Indirect Prediction for Lithium-Ion Batteries RUL Using Multi-Objective Arithmetic Optimization Algorithm-Based Deep Extreme Learning Machine

Lithium-ion batteries (LIBs) experience aging degradation during long-term operation. Accurate prediction of the remaining useful life (RUL) in advance is crucial to ensure continuous and reliable energy supply of the battery management system (BMS). Aiming at the problem of limited robustness of de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 110400 - 110416
Main Authors: Li, Linna, Huang, Zhong, Ding, Guorong
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lithium-ion batteries (LIBs) experience aging degradation during long-term operation. Accurate prediction of the remaining useful life (RUL) in advance is crucial to ensure continuous and reliable energy supply of the battery management system (BMS). Aiming at the problem of limited robustness of deep extreme learning machine (DELM) in RUL prediction for LIBs, an improved multi-objective arithmetic optimization algorithm (MOAOA) is proposed to enhance the prediction ability of DELM. Firstly, in order to overcome the limitations of the traditional single-objective optimization algorithm in terms of model stability, MOAOA is introduced to optimize the parameter selection of the DELM model, which effectively solved the problems of low efficiency and poor stability of parameter selection. Secondly, four health indexes (HIs) are extracted from the charging and discharging process, and their correlation ability was verified using Pearson, Spearman and Kendall correlation coefficient. Finally, the MOAOA-DELM method is fully validated using the NASA battery dataset, and the prediction results are compared with traditional methods and other multi-objective algorithms. The results show that the MOAOA-DELM method has small prediction error, strong state tracking fitting ability, good generalization ability and robustness.
AbstractList Lithium-ion batteries (LIBs) experience aging degradation during long-term operation. Accurate prediction of the remaining useful life (RUL) in advance is crucial to ensure continuous and reliable energy supply of the battery management system (BMS). Aiming at the problem of limited robustness of deep extreme learning machine (DELM) in RUL prediction for LIBs, an improved multi-objective arithmetic optimization algorithm (MOAOA) is proposed to enhance the prediction ability of DELM. Firstly, in order to overcome the limitations of the traditional single-objective optimization algorithm in terms of model stability, MOAOA is introduced to optimize the parameter selection of the DELM model, which effectively solved the problems of low efficiency and poor stability of parameter selection. Secondly, four health indexes (HIs) are extracted from the charging and discharging process, and their correlation ability was verified using Pearson, Spearman and Kendall correlation coefficient. Finally, the MOAOA-DELM method is fully validated using the NASA battery dataset, and the prediction results are compared with traditional methods and other multi-objective algorithms. The results show that the MOAOA-DELM method has small prediction error, strong state tracking fitting ability, good generalization ability and robustness.
Author Ding, Guorong
Li, Linna
Huang, Zhong
Author_xml – sequence: 1
  givenname: Linna
  surname: Li
  fullname: Li, Linna
  email: lilinna@wust.edu.cn
  organization: College of Science, Wuhan University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Zhong
  orcidid: 0009-0007-2723-9168
  surname: Huang
  fullname: Huang, Zhong
  organization: College of Science, Wuhan University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Guorong
  surname: Ding
  fullname: Ding, Guorong
  email: dingguorong2022@163.com
  organization: Statistics Bureau of Maiji District, Tianshui, China
BookMark eNqFkc9u1DAQxiNUJErpE8DBEuds_SdOnON2WWClVIva7tly7MnWqyRebG8FvAPvjJtUqOKCL_aM5_eNx9_b7Gx0I2TZe4IXhOD6arlare_uFhRTtmCMYszFq-yckrLOGWfl2Yvzm-wyhANOS6QUr86z35vRWA86om8ejNXRuhF1zqPGxgd7GvJNiq9VjOAtBHS7a9Au2HGPbk59tPm2PSTWPgJa-gQMEK1G22O0g_2lJq1lv3fTVX6tAhj0CeCI1j-ihwFQA8qPk5rSD3aEd9nrTvUBLp_3i2z3eX2_-po32y-b1bLJdYHrmBNRdC0AbjsujDZF22JihC4ILXXbsc4wUxFualIrShjXwvDOUGEwA6hqA-wi28y6xqmDPHo7KP9TOmXllHB-L5VPo_QgDaecJr7DRVGkZrXQ3PBKta1hwoBIWh9nraN3308Qojy4kx_T8yUVVVlWpSB1qmJzlfYuBA_d364Eyycb5WyjfLJRPtuYqPofSts4_Wv0yvb_YT_MrAWAF91omSYi7A-Geq_y
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3486989
crossref_primary_10_1007_s11581_024_06049_4
crossref_primary_10_3390_batteries10060204
crossref_primary_10_1371_journal_pone_0312856
crossref_primary_10_1016_j_measurement_2025_118318
Cites_doi 10.1109/ACCESS.2020.3026552
10.1016/j.est.2023.107181
10.1016/j.microrel.2017.02.002
10.1016/j.apenergy.2021.117911
10.1016/j.renene.2019.04.157
10.1080/21642583.2019.1708830
10.1016/j.est.2022.104427
10.1016/j.rser.2019.109254
10.1016/j.ress.2021.108082
10.1109/TIE.2018.2808918
10.1016/j.atmosres.2023.106841
10.1016/j.neucom.2019.09.074
10.1016/j.jclepro.2020.121027
10.1155/2018/8358025
10.1016/j.future.2019.02.028
10.1016/j.ins.2020.02.066
10.1002/er.5934
10.1016/j.rser.2020.110017
10.1016/j.enconman.2020.113324
10.1016/j.egyr.2022.09.043
10.1016/j.apenergy.2022.118725
10.1016/j.jpowsour.2018.10.019
10.1109/TCYB.2019.2925534
10.1016/j.egyr.2022.02.188
10.1016/j.apenergy.2020.115646
10.1016/j.prime.2023.100166
10.1016/j.isci.2022.103988
10.1016/j.jpowsour.2020.228581
10.1049/cje.2020.10.012
10.1016/j.apenergy.2021.117449
10.1016/j.apenergy.2018.11.034
10.1109/TIA.2018.2874588
10.1016/j.jpowsour.2020.229154
10.1007/s42452-020-03885-7
10.1016/j.energy.2022.123178
10.1007/s00500-016-2474-6
10.1016/j.psep.2023.03.056
10.1016/j.est.2018.12.011
10.3390/technologies9020028
10.1016/j.energy.2022.123890
10.1016/j.neucom.2019.03.084
10.1016/j.rser.2019.109334
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3320058
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 110416
ExternalDocumentID oai_doaj_org_article_d5252d5ff0444dcd98c5d57abbd38de8
10_1109_ACCESS_2023_3320058
10265251
Genre orig-research
GrantInformation_xml – fundername: Hubei Key Laboratory of Blasting Engineering Foundation
  grantid: HKLBEF202009
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-184fbee0bf58dcd4bb01d8c4126cbf3fd3d715d919a2135c8d5fd28d03ee79de3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085390600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:46 EDT 2025
Mon Jun 30 06:49:05 EDT 2025
Tue Nov 18 21:08:07 EST 2025
Sat Nov 29 06:25:07 EST 2025
Wed Aug 27 02:49:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-184fbee0bf58dcd4bb01d8c4126cbf3fd3d715d919a2135c8d5fd28d03ee79de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-2723-9168
OpenAccessLink https://doaj.org/article/d5252d5ff0444dcd98c5d57abbd38de8
PQID 2876676819
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3320058
ieee_primary_10265251
proquest_journals_2876676819
doaj_primary_oai_doaj_org_article_d5252d5ff0444dcd98c5d57abbd38de8
crossref_citationtrail_10_1109_ACCESS_2023_3320058
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
reddivari (ref14) 2016
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref5
  doi: 10.1109/ACCESS.2020.3026552
– ident: ref41
  doi: 10.1016/j.est.2023.107181
– ident: ref7
  doi: 10.1016/j.microrel.2017.02.002
– ident: ref38
  doi: 10.1016/j.apenergy.2021.117911
– ident: ref34
  doi: 10.1016/j.renene.2019.04.157
– ident: ref27
  doi: 10.1080/21642583.2019.1708830
– ident: ref6
  doi: 10.1016/j.est.2022.104427
– ident: ref8
  doi: 10.1016/j.rser.2019.109254
– ident: ref16
  doi: 10.1016/j.ress.2021.108082
– ident: ref4
  doi: 10.1109/TIE.2018.2808918
– ident: ref33
  doi: 10.1016/j.atmosres.2023.106841
– ident: ref43
  doi: 10.1016/j.neucom.2019.09.074
– ident: ref35
  doi: 10.1016/j.jclepro.2020.121027
– ident: ref18
  doi: 10.1155/2018/8358025
– ident: ref28
  doi: 10.1016/j.future.2019.02.028
– ident: ref29
  doi: 10.1016/j.ins.2020.02.066
– ident: ref11
  doi: 10.1002/er.5934
– ident: ref23
  doi: 10.1016/j.rser.2020.110017
– ident: ref25
  doi: 10.1016/j.enconman.2020.113324
– ident: ref9
  doi: 10.1016/j.egyr.2022.09.043
– ident: ref37
  doi: 10.1016/j.apenergy.2022.118725
– ident: ref15
  doi: 10.1016/j.jpowsour.2018.10.019
– ident: ref32
  doi: 10.1109/TCYB.2019.2925534
– ident: ref20
  doi: 10.1016/j.egyr.2022.02.188
– ident: ref22
  doi: 10.1016/j.apenergy.2020.115646
– ident: ref13
  doi: 10.1016/j.prime.2023.100166
– ident: ref12
  doi: 10.1016/j.isci.2022.103988
– ident: ref17
  doi: 10.1016/j.jpowsour.2020.228581
– ident: ref10
  doi: 10.1049/cje.2020.10.012
– ident: ref39
  doi: 10.1016/j.apenergy.2021.117449
– ident: ref36
  doi: 10.1016/j.apenergy.2018.11.034
– ident: ref21
  doi: 10.1109/TIA.2018.2874588
– ident: ref19
  doi: 10.1016/j.jpowsour.2020.229154
– ident: ref30
  doi: 10.1007/s42452-020-03885-7
– ident: ref2
  doi: 10.1016/j.energy.2022.123178
– ident: ref26
  doi: 10.1007/s00500-016-2474-6
– ident: ref31
  doi: 10.1016/j.psep.2023.03.056
– start-page: 1
  year: 2016
  ident: ref14
  publication-title: Electrode-electrolyte interface layers in lithium ion batteries using reactive force field based molecular dynamics
– ident: ref24
  doi: 10.1016/j.est.2018.12.011
– ident: ref3
  doi: 10.3390/technologies9020028
– ident: ref42
  doi: 10.1016/j.energy.2022.123890
– ident: ref40
  doi: 10.1016/j.neucom.2019.03.084
– ident: ref1
  doi: 10.1016/j.rser.2019.109334
SSID ssj0000816957
Score 2.3226268
Snippet Lithium-ion batteries (LIBs) experience aging degradation during long-term operation. Accurate prediction of the remaining useful life (RUL) in advance is...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110400
SubjectTerms Aging
Algorithms
Arithmetic
Artificial neural networks
Batteries
Correlation coefficients
health indexes
Indexes
Integrated circuit modeling
Lithium-ion batteries
Lithium-ion batteries SOH estimation
Machine learning
Mathematical models
MOAOA-DELM
Multiple objective analysis
Optimization
Optimization algorithms
Optimization methods
Parameters
Prediction algorithms
Predictive models
Rechargeable batteries
Robustness
RUL prediction
Stability
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag4gAHHqWIhYJ84FgvfsSxc9wurahUtRWiUm9RbE_Kou5utc0i_gT_mfGjq6IKJG5JbMe2Pj9mxp5vCPmgvDay945xh-JbFQxnHUjPOHDPO4UpukvBJszJib24aM6Ks3ryhQGAdPkMxvExneWHpV9HUxnOcFlrGR2mHxpTZ2etjUElRpBotCnMQoI3HyfTKXZiHAOEj5WK5hP7x-6TSPpLVJV7S3HaXw6f_WfLnpOnRZCkk4z8C_IAFtvkyR16wZfk19Ei71j0bBXPYyIGFIVUejwbvs3Wc3aE75lgE_Vl-uX8mKYbBDR55bJT9z2vhlgJFphHd0d6ikvMvPhu0snV5TIlsX3cDAP9BHBND34O0eZIC3Mr_i3d14Qdcn548HX6mZXwC8yj0jcw1P16B8Bdr23woXKOi2B9JWTtXa_6oIIROjSi6aRQ2tug-yBt4ArANAHUK7K1WC7gNaGN097VHByvRCWc6Gwfaqcqy7ta1BpGRN7C0vrCTR5DZFy1SUfhTZuxbCOWbcFyRPY2ha4zNce_s-9HvDdZI692-oBAtmWatgFBlNiPPtLoYacb63XQpnMuKBsAf7ITwb9TX8Z9RHZvh09bFoGbFpXReIMYZa43fyn2ljyOTcwmnV2yNazW8I488j-G2c3qfRrfvwFaE_vN
  priority: 102
  providerName: IEEE
Title Indirect Prediction for Lithium-Ion Batteries RUL Using Multi-Objective Arithmetic Optimization Algorithm-Based Deep Extreme Learning Machine
URI https://ieeexplore.ieee.org/document/10265251
https://www.proquest.com/docview/2876676819
https://doaj.org/article/d5252d5ff0444dcd98c5d57abbd38de8
Volume 11
WOSCitedRecordID wos001085390600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ6oEeKtpSdctDPvRYgx9xYh-XZVGRKCAEEjcrfqTdil3QEhAn_gH_mfEDtKhSe-klUuI4jmcmnhln5huEvgonG945S6gF863yDSVt4I7QQB1tBbTINhWbaI6O1MWFPlko9RVjwjI8cCbcjpdcci-7LgKbeee1ctLLprXWC-VDSvOljV5wptIarFitZVNghhjVO8PRCGa0HauFbwsR91LUK1WUEPtLiZU_1uWkbPZX0btiJeJhfrv3aCnMPqC3C9iBH9HjwSyrI3wyjz9bIoExWKD4cNL_mtxOyQGcZ_RMcIbx6fkhTuEBOKXckmP7Oy91MAh0mMZcRnwM68e0JGbi4eXPq9REdkHTebwXwjUe3_dxQxEXWFZ4WgrGDGvofH98NvpOSm0F4sCj6wk4dp0NgdpOKqBqZS1lXrmK8drZTnRe-IZJr5luORPSKWCB58pTEUKjfRCf0PLsahY-I6ytdLamwdKKVcyyVnW-tqJStK1ZLcMA8WcyG1eAx2P9i0uTHBCqTeaNibwxhTcD9O2l03XG3fj77buRfy-3RtDsdAFEyRRRMv8SpQFai9xfGI_X0IUN0MazOJjyhd8Y8DRjeDAYVF_-x9jraCXOJ2_ubKDlfn4bNtEbd9dPbuZbSbjh-ONhvJVSFJ8AWR8B0Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQQQIOPIsIFPCBIw5-rHe9xzS0akRIK9RKvVlrexaCmqRKN4g_wX9m7HWjIgQSt921vbb1-TEz9nxDyFvldSVb7xh3KL4VoeKsAekZB-55ozBFNynYRDWbmfPz-iQ7qydfGABIl89gGB_TWX5Y-U00leEMl6WW0WH6ti4KyXt3ra1JJcaQqHWVuYUEr9-PxmPsxjCGCB8qFQ0o5rf9J9H057gqfyzGaYc5fPifbXtEHmRRko567B-TW7B8Qu7fIBh8Sn5Olv2eRU_W8UQmokBRTKXTefd1vlmwCb73FJuoMdPPZ1Oa7hDQ5JfLjt23fj3ESrDAIjo80mNcZBbZe5OOLr6sUhLbx-0w0A8Al_TgRxetjjRzt-Lf0o1N2CVnhwen4yOWAzAwj2pfx1D7ax0Ad602wYfCOS6C8YWQpXetaoMKldChFnUjhdLeBN0GaQJXAFUdQD0jO8vVEp4TWjvtXcnB8UIUwonGtKF0qjC8KUWpYUDkNSzWZ3byGCTjwiYthde2x9JGLG3GckDebQtd9uQc_86-H_HeZo3M2ukDAmnzRLUBQZTYjzYS6WGna-N10FXjXFAmAP5kN4J_o74e9wHZux4-Ni8DVxbV0XiHGKWuF38p9obcPTr9NLXTyezjS3IvNrc38OyRnW69gVfkjv_eza_Wr9NY_wWP0v8U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Prediction+for+Lithium-Ion+Batteries+RUL+Using+Multi-Objective+Arithmetic+Optimization+Algorithm-Based+Deep+Extreme+Learning+Machine&rft.jtitle=IEEE+access&rft.au=Li%2C+Linna&rft.au=Huang%2C+Zhong&rft.au=Ding%2C+Guorong&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=110400&rft.epage=110416&rft_id=info:doi/10.1109%2FACCESS.2023.3320058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3320058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon