109/CVPR.2010.5539958
10.1017/CBO9780511569920.005
10.1109/CVPR.2012.6247806
10.1109/CVPR.2009.5206757
10.1109/TPAMI.2008.138
10.1109/cvpr.2008.4587647
10.7551/mitpress/7503.003.0081
10.1109/TSP.2006.881199
10.1109/ICCV.2011.6126346
10.1109/CVPR.2008.4587598
10.1109/ICCV.2011.6126286
10.18772/10539/20690
10.1007/978-3-540-88682-2_15
10.1007/978-3-540-88690-7_52
10.1109/CVPR.2011.5995624
10.1109/CVPR.2010.5539963
10.1109/CVPR.2010.5539989
10.1109/TIT.2007.909108
10.1109/CVPR.2009.5206545
10.7551/mitpress/7503.003.0105
10.1109/CVPR.2008.4587408
10.1109/TIT.2005.858979
10.1109/CVPR.2008.4587723
10.1109/34.927464
10.1109/ICCV.2009.5459201
10.1007/978-3-540-88690-7_4
10.1109/CVPR.2006.68
10.1109/ICCV.2011.6126307
10.1137/S0895479897326432
10.1109/CVPR.2010.5539881
10.1109/CVPR.2010.5539883
10.1109/CVPR.2008.4587652
10.1109/cvpr.2011.5995496
10.1109/ICCV.2005.171
10.1109/TPAMI.2007.70755
10.1109/cvpr.2010.5539943
10.1109/CVPR.2006.301
10.1109/JPROC.2010.2044470
10.1109/cvpr.2008.4587504
10.1109/CVPR.2008.4587727
10.1109/cvpr.2004.383
10.1109/CVPR.2010.5539964
10.1109/CVPR.2012.6248082
10.1109/CVPR.2008.4587841
10.1007/978-3-642-15561-1_12
10.1109/CVPR.2012.6247940
10.1109/CVPR.2012.6248091
10.1109/TIP.2006.881969
10.7551/mitpress/7503.003.0147
10.1109/ISCAS.1999.779928
10.1109/CVPR.2010.5540018
10.1145/1553374.1553533
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TPAMI.2013.88
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 2160-9292
1939-3539
EndPage 2664
ExternalDocumentID 24051726
27896023
10_1109_TPAMI_2013_88
6516503
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c409t-197ef021bbcf5a71d59a222c891558712075c0d26805280cbfede11d6d5bd8093
IEDL.DBID RIE
ISICitedReferencesCount 1049
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324830900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Nov 09 14:07:04 EST 2025
Mon Jul 21 05:48:26 EDT 2025
Wed Apr 02 07:35:46 EDT 2025
Sat Nov 29 08:10:34 EST 2025
Tue Nov 18 22:12:50 EST 2025
Tue Aug 26 16:41:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Computer vision
Discriminant analysis
Dictionaries
Form defect
Pattern recognition
Object recognition
incremental dictionary learning
label consistent K-SVD
Experimental result
Image matching
Supervised learning
Scene analysis
Optimal solution
Sparse representation
Discriminative dictionary learning
Objective function
discriminative sparse-code error
Learning algorithm
Artificial intelligence
Multiple classification
Singular value decomposition
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-197ef021bbcf5a71d59a222c891558712075c0d26805280cbfede11d6d5bd8093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24051726
PQID 1434745547
PQPubID 23479
PageCount 14
ParticipantIDs pascalfrancis_primary_27896023
crossref_citationtrail_10_1109_TPAMI_2013_88
proquest_miscellaneous_1434745547
pubmed_primary_24051726
ieee_primary_6516503
crossref_primary_10_1109_TPAMI_2013_88
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Alamitos, CA
PublicationPlace_xml – name: Los Alamitos, CA
– name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2013
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
Slonim (ref34)
ref51
ref50
ref46
ref45
Krause (ref35)
ref48
ref47
ref42
ref44
ref43
Griffin (ref53)
ref49
ref8
ref9
ref4
ref6
ref5
ref40
Lian (ref41)
ref37
ref36
ref31
Bradley (ref7)
ref30
ref33
ref32
Mairal (ref3); 11
ref2
ref1
ref39
Karol (ref13)
Jenatton (ref18)
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
Mairal (ref38)
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref6
  doi: 10.1109/TPAMI.2008.79
– ident: ref9
  doi: 10.1109/TPAMI.2011.156
– ident: ref19
  doi: 10.1145/1273496.1273592
– ident: ref53
  article-title: Caltech-256 Object Category Data Set
– ident: ref37
  doi: 10.1109/CVPR.2010.5539958
– ident: ref47
  doi: 10.1017/CBO9780511569920.005
– ident: ref49
  doi: 10.1109/CVPR.2012.6247806
– ident: ref5
  doi: 10.1109/CVPR.2009.5206757
– ident: ref31
  doi: 10.1109/TPAMI.2008.138
– ident: ref4
  doi: 10.1109/cvpr.2008.4587647
– ident: ref40
  doi: 10.7551/mitpress/7503.003.0081
– ident: ref11
  doi: 10.1109/TSP.2006.881199
– ident: ref28
  doi: 10.1109/ICCV.2011.6126346
– ident: ref56
  doi: 10.1109/CVPR.2008.4587598
– ident: ref21
  doi: 10.1109/ICCV.2011.6126286
– ident: ref51
  doi: 10.18772/10539/20690
– ident: ref33
  doi: 10.1007/978-3-540-88682-2_15
– ident: ref58
  doi: 10.1007/978-3-540-88690-7_52
– ident: ref61
  doi: 10.1109/CVPR.2011.5995624
– ident: ref39
  doi: 10.1109/CVPR.2010.5539963
– volume-title: Proc. Conf. Neural Information Processing Systems
  ident: ref34
  article-title: Agglomerative Information Bottleneck
– ident: ref16
  doi: 10.1109/CVPR.2010.5539989
– ident: ref44
  doi: 10.1109/TIT.2007.909108
– ident: ref20
  doi: 10.1109/CVPR.2009.5206545
– volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref13
  article-title: Learning Fast Approximations of Sparse Coding
– ident: ref10
  doi: 10.7551/mitpress/7503.003.0105
– ident: ref15
  doi: 10.1109/CVPR.2008.4587408
– ident: ref46
  doi: 10.1109/TIT.2005.858979
– ident: ref30
  doi: 10.1109/CVPR.2008.4587723
– volume: 11
  start-page: 19
  volume-title: J. Machine Learning Research
  ident: ref3
  article-title: Online Learning for Matrix Factorization and Sparse Coding
– ident: ref50
  doi: 10.1109/34.927464
– ident: ref60
  doi: 10.1109/ICCV.2009.5459201
– ident: ref24
  doi: 10.1007/978-3-540-88690-7_4
– ident: ref48
  doi: 10.1109/CVPR.2006.68
– ident: ref32
  doi: 10.1109/ICCV.2011.6126307
– ident: ref45
  doi: 10.1137/S0895479897326432
– ident: ref62
  doi: 10.1109/CVPR.2010.5539881
– volume-title: Proc. IEEE Conf. Computer Vision and Pattern Recognition
  ident: ref41
  article-title: Probabilistic Models for Supervised Dictinary Learning
– ident: ref64
  doi: 10.1109/CVPR.2010.5539883
– ident: ref14
  doi: 10.1109/CVPR.2008.4587652
– ident: ref63
  doi: 10.1109/cvpr.2011.5995496
– ident: ref29
  doi: 10.1109/ICCV.2005.171
– volume-title: Proc. Conf. Neural Information Processing Systems
  ident: ref7
  article-title: Differential Sparse Coding
– ident: ref27
  doi: 10.1109/TPAMI.2007.70755
– ident: ref59
  doi: 10.1109/cvpr.2010.5539943
– ident: ref55
  doi: 10.1109/CVPR.2006.301
– ident: ref43
  doi: 10.1109/JPROC.2010.2044470
– ident: ref23
  doi: 10.1109/cvpr.2008.4587504
– ident: ref54
  doi: 10.1109/CVPR.2008.4587727
– ident: ref52
  doi: 10.1109/cvpr.2004.383
– ident: ref25
  doi: 10.1109/CVPR.2010.5539964
– ident: ref36
  doi: 10.1109/CVPR.2012.6248082
– ident: ref57
  doi: 10.1109/CVPR.2008.4587841
– volume-title: Proc. Conf. Neural Information Processing Systems
  ident: ref38
  article-title: Supervised Dictionary Learning
– ident: ref42
  doi: 10.1007/978-3-642-15561-1_12
– ident: ref8
  doi: 10.1109/CVPR.2012.6247940
– volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref18
  article-title: Proximal Methods for Sparse Hierarchical Dictionary Learning
– ident: ref26
  doi: 10.1109/CVPR.2012.6248091
– ident: ref1
  doi: 10.1109/TIP.2006.881969
– volume-title: Proc. Int’l Conf. Machine Learning
  ident: ref35
  article-title: Submodular Dictionary Selection for Sparse Representation
– ident: ref2
  doi: 10.7551/mitpress/7503.003.0147
– ident: ref17
  doi: 10.1109/ISCAS.1999.779928
– ident: ref12
  doi: 10.1109/CVPR.2010.5540018
– ident: ref22
  doi: 10.1145/1553374.1553533
SSID ssj0014503
Score 2.6393027
Snippet A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2651
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Artificial intelligence
Biometry - methods
Classification algorithms
Coding, codes
Computer science; control theory; systems
Dictionaries
Discriminant Analysis
Discriminative dictionary learning
discriminative sparse-code error
Exact sciences and technology
Face - anatomy & histology
Humans
Image Interpretation, Computer-Assisted - methods
Image reconstruction
incremental dictionary learning
Information, signal and communications theory
label consistent K-SVD
Linear programming
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Signal and communications theory
supervised learning
Support Vector Machine
Telecommunications and information theory
Testing
Training
Title Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition
URI https://ieeexplore.ieee.org/document/6516503
https://www.ncbi.nlm.nih.gov/pubmed/24051726
https://www.proquest.com/docview/1434745547
Volume 35
WOSCitedRecordID wos000324830900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7Bqgc4sC2vppSVK1WcCGw2duxwW0FRERStykN7ixzbqVZaZdE-KvXfd8bJhkWCA7c8HMXyjONv4pnvA_guLS5qnChnYydDrqIo1Kl0YaIwwI2lElwbLzYhb2_VcJgO1uC4qYVxzvnkM3dCh34v307Mgn6VnSYiQkARr8O6lElVq9XsGHDhVZARweAMxzDimU_z9H7Q_3VFWVwxugWx_3IipiI6hZWlyGurUGaknuHgFJWqxduw0y8_l-33dfwjbNUwk_Urv_gEa67chvZSwoHVM3obNlf4CHfg5kbnbsy8iCdav5yz6_Du8eKM1Sysf5hmFyP60FACDX0o8dQXRujpP4bwl_1e5iNNyl14uPxxf_4zrOUWQoNB3jyM0EYFLvl5bgqhZWRFqhE9GEUU8hhX9RBdmK7tJaSCoLomL5x1UWQTK3Krumm8B61yUrrPwCxPc5ELFxcm4a4nlM4pLuwZ7fC6FQEcL0c-MzUXOUlijDMfk3TTzNssI5tlSgVw1DR_qkg43mq4Q4PfNKrHPYDOC7M296kMOEHUEsC3pZ0znF60Z6JLN1nMMDKKueSIuWQA-5UDPD9d-9GX1996ABvUrapw8Su05tOFO4QP5u98NJt20IeHquN9-D9cyupy
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-VggQ80NHBCLBiJMTTsjWJnTi8TYypVT9UbQXtLXJsB02a0qkfSPz33DlpViT6wFs-HMXynePfxXe_H8CnxOCixolyNrKJz2UQ-CpNrB9LDHCjRAqutBObSKZTeXOTzlpw0tTCWGtd8pk9pUO3l28WekO_ys5iESCgiB7BY1LOSqtqrWbPgAung4wYBuc4BhIPjJpn89n5ZEh5XBE6BvH_cqKmIkKFncXIqatQbqRa4fAUla7FfuDpFqDLzv91_QBe1ECTnVee8RJatuxCZyviwOo53YXnO4yEhzAeq9zeMSfjifYv12zkX_-4-MJqHtafTLGLW_rUUAoNfSrx1JVGqOVvhgCYXW0zkhblK_h--W3-deDXggu-xjBv7QdopQIX_TzXhVBJYESqED9oSSTyGFmFiC9034Qx6SDIvs4La2wQmNiI3Mh-Gr2Gdrko7Rtghqe5yIWNCh1zGwqpcooMQ60sXjfCg5PtyGe6ZiMnUYy7zEUl_TRzNsvIZpmUHnxumt9XNBz7Gh7S4DeN6nH3oPeXWZv7VAgcI27x4OPWzhlOMNo1UaVdbFYYG0U84Yi6Eg-OKgd4eLr2o7f_fusHeDqYT8bZeDgdvYNn1MWqjPE9tNfLjT2GJ_rX-na17DlP_gNCs-zZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label+Consistent+K-SVD%3A+Learning+a+Discriminative+Dictionary+for+Recognition&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhuolin+Jiang&rft.au=Zhe+Lin&rft.au=Davis%2C+L.+S.&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=35&rft.issue=11&rft.spage=2651&rft.epage=2664&rft_id=info:doi/10.1109%2FTPAMI.2013.88&rft_id=info%3Apmid%2F24051726&rft.externalDocID=6516503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon