Visual language transformer framework for multimodal dance performance evaluation and progression monitoring

Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals’ sensorimotor skills and motion analysis. Recent studi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 15; číslo 1; s. 30649 - 22
Hlavný autor: Chen, Lei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 20.08.2025
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals’ sensorimotor skills and motion analysis. Recent studies on dance performance assessment primarily focus on evaluating simple dance movements using a single task, typically estimating final performance scores. We propose a novel transformer-based visual-language framework for multi-modal dance performance evaluation and progression monitoring. Our approach addresses two core challenges: the learning of feature representations for complex dance movements synchronized with music across diverse styles, genres, and expertise levels, and capturing the multi-task nature of dance performance evaluation. To achieve this, we integrate contrastive self-supervised learning, spatiotemporal graph convolutional networks (STGCN), long short-term memory networks (LSTM), and transformer-based text prompting. Our model evaluates three key tasks: (i) multilabel dance classification, (ii) dance quality estimation, and (iii) dance-music synchronization, leveraging primitive-based segmentation and multi-modal inputs. During the pre-training phase, we utilize contrastive loss to capture primitive-based features from complex dance motion and music data. For downstream tasks, we propose a transformer-based text prompting approach to conduct multi-task evaluations for the three assessment objectives. Our model outperforms in diverse downstream tasks. For multilabel dance classification, our model achieves a score of 75.20, representing a 10.25% improvement over CotrastiveDance, on the dance quality estimation task, the proposed model achieved a 92.09% lower loss on CotrastiveDance. For dance-music synchronization, our model excels with a score of 2.52, outperforming CotrastiveDance by 48.67%.
AbstractList Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals' sensorimotor skills and motion analysis. Recent studies on dance performance assessment primarily focus on evaluating simple dance movements using a single task, typically estimating final performance scores. We propose a novel transformer-based visual-language framework for multi-modal dance performance evaluation and progression monitoring. Our approach addresses two core challenges: the learning of feature representations for complex dance movements synchronized with music across diverse styles, genres, and expertise levels, and capturing the multi-task nature of dance performance evaluation. To achieve this, we integrate contrastive self-supervised learning, spatiotemporal graph convolutional networks (STGCN), long short-term memory networks (LSTM), and transformer-based text prompting. Our model evaluates three key tasks: (i) multilabel dance classification, (ii) dance quality estimation, and (iii) dance-music synchronization, leveraging primitive-based segmentation and multi-modal inputs. During the pre-training phase, we utilize contrastive loss to capture primitive-based features from complex dance motion and music data. For downstream tasks, we propose a transformer-based text prompting approach to conduct multi-task evaluations for the three assessment objectives. Our model outperforms in diverse downstream tasks. For multilabel dance classification, our model achieves a score of 75.20, representing a 10.25% improvement over CotrastiveDance, on the dance quality estimation task, the proposed model achieved a 92.09% lower loss on CotrastiveDance. For dance-music synchronization, our model excels with a score of 2.52, outperforming CotrastiveDance by 48.67%.
Abstract Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals’ sensorimotor skills and motion analysis. Recent studies on dance performance assessment primarily focus on evaluating simple dance movements using a single task, typically estimating final performance scores. We propose a novel transformer-based visual-language framework for multi-modal dance performance evaluation and progression monitoring. Our approach addresses two core challenges: the learning of feature representations for complex dance movements synchronized with music across diverse styles, genres, and expertise levels, and capturing the multi-task nature of dance performance evaluation. To achieve this, we integrate contrastive self-supervised learning, spatiotemporal graph convolutional networks (STGCN), long short-term memory networks (LSTM), and transformer-based text prompting. Our model evaluates three key tasks: (i) multilabel dance classification, (ii) dance quality estimation, and (iii) dance-music synchronization, leveraging primitive-based segmentation and multi-modal inputs. During the pre-training phase, we utilize contrastive loss to capture primitive-based features from complex dance motion and music data. For downstream tasks, we propose a transformer-based text prompting approach to conduct multi-task evaluations for the three assessment objectives. Our model outperforms in diverse downstream tasks. For multilabel dance classification, our model achieves a score of 75.20, representing a 10.25% improvement over CotrastiveDance, on the dance quality estimation task, the proposed model achieved a 92.09% lower loss on CotrastiveDance. For dance-music synchronization, our model excels with a score of 2.52, outperforming CotrastiveDance by 48.67%.
Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals' sensorimotor skills and motion analysis. Recent studies on dance performance assessment primarily focus on evaluating simple dance movements using a single task, typically estimating final performance scores. We propose a novel transformer-based visual-language framework for multi-modal dance performance evaluation and progression monitoring. Our approach addresses two core challenges: the learning of feature representations for complex dance movements synchronized with music across diverse styles, genres, and expertise levels, and capturing the multi-task nature of dance performance evaluation. To achieve this, we integrate contrastive self-supervised learning, spatiotemporal graph convolutional networks (STGCN), long short-term memory networks (LSTM), and transformer-based text prompting. Our model evaluates three key tasks: (i) multilabel dance classification, (ii) dance quality estimation, and (iii) dance-music synchronization, leveraging primitive-based segmentation and multi-modal inputs. During the pre-training phase, we utilize contrastive loss to capture primitive-based features from complex dance motion and music data. For downstream tasks, we propose a transformer-based text prompting approach to conduct multi-task evaluations for the three assessment objectives. Our model outperforms in diverse downstream tasks. For multilabel dance classification, our model achieves a score of 75.20, representing a 10.25% improvement over CotrastiveDance, on the dance quality estimation task, the proposed model achieved a 92.09% lower loss on CotrastiveDance. For dance-music synchronization, our model excels with a score of 2.52, outperforming CotrastiveDance by 48.67%.Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content. Research in automatic dance performance assessment has the potential to enhance individuals' sensorimotor skills and motion analysis. Recent studies on dance performance assessment primarily focus on evaluating simple dance movements using a single task, typically estimating final performance scores. We propose a novel transformer-based visual-language framework for multi-modal dance performance evaluation and progression monitoring. Our approach addresses two core challenges: the learning of feature representations for complex dance movements synchronized with music across diverse styles, genres, and expertise levels, and capturing the multi-task nature of dance performance evaluation. To achieve this, we integrate contrastive self-supervised learning, spatiotemporal graph convolutional networks (STGCN), long short-term memory networks (LSTM), and transformer-based text prompting. Our model evaluates three key tasks: (i) multilabel dance classification, (ii) dance quality estimation, and (iii) dance-music synchronization, leveraging primitive-based segmentation and multi-modal inputs. During the pre-training phase, we utilize contrastive loss to capture primitive-based features from complex dance motion and music data. For downstream tasks, we propose a transformer-based text prompting approach to conduct multi-task evaluations for the three assessment objectives. Our model outperforms in diverse downstream tasks. For multilabel dance classification, our model achieves a score of 75.20, representing a 10.25% improvement over CotrastiveDance, on the dance quality estimation task, the proposed model achieved a 92.09% lower loss on CotrastiveDance. For dance-music synchronization, our model excels with a score of 2.52, outperforming CotrastiveDance by 48.67%.
ArticleNumber 30649
Author Chen, Lei
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  email: 15208201601@163.com
  organization: Art College, Chengdu Sport University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40835876$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAkdh0E_DdzgqhikulSmyAreU4k-BDYh_spBVvX-eklJYF3sx4_M3v0cw8R0chBkDoJcFvCGb6beZENLrGVNREMi5q-gSdULw6jNKjB_4xOst5h8sRtOGkeYaOOdZMaCVP0Pjd58WO1WjDsNgBqjnZkPuYJkhVn-wENzH9rEqgmpZx9lPsCt3Z4KDaQ1rBgw_Xdlzs7GOobOiqfYpDgpzX-xSDn2PyYXiBnvZ2zHB2Z0_Rt48fvl58rq--fLq8eH9VO44bWivbtbIHSpWDlmhJG0y11KC0VLKhRHVtqzFhFjThQmjuSkMo1xYrVmDCTtHlpttFuzP75CebfptovTkEYhqMTbN3I5iShlvuuO2I4LYvtsVOKSIk56ptXdF6t2ntl3aCzkEoHRofiT5-Cf6HGeK1IZRJjXVTFM7vFFL8tUCezeSzg7G0HOKSDaNcciyI1AV9_Q-6i0sKpVcrRTjXWvBCvXpY0n0tf6ZaALoBLsWcE_T3CMFm3R6zbY8p22MO22NoSWJbUt6vs4L09-__ZN0CahrHig
Cites_doi 10.1109/DICTA51227.2020.9363408
10.1007/978-3-031-19827-4_41
10.1109/ACCESS.2022.3223444
10.1145/3485664
10.1109/CVPR42600.2020.00975
10.1109/CVPR52688.2022.01077
10.1109/CVPR52688.2022.00296
10.25080/Majora-7b98e3ed-003
10.1126/scirobotics.abm6010
10.1609/aaai.v32i1.12328
10.1145/3394171.3413560
10.1109/CVPR42600.2020.00986
10.1080/07420528.2024.2379579
10.1201/9781003338888
10.1016/j.neunet.2023.09.047
10.1145/3394171.3413932
10.1109/ACCESS.2020.2980891
10.1109/ICCV48922.2021.01315
10.1145/3197517.3201371
10.3389/fpsyg.2020.01000
10.1016/j.clinbiomech.2022.105619
10.1109/TNNLS.2020.2978386
10.1145/3474085.3475307
10.1109/ICASSP49357.2023.10096824
10.1109/ICASSP49357.2023.10094628
10.1109/ICCV.2017.236
10.1109/CVPR46437.2021.00940
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-16345-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Music
Dance
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_2480b4c4ad154af4adb0c77156447bbc
PMC12368089
40835876
10_1038_s41598_025_16345_2
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PUEGO
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4092-7adb6fe227ceb1862902868e786769217dbb8013ae8145584c038248a07362913
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:36:24 EDT 2025
Tue Nov 04 02:04:16 EST 2025
Sat Nov 01 14:19:49 EDT 2025
Tue Oct 07 07:45:29 EDT 2025
Thu Sep 04 05:05:43 EDT 2025
Sat Nov 29 07:34:17 EST 2025
Thu Aug 21 01:11:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Multimodal analysis
Graph convolutional network
Transformer
Dance performance monitoring
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4092-7adb6fe227ceb1862902868e786769217dbb8013ae8145584c038248a07362913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2480b4c4ad154af4adb0c77156447bbc
PMID 40835876
PQID 3241448854
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_2480b4c4ad154af4adb0c77156447bbc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12368089
proquest_miscellaneous_3246405168
proquest_journals_3241448854
pubmed_primary_40835876
crossref_primary_10_1038_s41598_025_16345_2
springer_journals_10_1038_s41598_025_16345_2
PublicationCentury 2000
PublicationDate 20250820
PublicationDateYYYYMMDD 2025-08-20
PublicationDate_xml – month: 8
  year: 2025
  text: 20250820
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Persine (16345_CR14) 2022; 94
16345_CR35
Y Zhong (16345_CR8) 2024; 38
16345_CR12
16345_CR17
A Davis (16345_CR30) 2018; 37
16345_CR19
16345_CR18
16345_CR7
ZK Abdul (16345_CR28) 2022; 10
16345_CR9
16345_CR20
16345_CR22
16345_CR21
K Chen (16345_CR1) 2021; 40
P Khosla (16345_CR34) 2020; 33
16345_CR4
16345_CR3
16345_CR6
16345_CR5
G Rekik (16345_CR15) 2024; 41
16345_CR24
16345_CR23
16345_CR26
16345_CR25
16345_CR29
B Li (16345_CR13) 2022; 36
16345_CR31
16345_CR11
SV Jaque (16345_CR2) 2020; 11
16345_CR10
16345_CR32
H Mukhtar (16345_CR16) 2023; 168
Z Wu (16345_CR27) 2020; 32
F Dai (16345_CR33) 2020; 8
References_xml – volume: 38
  start-page: 10270
  year: 2024
  ident: 16345_CR8
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 16345_CR18
  doi: 10.1109/DICTA51227.2020.9363408
– ident: 16345_CR12
  doi: 10.1007/978-3-031-19827-4_41
– volume: 10
  start-page: 122136
  year: 2022
  ident: 16345_CR28
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3223444
– ident: 16345_CR32
  doi: 10.1145/3485664
– ident: 16345_CR35
  doi: 10.1109/CVPR42600.2020.00975
– ident: 16345_CR6
  doi: 10.1109/CVPR52688.2022.01077
– ident: 16345_CR4
  doi: 10.1109/CVPR52688.2022.00296
– ident: 16345_CR26
  doi: 10.25080/Majora-7b98e3ed-003
– ident: 16345_CR21
  doi: 10.1126/scirobotics.abm6010
– ident: 16345_CR10
  doi: 10.1609/aaai.v32i1.12328
– ident: 16345_CR29
– ident: 16345_CR5
  doi: 10.1145/3394171.3413560
– ident: 16345_CR19
  doi: 10.1109/CVPR42600.2020.00986
– ident: 16345_CR9
– volume: 41
  start-page: 1093
  year: 2024
  ident: 16345_CR15
  publication-title: Chronobiol. Int.
  doi: 10.1080/07420528.2024.2379579
– ident: 16345_CR17
  doi: 10.1201/9781003338888
– volume: 168
  start-page: 363
  year: 2023
  ident: 16345_CR16
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.09.047
– ident: 16345_CR20
  doi: 10.1145/3394171.3413932
– volume: 8
  start-page: 53215
  year: 2020
  ident: 16345_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2980891
– volume: 33
  start-page: 18661
  year: 2020
  ident: 16345_CR34
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 16345_CR31
  doi: 10.1109/ICCV48922.2021.01315
– volume: 37
  start-page: 1
  year: 2018
  ident: 16345_CR30
  publication-title: ACM Trans. Graph. (TOG)
  doi: 10.1145/3197517.3201371
– ident: 16345_CR22
– volume: 36
  start-page: 1272
  year: 2022
  ident: 16345_CR13
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 16345_CR24
– volume: 11
  start-page: 1000
  year: 2020
  ident: 16345_CR2
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2020.01000
– volume: 94
  start-page: 105619
  year: 2022
  ident: 16345_CR14
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2022.105619
– volume: 32
  start-page: 4
  year: 2020
  ident: 16345_CR27
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– ident: 16345_CR23
  doi: 10.1145/3474085.3475307
– ident: 16345_CR7
  doi: 10.1109/ICASSP49357.2023.10096824
– volume: 40
  start-page: 1
  year: 2021
  ident: 16345_CR1
  publication-title: ACM Trans. Graph. (TOG)
– ident: 16345_CR25
  doi: 10.1109/ICASSP49357.2023.10094628
– ident: 16345_CR11
  doi: 10.1109/ICCV.2017.236
– ident: 16345_CR3
  doi: 10.1109/CVPR46437.2021.00940
SSID ssj0000529419
Score 2.4573777
Snippet Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and content....
Abstract Dance is often perceived as complex due to the need for coordinating multiple body movements and precisely aligning them with musical rhythm and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30649
SubjectTerms 639/705/1042
639/705/117
639/705/258
639/705/794
Adaptability
Choreography
Classification
Dance
Dance performance monitoring
Dancers & choreographers
Dancing - physiology
Deep learning
Genre
Graph convolutional network
Humanities and Social Sciences
Humans
Language
Learning
Literature reviews
Long short-term memory
Methods
multidisciplinary
Multimedia
Multimodal analysis
Music
Neural Networks, Computer
Performance assessment
Performance evaluation
Psychomotor Performance
Rhythm
Science
Science (multidisciplinary)
Sensorimotor system
Synchronization
Transformer
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BLki9UCiPBgoyEjeImjhO4pwQrVpxWlUIUG-WX6Er0WTZ7CLx75lxkl0tpVw4WUpGkZ152jP-BuBNXunSpVrHvsjqWFSmiI3Nq7jiXMu8stIaEZpNlLOZvLysLoYDt24oqxxtYjDUrrV0Rn6Mjh9jfylz8X7xI6auUZRdHVpo3IUpIZWJCUxPzmYXnzanLJTHEmk13JZJMnncoceiW2U8jzEUEXnMdzxSAO7_W7R5s2jyj8xpcEjn-_-7lIfwYAhF2Ydedh7BHd8cwP2-OeWvA5gGgcAxtIJ-DN-_zrs10o8nnGw1xrx-yeqxxovhAxaqFK9bh9SOPsIW2-sJbIsvznTjWCgQ68FB2HUwMLTcJ_Dl_Ozz6cd46NUQW9whYpCu6T6f57y0aP1xm0SoMIX0paQaWtz3OGPQGWbaS4JGl8IiM7iQGk0MEqfZU5g0beMPgYmydppLl-foOhOXGJlajpbJm9xndcEjeDvySy16SA4VUumZVD13FXJXBe4qpD4hlm4oCU47PGiX39SgnQonkhhhhXYYUeoaR5PYsiQgHVEaYyM4GjmpBh3v1JaNEbzevEbtpJSLbny7DjQFhsRpISN41svPZiaCol90RhHIHcnamerum2Z-FRDACTJHJrKK4N0ohNt53f4vnv97GS9gj5NeJGQ7j2CyWq79S7hnf67m3fLVoFq_AVSwLAM
  priority: 102
  providerName: ProQuest
Title Visual language transformer framework for multimodal dance performance evaluation and progression monitoring
URI https://link.springer.com/article/10.1038/s41598-025-16345-2
https://www.ncbi.nlm.nih.gov/pubmed/40835876
https://www.proquest.com/docview/3241448854
https://www.proquest.com/docview/3246405168
https://pubmed.ncbi.nlm.nih.gov/PMC12368089
https://doaj.org/article/2480b4c4ad154af4adb0c77156447bbc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0RNHCceHylqBYeuIgRoOVm246gr0Wy1DyT-PWMn2e3yEBcujmTPYTQznkc8_gzwqlRGNrkxqa-KNhXKVql1pUoV5wZL5dBZER-bkNMpzmaqvvbUV-gJ6-GBe8Edc4GZFU6YhoK9aelrMydlwDgR0loXvC9lPdeKqR7VmyuRq-GWTFbg8YoiVbhNxsuUUhBRpnwvEkXA_j9lmb83S_5yYhoD0dk9uDtkkOxtz_l9uOG7B3C7f1Pyx0P49mW-2tD6-COSrcfU1C9ZO7ZiMZpgsZnwctEQdROUz652twjYDgacma5hsY-rx_Bgl9EPBO4eweez00_v3qfDkwqpo0KOcmkTrt15zqUjJ03VTABvqdBLDK2uVJ401lLMKozHgGCOwpHsSAWGPAER58VjOOgWnX8KTMi2MRybsqQIlzWZxdxxciDelr5oK57A61G8-qpHztDxxLtA3StDkzJ0VIYm6pOggS1lQL2OE2QLerAF_S9bSOBo1J8etuJKU8ZIRSNiKRJ4uV2mTRRORkznF5tIU1HmmleYwJNe3VtOREhSKWYkgHuGsMfq_ko3v4hA3QHZBjNUCbwZbWbH199l8ex_yOI53OHB2LPgCI_gYL3c-Bdwy31fz1fLCdyUMxlHnMDhyem0_jiJO4jGc16HUdJ4WH84r7_-BEmeH94
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgQXHuUVKGAkOEHUxHFi54AQr6pVy4pDQXsztuPASjRZ9gHqn-I3MuNsdrW8bj1wipRMIsf5ZuaLPQ-AR3lpZJUaE_siq2NR2iK2Li_jknOj8tIpZ0VoNiEHAzUclu824EefC0Nhlb1NDIa6ah2tke-i40fur1Quno-_xtQ1inZX-xYaHSwO_el3_GWbPjt4jd_3Med7b45f7ceLrgKxw38ZpJOGMs8859KhnUJCT_VLCuWlomhPZOiVtWi2M-MVFfFWwiWZ4kIZVAYUTjN87jnYQjsuKYRMDuVyTYd2zURaLnJz8LbdKfpHymHjeYzER-QxX_N_oU3An7jt7yGav-zTBve3d-V_m7ircHlBtNmLTjOuwYZvtuFC13rzdBu2AtzxGBpdX4cvH0bTOcr367ds1jN6P2F1H8HG8AQLMZgnbYXSFT2EjVfJF2xVPZ2ZpmIh_K0rfcJOgvmk6b0B78_k1W_CZtM2_jYwIevKcFXlORKDpEqsSh1Hu-tt7rO64BE86fGhx13BER0CBTKlOzRpRJMOaNIo_ZIgtJSkYuHhRDv5pBe2R-NAEiucMBXyZVPj0SZOSioTJKS1LoKdHjl6YcGmegWbCB4uL6PtoQ0l0_h2HmQKJPxpoSK41eF1ORJB3B5dbQRqDclrQ12_0ow-h_rmVBBIJaqM4GkP-tW4_j4Xd_79Gg_g4v7x2yN9dDA4vAuXOOlkQl5iBzZnk7m_B-fdt9loOrkflJrBx7NWhp8mcoIz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tu4C48FhegQWMBCeImjpO4hwQApaK1ULVA6C9eW3HgUpsUpoWtH-NX8eMk7Qqr9seOEWKJ5HjfDPz2R7PADxKcp0VQ61Dl8ZlKHKThsYmeZhzrmWSW2mN8MUmsvFYHh3lky340Z-FobDK3iZ6Q13UltbIB-j4kftLmYhB2YVFTPZHz2dfQ6ogRTutfTmNFiKH7vQ7Tt-aZwf7-K8fcz56_f7Vm7CrMBBanNcgtdR0Cs1xnlm0WUjuKZdJKl0mKfIT2XphDJrwWDtJCb2lsFEsuZAaFQOFhzG-9xzsZNhG2vWOT1brO7SDJoZ5d04HHxs06CvpPBtPQiRBIgn5hi_0JQP-xHN_D9f8Zc_Wu8LRlf95EK_C5Y6AsxetxlyDLVftwoW2JOfpLux4NcCrL4B9Hb58nDZLlO_XddmiZ_puzso-so3hDeZjM0_qAqULegmbrQ9lsHVWdaargvmwuDYlCjvxZpWG-gZ8OJNPvwnbVV2528BEVhaayyJJkDBERWTk0HK0x84kLi5THsCTHitq1iYiUT6AIJaqRZZCZCmPLIXSLwlOK0lKIu5v1PNPqrNJCjsSGWGFLpBH6xKvJrJZRumDRGaMDWCvR5HqLFuj1hAK4OGqGW0SbTTpytVLL5PiRGCYygButdhd9UQQ50cXHIDcQPVGVzdbqulnn_ecEgXJSOYBPO0VYN2vv4_FnX9_xgO4iDqg3h6MD-_CJU7qGZHz2IPtxXzp7sF5-20xbeb3vX4zOD5rXfgJuSyLAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+language+transformer+framework+for+multimodal+dance+performance+evaluation+and+progression+monitoring&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Lei&rft.date=2025-08-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=30649&rft_id=info:doi/10.1038%2Fs41598-025-16345-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon