Efficient and Adaptive Rendering of 2-D Continuous Scatterplots

We extend the rendering technique for continuous scatterplots to allow for a broad class of interpolation methods within the spatial grid instead of only linear interpolation. To do this, we propose an approach that projects the image of a cell from the spatial domain to the scatterplot domain. We a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 28; H. 3; S. 743 - 750
Hauptverfasser: Bachthaler, Sven, Weiskopf, Daniel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.06.2009
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the rendering technique for continuous scatterplots to allow for a broad class of interpolation methods within the spatial grid instead of only linear interpolation. To do this, we propose an approach that projects the image of a cell from the spatial domain to the scatterplot domain. We approximate this image using either the convex hull or an axis‐aligned rectangle that forms a tight fit of the projected points. In both cases, the approach relies on subdivision in the spatial domain to control the approximation error introduced in the scatterplot domain. Acceleration of this algorithm in homogeneous regions of the spatial domain is achieved using an octree hierarchy. The algorithm is scalable and adaptive since it allows us to balance computation time and scatterplot quality. We evaluate and discuss the results with respect to accuracy and computational speed. Our methods are applied to examples of 2‐D transfer function design.
Bibliographie:ark:/67375/WNG-DQW9RQV6-D
istex:FA634CEDC78AA27378A3EC37C5ABF1D0241B3936
ArticleID:CGF1478
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2009.01478.x