A Biorthogonal Wavelet Approach based on Dual Subdivision

In this paper a biorthogonal wavelet approach based on Doo‐Sabin subdivision is presented. In the dual subdivision like Doo‐Sabin scheme, all the old control vertices disappear after one subdivision step, which is a big challenge to the biorthogonal wavelet construction. In our approach, the barycen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 27; číslo 7; s. 1815 - 1822
Hlavní autoři: Zhang, Hui, Qin, Guiming, Qin, Kaihuai, Sun, Hanqiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.10.2008
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper a biorthogonal wavelet approach based on Doo‐Sabin subdivision is presented. In the dual subdivision like Doo‐Sabin scheme, all the old control vertices disappear after one subdivision step, which is a big challenge to the biorthogonal wavelet construction. In our approach, the barycenters of the V‐faces corresponding to the old vertices are selected as the vertices associated with the scaling functions to construct the scaling space. The lifting scheme is used to guarantee the fitting quality of the wavelet transform, and a local orthogonalization is introduced with a discrete inner product operation to improve the computation efficiency. Sharp feature modeling based on extended Doo‐Sabin subdivision rules is also discussed in the framework of our wavelet construction. The presented wavelet construction is proven to be stable and effective by the experimental results.
AbstractList In this paper a biorthogonal wavelet approach based on Doo‐Sabin subdivision is presented. In the dual subdivision like Doo‐Sabin scheme, all the old control vertices disappear after one subdivision step, which is a big challenge to the biorthogonal wavelet construction. In our approach, the barycenters of the V‐faces corresponding to the old vertices are selected as the vertices associated with the scaling functions to construct the scaling space. The lifting scheme is used to guarantee the fitting quality of the wavelet transform, and a local orthogonalization is introduced with a discrete inner product operation to improve the computation efficiency. Sharp feature modeling based on extended Doo‐Sabin subdivision rules is also discussed in the framework of our wavelet construction. The presented wavelet construction is proven to be stable and effective by the experimental results.
Author Qin, Guiming
Zhang, Hui
Sun, Hanqiu
Qin, Kaihuai
Author_xml – sequence: 1
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Department of Computer Science & Technology, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Guiming
  surname: Qin
  fullname: Qin, Guiming
  organization: Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Kaihuai
  surname: Qin
  fullname: Qin, Kaihuai
  organization: Department of Computer Science & Technology, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Hanqiu
  surname: Sun
  fullname: Sun, Hanqiu
  organization: Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong, China
BookMark eNqNkE9PwyAYxonRxPnnOzQevLVCgdIeNJnTTY3RgxqPbxilyuzKhHbOby91ZgdP48JD3ud5gN8B2m1soxGKCE5IWGezhLBMxHnGiyTFOE8woalIVjtosBnsogEmQQvM-T468H6GMWYi4wNUDKNLY137bt9sI-voVS51rdtouFg4K9V7NJVel5FtoqsujJ-6aWmWxhvbHKG9StZeH__th-hlfP08uonvHye3o-F9rBguRCzToqIVL3FJp2UQmkmuMy5SrlhKc6lyjYkqK8IFp4ypIpwrLqopy0shS0kP0em6Nzzos9O-hbnxSte1bLTtPNCMEpZTGown_4wz27nwKQ-kYBlnrGDBlK9Nylnvna5g4cxcum8gGHqgMIOeG_TcoAcKv0BhFaIX_6LKtLINKFonTb1Nwfm64MvU-nvri2E0Gfcq5ON13vhWrzZ56T4gE1RweH2YwM0zywW9o5DSHyHHnyY
CitedBy_id crossref_primary_10_1109_TVCG_2018_2845887
crossref_primary_10_1111_j_1467_8659_2009_01349_x
crossref_primary_10_1002_cav_410
Cites_doi 10.1109/2945.765329
10.1109/TVCG.2004.1260763
10.1145/218380.218439
10.1111/1467-8659.00572
10.1145/218380.218440
10.1109/TVCG.2004.1272731
10.1145/27625.27628
10.1016/0146-664X(74)90028-8
10.1109/TVCG.2007.1031
10.1007/s00371-006-0074-7
10.1006/acha.1996.0015
10.1016/j.cad.2004.08.008
10.1109/TVCG.2004.1260764
10.1007/s00607-003-0044-0
10.1016/S0377-0427(00)00370-8
10.1016/0010-4485(78)90110-0
10.1109/VISUAL.2000.885720
10.1145/280814.280942
10.1111/1467-8659.00361
10.1145/237748.237750
10.1016/0010-4485(78)90111-2
ContentType Journal Article
Copyright 2008 The Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
2008 The Eurographics Association and Blackwell Publishing Ltd.
Copyright_xml – notice: 2008 The Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.
– notice: 2008 The Eurographics Association and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/j.1467-8659.2008.01327.x
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList CrossRef
Technology Research Database

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 1822
ExternalDocumentID 1632724541
10_1111_j_1467_8659_2008_01327_x
CGF1327
ark_67375_WNG_HT4873J3_2
Genre article
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4097-a29f3f5d0d3bd3f5e4a5e65725c4238ac8e01cdf1575344c98e0f57fb48d7ada3
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262666000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Fri Sep 05 10:08:47 EDT 2025
Sun Nov 09 07:55:00 EST 2025
Sat Nov 29 03:41:03 EST 2025
Tue Nov 18 22:02:59 EST 2025
Wed Jan 22 16:39:12 EST 2025
Tue Nov 11 03:32:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4097-a29f3f5d0d3bd3f5e4a5e65725c4238ac8e01cdf1575344c98e0f57fb48d7ada3
Notes ark:/67375/WNG-HT4873J3-2
istex:EDFFA4576151C0A8F941AD610A14BE3674F468CC
ArticleID:CGF1327
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 194654494
PQPubID 30877
PageCount 8
ParticipantIDs proquest_miscellaneous_36314833
proquest_journals_194654494
crossref_primary_10_1111_j_1467_8659_2008_01327_x
crossref_citationtrail_10_1111_j_1467_8659_2008_01327_x
wiley_primary_10_1111_j_1467_8659_2008_01327_x_CGF1327
istex_primary_ark_67375_WNG_HT4873J3_2
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Computer graphics forum
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Bertram M., Duchaineau M. A., Hamann B., Joy K. I.: Generalized B-spline subdivision-surface wavelets for geometry compression. IEEE Transactions on Visualization and Computer Graphics 10, 3 (2004), 326-338.
Chaikin G. M.: An algorithm for high-speed curve generation. Computer Graphics and Image Processing 3 (1974), 346-349.
Nasri A. H.: A non-uniform Doo-Sabin subdivision scheme with boundary control. Tech. Rep. TR97/1, American University of Beirut, 1997.
Bonneau G.-P.: Multiresolution analysis on irregular surface meshes. IEEE Transactions on Visualization and Computer Graphics 4, 4 (1998), 365-378.
Samavati F. F., Mahdavi-Amiri N., Bartels R. H.: Multiresolution curve and surface editing: reversing subdivision rules by least-squares data fitting. Computer Graphics Forum 18, 2 (1999), 97-119.
Lounsbery J. M., DeRose T., Warren J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. on Graphics 16, 1 (1997), 34-73.
Sweldens W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Comput. 29, 2 (1997), 511-546.
Wang H., Qin K., Sun H.: √3-subdivision-based biorthogonal wavelets. IEEE Transactions on Visualization and Computer Graphics 13, 5 (2007), 914-924.
Bartels R. H., Samavati F. F.: Reversing subdivision rules: local linear conditions and observations on inner products. Journal of Computational and Applied Mathematics 119, 1-2 (2000), 29-67.
Sweldens W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal 3, 2 (1996), 186-200.
Valette S., Prost R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics 10, 2 (2004), 123-129.
Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355.
Wang H., Qin K., Tang K.: Efficient wavelet construction with Catmull-Clark subdivision. The Visual Computer 22, 9-11 (2006), 874-884.
Bertram M.: Biorthogonal Loop-subdivision wavelets. Computing 72, 1-2 (2004), 29-39.
Ma W.: Subdivision surfaces for CAD - an overview. Computer-Aided Design 37, 7 (2005), 693-709.
Nasri A. H.: Polyhedral subdivision methods for free-form surfaces. ACM Trans. on Graphics 6, 1 (1987), 29-73.
Samavati F. F., Mahdavi-Amiri N., Bartels R. H.: Multiresolution surfaces having arbitrary topologies by a reverse Doo subdivision method. Computer Graphics Forum 21, 2 (2002), 121-136.
Valette S., Prost R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Transactions on Visualization and Computer Graphics 10, 2 (2004), 113-122.
Doo D., Sabin M.: Behaviors of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360.
2004; 10
2004; 72
2000
1978; 10
1999; 18
2006; 22
2000; 119
1987; 6
2002; 21
1998
1997
1997; 29
1995
1997; 16
1994
2004
2005; 37
1998; 4
1996; 3
1974; 3
2007; 13
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
Nasri A. H. (e_1_2_7_16_2) 1997
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_20_2
Sweldens W. (e_1_2_7_21_2) 1997; 29
References_xml – reference: Bartels R. H., Samavati F. F.: Reversing subdivision rules: local linear conditions and observations on inner products. Journal of Computational and Applied Mathematics 119, 1-2 (2000), 29-67.
– reference: Nasri A. H.: A non-uniform Doo-Sabin subdivision scheme with boundary control. Tech. Rep. TR97/1, American University of Beirut, 1997.
– reference: Bertram M.: Biorthogonal Loop-subdivision wavelets. Computing 72, 1-2 (2004), 29-39.
– reference: Sweldens W.: The lifting scheme: A construction of second generation wavelets. SIAM J. Comput. 29, 2 (1997), 511-546.
– reference: Catmull E., Clark J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350-355.
– reference: Doo D., Sabin M.: Behaviors of recursive division surfaces near extraordinary points. Computer-Aided Design 10, 6 (1978), 356-360.
– reference: Wang H., Qin K., Tang K.: Efficient wavelet construction with Catmull-Clark subdivision. The Visual Computer 22, 9-11 (2006), 874-884.
– reference: Bertram M., Duchaineau M. A., Hamann B., Joy K. I.: Generalized B-spline subdivision-surface wavelets for geometry compression. IEEE Transactions on Visualization and Computer Graphics 10, 3 (2004), 326-338.
– reference: Valette S., Prost R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Transactions on Visualization and Computer Graphics 10, 2 (2004), 113-122.
– reference: Samavati F. F., Mahdavi-Amiri N., Bartels R. H.: Multiresolution curve and surface editing: reversing subdivision rules by least-squares data fitting. Computer Graphics Forum 18, 2 (1999), 97-119.
– reference: Wang H., Qin K., Sun H.: √3-subdivision-based biorthogonal wavelets. IEEE Transactions on Visualization and Computer Graphics 13, 5 (2007), 914-924.
– reference: Nasri A. H.: Polyhedral subdivision methods for free-form surfaces. ACM Trans. on Graphics 6, 1 (1987), 29-73.
– reference: Chaikin G. M.: An algorithm for high-speed curve generation. Computer Graphics and Image Processing 3 (1974), 346-349.
– reference: Sweldens W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal 3, 2 (1996), 186-200.
– reference: Valette S., Prost R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics 10, 2 (2004), 123-129.
– reference: Bonneau G.-P.: Multiresolution analysis on irregular surface meshes. IEEE Transactions on Visualization and Computer Graphics 4, 4 (1998), 365-378.
– reference: Ma W.: Subdivision surfaces for CAD - an overview. Computer-Aided Design 37, 7 (2005), 693-709.
– reference: Lounsbery J. M., DeRose T., Warren J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. on Graphics 16, 1 (1997), 34-73.
– reference: Samavati F. F., Mahdavi-Amiri N., Bartels R. H.: Multiresolution surfaces having arbitrary topologies by a reverse Doo subdivision method. Computer Graphics Forum 21, 2 (2002), 121-136.
– volume: 29
  start-page: 511
  issue: 2
  year: 1997
  end-page: 546
  article-title: The lifting scheme: A construction of second generation wavelets
  publication-title: SIAM J. Comput.
– start-page: 387
  year: 1998
  end-page: 394
– volume: 21
  start-page: 121
  issue: 2
  year: 2002
  end-page: 136
  article-title: Multiresolution surfaces having arbitrary topologies by a reverse Doo subdivision method
  publication-title: Computer Graphics Forum
– volume: 10
  start-page: 326
  issue: 3
  year: 2004
  end-page: 338
  article-title: Generalized B‐spline subdivision‐surface wavelets for geometry compression
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 4
  start-page: 365
  issue: 4
  year: 1998
  end-page: 378
  article-title: Multiresolution analysis on irregular surface meshes
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 173
  year: 1995
  end-page: 182
– volume: 10
  start-page: 123
  issue: 2
  year: 2004
  end-page: 129
  article-title: Wavelet‐based progressive compression scheme for triangle meshes: Wavemesh
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 10
  start-page: 113
  issue: 2
  year: 2004
  end-page: 122
  article-title: Wavelet‐based multiresolution analysis of irregular surface meshes
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 18
  start-page: 97
  issue: 2
  year: 1999
  end-page: 119
  article-title: Multiresolution curve and surface editing: reversing subdivision rules by least‐squares data fitting
  publication-title: Computer Graphics Forum
– volume: 72
  start-page: 29
  issue: 1‐2
  year: 2004
  end-page: 39
  article-title: Biorthogonal Loop‐subdivision wavelets
  publication-title: Computing
– year: 1994
– volume: 119
  start-page: 29
  issue: 1‐2
  year: 2000
  end-page: 67
  article-title: Reversing subdivision rules: local linear conditions and observations on inner products
  publication-title: Journal of Computational and Applied Mathematics
– volume: 10
  start-page: 356
  issue: 6
  year: 1978
  end-page: 360
  article-title: Behaviors of recursive division surfaces near extraordinary points
  publication-title: Computer-Aided Design
– volume: 37
  start-page: 693
  issue: 7
  year: 2005
  end-page: 709
  article-title: Subdivision surfaces for CAD ‐ an overview
  publication-title: Computer-Aided Design
– volume: 3
  start-page: 346
  year: 1974
  end-page: 349
  article-title: An algorithm for high‐speed curve generation
  publication-title: Computer Graphics and Image Processing
– start-page: 25
  year: 2004
  end-page: 33
– volume: 22
  start-page: 874
  issue: 9‐11
  year: 2006
  end-page: 884
  article-title: Efficient wavelet construction with Catmull‐Clark subdivision
  publication-title: The Visual Computer
– start-page: 161
  year: 1995
  end-page: 172
– volume: 13
  start-page: 914
  issue: 5
  year: 2007
  end-page: 924
  article-title: √3‐subdivision‐based biorthogonal wavelets
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– year: 1997
– volume: 6
  start-page: 29
  issue: 1
  year: 1987
  end-page: 73
  article-title: Polyhedral subdivision methods for free‐form surfaces
  publication-title: ACM Trans. on Graphics
– volume: 3
  start-page: 186
  issue: 2
  year: 1996
  end-page: 200
  article-title: The lifting scheme: A custom‐design construction of biorthogonal wavelets
  publication-title: Appl. Comput. Harmon. Anal
– volume: 10
  start-page: 350
  issue: 6
  year: 1978
  end-page: 355
  article-title: Recursively generated B‐spline surfaces on arbitrary topological meshes
  publication-title: Computer-Aided Design
– volume: 16
  start-page: 34
  issue: 1
  year: 1997
  end-page: 73
  article-title: Multiresolution analysis for surfaces of arbitrary topological type
  publication-title: ACM Trans. on Graphics
– start-page: 389
  year: 2000
  end-page: 396
– ident: e_1_2_7_5_2
  doi: 10.1109/2945.765329
– ident: e_1_2_7_13_2
– ident: e_1_2_7_22_2
  doi: 10.1109/TVCG.2004.1260763
– ident: e_1_2_7_27_2
– ident: e_1_2_7_19_2
  doi: 10.1145/218380.218439
– ident: e_1_2_7_18_2
  doi: 10.1111/1467-8659.00572
– ident: e_1_2_7_10_2
  doi: 10.1145/218380.218440
– ident: e_1_2_7_3_2
  doi: 10.1109/TVCG.2004.1272731
– ident: e_1_2_7_15_2
  doi: 10.1145/27625.27628
– ident: e_1_2_7_8_2
  doi: 10.1016/0146-664X(74)90028-8
– ident: e_1_2_7_12_2
– ident: e_1_2_7_24_2
  doi: 10.1109/TVCG.2007.1031
– ident: e_1_2_7_25_2
  doi: 10.1007/s00371-006-0074-7
– ident: e_1_2_7_20_2
  doi: 10.1006/acha.1996.0015
– ident: e_1_2_7_14_2
  doi: 10.1016/j.cad.2004.08.008
– ident: e_1_2_7_23_2
  doi: 10.1109/TVCG.2004.1260764
– ident: e_1_2_7_4_2
  doi: 10.1007/s00607-003-0044-0
– ident: e_1_2_7_6_2
  doi: 10.1016/S0377-0427(00)00370-8
– volume-title: A non‐uniform Doo‐Sabin subdivision scheme with boundary control
  year: 1997
  ident: e_1_2_7_16_2
– volume: 29
  start-page: 511
  issue: 2
  year: 1997
  ident: e_1_2_7_21_2
  article-title: The lifting scheme: A construction of second generation wavelets
  publication-title: SIAM J. Comput.
– ident: e_1_2_7_7_2
  doi: 10.1016/0010-4485(78)90110-0
– ident: e_1_2_7_2_2
  doi: 10.1109/VISUAL.2000.885720
– ident: e_1_2_7_26_2
  doi: 10.1145/280814.280942
– ident: e_1_2_7_17_2
  doi: 10.1111/1467-8659.00361
– ident: e_1_2_7_11_2
  doi: 10.1145/237748.237750
– ident: e_1_2_7_9_2
  doi: 10.1016/0010-4485(78)90111-2
SSID ssj0004765
Score 1.866722
Snippet In this paper a biorthogonal wavelet approach based on Doo‐Sabin subdivision is presented. In the dual subdivision like Doo‐Sabin scheme, all the old control...
In this paper a biorthogonal wavelet approach based on Doo-Sabin subdivision is presented. In the dual subdivision like Doo-Sabin scheme, all the old control...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1815
SubjectTerms and object representations
Hierarchy and geometric transformations
I.3.5 [Computational Geometry and Object Modeling]: Curve
I.3.5 [Computational Geometry and Object Modeling]: Curve, surface, solid, and object representations
solid
surface
Wavelet transforms
Title A Biorthogonal Wavelet Approach based on Dual Subdivision
URI https://api.istex.fr/ark:/67375/WNG-HT4873J3-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-8659.2008.01327.x
https://www.proquest.com/docview/194654494
https://www.proquest.com/docview/36314833
Volume 27
WOSCitedRecordID wos000262666000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED-hlgf2wOemBbaRB8RbpsYfcfxYykqFUIUQCN4sx4mnalM69QPx53OXuh0VPKBpb46Si5I7n_07-_w7gBOZcZtZpxJWoBkEL0SiEZckolLSIj5FSO-bYhNqOMwfHvR1yH-iszALfojVght5RjNek4PbYvrayfNM6pASiYGV-o54ss2wG4sWtM9v-ndXf09Jqkwumb6JQ2Y9r-fNd61NVm3S-9MaEn2JZ5sJqb_zP39lF7YDLI27i360BxtVvQ8fXpAVHoDuxmcj2uUZ_yT0Ht9bqlkxi7uBlTymCbGMx3V8PsfbOCLRUS9ajPsId_0ft71BEgovJI7orxLLtOdelp2SFyU2KmFllUnFpEP0lVuXV53UlT5FrMeFcBqvvVS-EHmpbGn5J2jV47r6jBoWXGGI6nXhMAgXHXzAecY6pUyLzDMbgVpq2LjASk7FMX6btehEGVJOqJlJyjFPEaQryT8LZo53yJw2RlwJ2MkvymxT0twPL8zgFsM3fskNi-BoaWUTnHpqUk3kc0KLCI5Xd9EbaYvF1tV4PjU84xhfch5B1hj83V9mehd9ah3-q-ARbLElVW_6BVqzybz6CpvucTaaTr4FX3gGpGIC5g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED9N7aTBw9j4EBkw8jDxlqmJ7Th-7IDSsa5CqAjeLMeJEQKlqB-IP393qVuo4AGhvTlyLorvfPbv_PE7gB8iZSY1VkZJjmbgLOeRQlwS8VIKg_gUIb2rk03Ifj-7ulJnPh0Q3YWZ8UMsFtzIM-rxmhycFqRfenmWCuXPRGJkJX8ioGxy7FWiAc2j885F7-mapEzFnOqbSGSWD_a8-q2l2apJin9cgqLPAW09I3XW_mtbvsBnD0zD9qwnfYUPZbUOq8_oCjdAtcNfN7TPM7wm_B5eGspaMQnbnpc8pCmxCIdVeDTFahyT6LIXLcdtwkXneHDYjXzqhcgSAVZkEuWYE0WrYHmBhZIbUaZCJsIi_sqMzcpWbAsXI9pjnFuFz05Il_OskKYwbAsa1bAqt1HFnEkMUp3KLYbhvIUvWJckrULEeeoSE4Ccq1hbz0tO6THu9FJ8IjUpx2fNJOXoxwDiheT9jJvjDTIHtRUXAmZ0S2fbpNCX_RPdHWAAx06ZTgLYmZtZe7ce61gR_RxXPID9RS36I22ymKocTseapQwjTMYCSGuLv_nP9OFJh0rf3iu4D5-6g7893fvd_7MDK8mcuDfehcZkNC334KN9mNyMR9-9Y_wDQdEG1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLkJw4I0IBZoD4ha0iV_xcemSFqhWFWrV3izHj6oCZat9oP58ZrLepSs4VIibI2eiZCZjf2N7vgF4JySz0jpVVC2agbOWFxpxScGDEhbxKUL62BebUJNJfX6uj1M5IMqFWfFDbBbcyDP68ZocPFz5-KeX11LodCYSIyv1AQHlgAst0UsH42_N6dHvNEklxZrqm0hktg_2_PVZW7PVgBR_vQVFbwLafkZqHv3Xb3kMDxMwzUerP-kJ3AndU3hwg67wGehR_vGS9nmmF4Tf8zNLVSsW-Sjxkuc0Jfp82uXjJXbjmETJXrQc9xxOm08n-4dFKr1QOCLAKmylI4vCDz1rPTYCtyJIoSrhEH_V1tVhWDofS0R7jHOn8ToKFVtee2W9ZS9gp5t24SWqmDOFQWrUrcMwnA_xBherauhF2cpY2QzUWsXGJV5yKo_xw2zFJ8qQclLVTFKOuc6g3Eherbg5biHzvrfiRsDOvtPZNiXM2eTAHJ5gAMe-MFNlsLs2s0luPTelJvo5rnkGe5te9EfaZLFdmC7nhkmGESZjGcje4rd-M7N_0FDr1b8K7sG943Fjjj5Pvu7C_WrN21u-hp3FbBnewF33c3E5n71NfvELvmMGUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Biorthogonal+Wavelet+Approach+based+on+Dual+Subdivision&rft.jtitle=Computer+graphics+forum&rft.au=Zhang%2C+Hui&rft.au=Qin%2C+Guiming&rft.au=Qin%2C+Kaihuai&rft.au=Sun%2C+Hanqiu&rft.date=2008-10-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=27&rft.issue=7&rft.spage=1815&rft.epage=1822&rft_id=info:doi/10.1111%2Fj.1467-8659.2008.01327.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1467_8659_2008_01327_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon