Optimal Placement of DGs in Distribution System Using an Improved Harris Hawks Optimizer Based on Single- and Multi-Objective Approaches
In this paper, improved single- and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for determining the optimal placement of distribution generation (DG) in the radial distribution systems. Harris hawks optimizer (HHO) is a anew ins...
Saved in:
| Published in: | IEEE access Vol. 8; p. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, improved single- and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for determining the optimal placement of distribution generation (DG) in the radial distribution systems. Harris hawks optimizer (HHO) is a anew inspired meta-heuristic optimization technique that is mainly based on the intelligence behavior of the Harris hawks in chasing prey. The IHHO and MOIHHO are applied for determining the optimal size and location of DG with the aim of minimizing the total active power loss, reducing the voltage deviation (VD), and increasing the voltage stability index (VSI) with considering operational constraints of distribution system. In IHHO, the performance of conventional HHO algorithm is improved using the rabbit location instead of the random location. In MOIHHO, a developed grey relation analysis is applied for identifying the best compromise solution among the non-dominance Pareto solutions. To verify the effectiveness of the proposed algorithms, IEEE 33-bus and IEEE 69-bus radial distribution systems are used, and the obtained results are compared with the other optimization techniques which utilized for the same problem. The results prove the efficiency of the proposed algorithms in terms of best solutions obtained so far for the single- and multi-objective scenarios. |
|---|---|
| AbstractList | In this paper, improved single- and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for determining the optimal placement of distribution generation (DG) in the radial distribution systems. Harris Hawks optimizer (HHO) is a new inspired meta-heuristic optimization technique that is mainly based on the intelligence behavior of the Harris hawks in chasing prey. The IHHO and MOIHHO are applied for determining the optimal size and location of DG at different operating power factors (p.f) with the aim of minimizing the total active power loss, reducing the voltage deviation (VD), and increasing the voltage stability index (VSI) considering the operational constraints of distribution system. In IHHO, the performance of the conventional HHO algorithm is improved using the rabbit location instead of the random location. In MOIHHO, grey relation analysis is applied for identifying the best compromise solution among the non-dominance Pareto solutions. To verify the effectiveness of the proposed algorithms, IEEE 33-bus and IEEE 69-bus radial distribution systems are used, and the obtained results are compared with those obtained by other optimization techniques. The results prove the efficiency of the proposed algorithms in terms of best solutions obtained so far for the single- and multi-objective scenarios. In this paper, improved single- and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for determining the optimal placement of distribution generation (DG) in the radial distribution systems. Harris hawks optimizer (HHO) is a anew inspired meta-heuristic optimization technique that is mainly based on the intelligence behavior of the Harris hawks in chasing prey. The IHHO and MOIHHO are applied for determining the optimal size and location of DG with the aim of minimizing the total active power loss, reducing the voltage deviation (VD), and increasing the voltage stability index (VSI) with considering operational constraints of distribution system. In IHHO, the performance of conventional HHO algorithm is improved using the rabbit location instead of the random location. In MOIHHO, a developed grey relation analysis is applied for identifying the best compromise solution among the non-dominance Pareto solutions. To verify the effectiveness of the proposed algorithms, IEEE 33-bus and IEEE 69-bus radial distribution systems are used, and the obtained results are compared with the other optimization techniques which utilized for the same problem. The results prove the efficiency of the proposed algorithms in terms of best solutions obtained so far for the single- and multi-objective scenarios. |
| Author | Kamel, Salah Jurado, Francisco Selim, Ali Alghamdi, Ali S. |
| Author_xml | – sequence: 1 givenname: Ali surname: Selim fullname: Selim, Ali organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, 81542 Aswan, Egypt and Department of Electrical Engineering, University of Jain, 23700 EPS Linares, Jaén, Spain – sequence: 2 givenname: Salah surname: Kamel fullname: Kamel, Salah organization: Department of Electrical Engineering, Faculty of Engineering, Aswan University, 81542 Aswan, Egypt and State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, China – sequence: 3 givenname: Ali S. surname: Alghamdi fullname: Alghamdi, Ali S. organization: Department of Electrical Engineering, College of Engineering, Majmaah University, Almajmaah 11952, Saudi Arabia – sequence: 4 givenname: Francisco surname: Jurado fullname: Jurado, Francisco organization: Department of Electrical Engineering, University of Jain, 23700 EPS Linares, Jaén, Spain. (e-mail: fjurado@ujaen.es) |
| BookMark | eNqFkcFuEzEQhleoSJTSJ-jFEucN412vsz6GtLSRioIUerZm7XFx2OwG2ykqT8Bj43SrCnHBl7F-z_ePR__b4mQYByqKCw4zzkF9WCyXV5vNrIIKZpVqoRLNq-K04lKVdVPLk7_ub4rzGLeQT5ulZn5a_F7vk99hz770aGhHQ2KjY5fXkfmBXfqYgu8OyY8D2zzGRDt2F_1wz3Bgq90-jA9k2Q2G4GMuP79H9mTnf1FgHzHmxyOYgZ7KzFj2-dAnX667LZnkH4gt9tkEzTeK74rXDvtI58_1rLj7dPV1eVPerq9Xy8VtaQS0qXRKSGudqzojFPF55ZoaOWKrALgUCqwk0UnjlBPOUQvYNdy0KMA5KzpbnxWrydeOuNX7kJcPj3pEr5-EMdxrDMmbnjRHQNuBki2REJ1qG2fMnLJGSlrA7PV-8spL_DhQTHo7HsKQv69zCGIupBR17qqnLhPGGAO5l6kc9DFBPSWojwnq5wQzpf6hjE94TCIF9P1_2IuJ9UT0Mk1BLYBD_Qcdka2l |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s00521_023_08327_0 crossref_primary_10_1007_s00366_021_01487_4 crossref_primary_10_1016_j_heliyon_2024_e39298 crossref_primary_10_1016_j_isatra_2021_05_029 crossref_primary_10_1109_ACCESS_2022_3155484 crossref_primary_10_3390_en13153847 crossref_primary_10_1016_j_heliyon_2024_e26254 crossref_primary_10_3390_en16103983 crossref_primary_10_1016_j_compeleceng_2025_110637 crossref_primary_10_1007_s00202_025_03290_6 crossref_primary_10_1038_s41598_025_02411_2 crossref_primary_10_1049_rpg2_12815 crossref_primary_10_1080_15567249_2020_1844346 crossref_primary_10_1017_S1479262123000886 crossref_primary_10_1016_j_egyr_2020_08_017 crossref_primary_10_1007_s12667_021_00484_2 crossref_primary_10_3390_en13226008 crossref_primary_10_3390_su15119034 crossref_primary_10_1007_s13369_023_08559_1 crossref_primary_10_1007_s00202_023_01772_z crossref_primary_10_1002_jnm_3298 crossref_primary_10_3390_en16052444 crossref_primary_10_1109_ACCESS_2021_3125135 crossref_primary_10_3390_su15054306 crossref_primary_10_1016_j_egyr_2020_08_018 crossref_primary_10_1016_j_epsr_2023_109850 crossref_primary_10_1080_00051144_2022_2130257 crossref_primary_10_1016_j_engappai_2022_105533 crossref_primary_10_1016_j_engappai_2023_105932 crossref_primary_10_1016_j_eswa_2025_126503 crossref_primary_10_3390_en15124406 crossref_primary_10_1049_gtd2_12484 crossref_primary_10_1109_TIA_2023_3236363 crossref_primary_10_1007_s00202_024_02631_1 crossref_primary_10_1109_ACCESS_2024_3486743 crossref_primary_10_1016_j_knosys_2021_107387 crossref_primary_10_1049_iet_rpg_2020_0713 crossref_primary_10_1109_ACCESS_2021_3111027 crossref_primary_10_1016_j_advengsoft_2021_102973 crossref_primary_10_1002_2050_7038_12551 crossref_primary_10_1109_ACCESS_2021_3058746 crossref_primary_10_1109_ACCESS_2021_3058589 crossref_primary_10_3390_a15080277 crossref_primary_10_1007_s00202_025_03004_y crossref_primary_10_1049_rpg2_13004 crossref_primary_10_1109_ACCESS_2020_3032560 crossref_primary_10_1038_s41598_025_87774_2 crossref_primary_10_1016_j_eswa_2020_114243 crossref_primary_10_1109_JSYST_2022_3172378 crossref_primary_10_1016_j_epsr_2024_111365 crossref_primary_10_1016_j_compeleceng_2023_108853 crossref_primary_10_1109_ACCESS_2020_3034349 crossref_primary_10_1080_15435075_2023_2207638 crossref_primary_10_1371_journal_pone_0281636 crossref_primary_10_1007_s11581_025_06568_8 crossref_primary_10_3390_technologies13070265 crossref_primary_10_1007_s11831_022_09780_1 crossref_primary_10_1016_j_engappai_2022_105479 crossref_primary_10_1515_ijeeps_2021_0067 crossref_primary_10_1007_s00202_024_02508_3 crossref_primary_10_1007_s41660_022_00277_9 crossref_primary_10_1080_15325008_2024_2322669 crossref_primary_10_1109_JSYST_2023_3250226 crossref_primary_10_3390_app14031077 crossref_primary_10_1088_1742_6596_2312_1_012023 crossref_primary_10_1038_s41598_024_79519_4 crossref_primary_10_1007_s42835_024_01885_w crossref_primary_10_1016_j_compeleceng_2025_110715 crossref_primary_10_1007_s00500_024_09823_8 crossref_primary_10_1155_2023_6777135 crossref_primary_10_1049_gtd2_13158 crossref_primary_10_3390_sym14050967 crossref_primary_10_1038_s41598_025_08227_4 crossref_primary_10_1111_exsy_12918 crossref_primary_10_1016_j_knosys_2020_106461 crossref_primary_10_1016_j_sciaf_2023_e01546 crossref_primary_10_1016_j_rineng_2025_106514 crossref_primary_10_1080_01430750_2025_2478140 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1109_ACCESS_2020_3002714 crossref_primary_10_1093_ce_zkac010 crossref_primary_10_1049_gtd2_13322 crossref_primary_10_1016_j_ref_2024_100550 crossref_primary_10_3390_s22030851 crossref_primary_10_1016_j_egyr_2024_08_067 crossref_primary_10_1515_ijeeps_2021_0001 crossref_primary_10_1109_ACCESS_2020_3048438 crossref_primary_10_1016_j_engappai_2022_105619 crossref_primary_10_1049_gtd2_12968 crossref_primary_10_1016_j_est_2024_115005 crossref_primary_10_1016_j_jer_2024_10_017 crossref_primary_10_1016_j_isatra_2021_09_019 crossref_primary_10_1080_15567036_2023_2211031 crossref_primary_10_1080_01430750_2022_2102068 crossref_primary_10_1049_rpg2_12636 crossref_primary_10_1093_jcde_qwac085 crossref_primary_10_1016_j_egyr_2020_10_002 crossref_primary_10_1109_ACCESS_2020_3011162 crossref_primary_10_1016_j_apenergy_2022_119513 crossref_primary_10_3390_su131810224 crossref_primary_10_1049_gtd2_70010 crossref_primary_10_3390_en14061744 crossref_primary_10_1109_ACCESS_2025_3544744 crossref_primary_10_1007_s00521_022_08103_6 crossref_primary_10_1007_s42835_023_01457_4 crossref_primary_10_3390_su15010384 crossref_primary_10_1007_s41660_022_00306_7 crossref_primary_10_1016_j_rineng_2024_102560 crossref_primary_10_1038_s41598_025_01378_4 |
| Cites_doi | 10.1109/TIE.2011.2112316 10.1016/j.ijepes.2014.09.020 10.1016/j.future.2019.02.028 10.1016/j.rser.2015.12.099 10.1016/j.ijepes.2011.08.023 10.1016/j.asoc.2019.105938 10.1016/j.ijepes.2014.06.011 10.1016/j.ijepes.2015.09.002 10.1049/iet-gtd.2016.2126 10.1109/ACCESS.2019.2961811 10.1109/61.19266 10.9781/ijimai.2018.11.001 10.1109/TPWRS.2005.846219 10.1109/TEVC.2004.826067 10.1016/j.cie.2007.12.002 10.1016/j.apenergy.2017.10.106 10.1186/s40807-017-0040-1 10.1016/j.jclepro.2019.118778 10.1016/j.ijepes.2018.08.040 10.1016/j.jestch.2016.11.009 10.1016/j.ijepes.2014.06.031 10.1016/j.swevo.2011.02.003 10.1016/j.ijepes.2015.07.034 10.1007/s00202-019-00878-7 10.1080/21563306.2011.10462202 10.1109/MPER.1989.4310642 10.1016/j.asej.2015.07.002 10.1016/j.rser.2016.10.071 10.1016/j.ijepes.2013.06.023 10.1109/ISGT-Asia.2019.8881761 10.1016/j.ijepes.2016.01.003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.2980245 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_1a0adb0968ee44b985fcc7eadbe96d0a 10_1109_ACCESS_2020_2980245 9034010 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-f946ddff2bc49e172f53a1aa890016490d6e4b6cf9f4ffe80ab51c8a40ffd4bd3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524748500136&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:32 EDT 2025 Sun Nov 30 05:17:38 EST 2025 Sat Nov 29 02:42:06 EST 2025 Tue Nov 18 22:29:02 EST 2025 Wed Aug 27 02:35:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f946ddff2bc49e172f53a1aa890016490d6e4b6cf9f4ffe80ab51c8a40ffd4bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9505-5386 0000-0002-0150-1064 0000-0001-8122-7415 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9034010 |
| PQID | 2454746643 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1a0adb0968ee44b985fcc7eadbe96d0a crossref_citationtrail_10_1109_ACCESS_2020_2980245 crossref_primary_10_1109_ACCESS_2020_2980245 proquest_journals_2454746643 ieee_primary_9034010 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 moradi (ref5) 2010 ref15 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref24 lai (ref1) 2008 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 schott (ref32) 1995 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref9 doi: 10.1109/TIE.2011.2112316 – ident: ref11 doi: 10.1016/j.ijepes.2014.09.020 – ident: ref25 doi: 10.1016/j.future.2019.02.028 – ident: ref3 doi: 10.1016/j.rser.2015.12.099 – ident: ref16 doi: 10.1016/j.ijepes.2011.08.023 – year: 1995 ident: ref32 article-title: Fault tolerant design using single and multicriteria genetic algorithm optimization – ident: ref15 doi: 10.1016/j.asoc.2019.105938 – ident: ref29 doi: 10.1016/j.ijepes.2014.06.011 – year: 2008 ident: ref1 publication-title: Distributed Generation Induction and Permanent Magnet Generators – ident: ref7 doi: 10.1016/j.ijepes.2015.09.002 – ident: ref24 doi: 10.1049/iet-gtd.2016.2126 – start-page: 614 year: 2010 ident: ref5 article-title: Optimal multi-distributed generation location and capacity by genetic algorithms publication-title: Proc 4th Int Power Eng Optim Conf (PEOCO) – ident: ref26 doi: 10.1109/ACCESS.2019.2961811 – ident: ref34 doi: 10.1109/61.19266 – ident: ref30 doi: 10.9781/ijimai.2018.11.001 – ident: ref8 doi: 10.1109/TPWRS.2005.846219 – ident: ref20 doi: 10.1109/TEVC.2004.826067 – ident: ref31 doi: 10.1016/j.cie.2007.12.002 – ident: ref28 doi: 10.1016/j.apenergy.2017.10.106 – ident: ref14 doi: 10.1186/s40807-017-0040-1 – ident: ref27 doi: 10.1016/j.jclepro.2019.118778 – ident: ref2 doi: 10.1016/j.ijepes.2018.08.040 – ident: ref13 doi: 10.1016/j.jestch.2016.11.009 – ident: ref17 doi: 10.1016/j.ijepes.2014.06.031 – ident: ref6 doi: 10.1016/j.swevo.2011.02.003 – ident: ref18 doi: 10.1016/j.ijepes.2015.07.034 – ident: ref21 doi: 10.1007/s00202-019-00878-7 – ident: ref10 doi: 10.1080/21563306.2011.10462202 – ident: ref33 doi: 10.1109/MPER.1989.4310642 – ident: ref12 doi: 10.1016/j.asej.2015.07.002 – ident: ref4 doi: 10.1016/j.rser.2016.10.071 – ident: ref19 doi: 10.1016/j.ijepes.2013.06.023 – ident: ref22 doi: 10.1109/ISGT-Asia.2019.8881761 – ident: ref23 doi: 10.1016/j.ijepes.2016.01.003 |
| SSID | ssj0000816957 |
| Score | 2.53277 |
| Snippet | In this paper, improved single- and multi-objective Harris Hawks Optimization algorithms, called IHHO and MOIHHO, respectively are proposed and applied for... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms DG placement Distribution systems Harris hawks optimizer Heuristic methods Multiple objective analysis Optimization Optimization techniques Placement power loss reduction Power losses reduction Radial distribution Single and multi-objective optimization voltage deviation Voltage deviation and voltage stability index Voltage stability |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqFAQCwX5wBFTO3ESz3G7pfSA2h4A9Wb5KS20KdosReIX8LMZP7pahAQXTpEijx17xvOy8w0hr5CtnpumY7btI5NCeWbVAExEbkJvfJS5FsGn98Ppqbq4gPOtUl_pTliBBy4LdyAMN96io61CkNKC6qJzA87fBuhxmKR9-QBbwVTWwUr00A0VZkhwOJgvFjgjDAgb_qYBlU4cfzNFGbG_llj5Qy9nY3O8Sx5UL5HOy9c9JHfC-Ijc38IO3CM_z3CzX2Gj85QITzk-eh3p0buJLkd6lOBwayUrWkDJab4cQM1ISx4heHpiVrjF8fH9y0Rzd8sfYUUP0bB5mgiR4DIwpPE0_6jLzuznoiDpvGKRh-kx-Xj89sPihNWyCsxJrtYsguy9j7GxTkJAByZ2rRHGKMh4W8B9H6TtXYQoYwyKG9sJp4zkMXppffuE7IzXY3hKqOlA2NCDFc6iYVNGeBPARwsmoKcQZqS5XWHtKuZ4Kn1xqXPswUEXtujEFl3ZMiOvN0RfC-TG35sfJtZtmia87PwCpUhXKdL_kqIZ2UuM33QCvMXAk8_I_q0g6Lq3J90kDLSEyt8--x9DPyf30nRKWmef7KxX38ILctfdrJfT6mUW61-6Ov4S priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimal Placement of DGs in Distribution System Using an Improved Harris Hawks Optimizer Based on Single- and Multi-Objective Approaches |
| URI | https://ieeexplore.ieee.org/document/9034010 https://www.proquest.com/docview/2454746643 https://doaj.org/article/1a0adb0968ee44b985fcc7eadbe96d0a |
| Volume | 8 |
| WOSCitedRecordID | wos000524748500136&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOFCiI7Us-cKxbJ3ES-7jdtvQAbQ-AerP8GEsLJYs22yJx4MzP7thxIxAIiUsSRR7L1mfP2GPPN4S8Rlg9N2XNbNUEJgrpmZWtYkXgBhrjg0i5CD6-bc_P5dWVulwj-2MsDACky2dwED_TWb5fuJvoKjtUvBIpnupB2zZDrNboT4kJJFTdZmKhgqvD6WyGfcAtYMkPSiXjGeNvxidx9OekKn9o4mReTjf-r2FPyZO8jKTTAfdnZA265-TxL-SCm-TnBWqDL1joMnrKYwV0Eejxm57OO3oc-XJzqis6sJbTdHuAmo4Ojgbw9MwsUQfg69vnnqbq5t9hSY_Q8nkaBVHgGhjKeJoiedmF_TRoUDrNZOXQvyAfTk_ez85YzrvAnOByxYISjfchlNYJBbjCCXVlCmOkSoRcivsGhG1cUEGEAJIbWxdOGsFD8ML66iVZ7xYdvCLU1Kqw0ChbOIuWT5rCG1A-WGUAlxIwIeU9INplUvKYG-Nap80JV3pAUUcUdUZxQvZHoa8DJ8e_ix9FpMeikVA7_UAIdZ6fujDceIv7OQkghFWyDs61OM0sqAZH84RsRtjHSjLiE7JzP250nvy9LiNJWqTtr7b-LrVNHsUGDp6cHbK-Wt7ALnnoblfzfrmX3AL4fPfjZC-N8Tv56Psn |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceJWKhQI-cGxaO3GynuN2S1nEsu2hoN4sP8bSQsmizRYkfgE_G9txIxAIiVOiyDNy9Nkz9tjzDSEvA6yO6bIuTNX4QnDpCiPHUHDPNDbaeZFqEXyYjxcLeXEBZ1tkf8iFQcR0-QwP4ms6y3crexVDZYfAKpHyqW7UIujos7WGiEosIQH1OFMLcQaHk-k0_EXYBJbsoAQZTxl_cz-JpT-XVfnDFicHc3Lv_7p2n9zNC0k66ZF_QLawfUju_EIvuEN-nAZ78Dk0Ooux8qiArjw9ft3RZUuPI2NuLnZFe95ymu4PUN3SPtSAjs70OliB8Pj2qaNJ3fI7rulR8H2ORsEgcIlFkHE05fIWp-Zjb0PpJNOVY_eIvD95dT6dFbnyQmEFk5vCg2ic8740VgCGNY6vK821lpAouYC5BoVprAcvvEfJtKm5lVow750wrtol2-2qxceE6hq4wQYMtyb4Pqm50wjOG9AYFhM4IuU1IMpmWvJYHeNSpe0JA9WjqCKKKqM4IvuD0JeelePfzY8i0kPTSKmdPgQIVZ6himumnQk7OokohAFZe2vHYaIZhCaM5xHZibAPSjLiI7J3PW5Unv6dKiNNWiTur578XeoFuTU7fzdX8zeLt0_J7djZPq6zR7Y36yt8Rm7ar5tlt36exvhPUPP8SA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Placement+of+DGs+in+Distribution+System+Using+an+Improved+Harris+Hawks+Optimizer+Based+on+Single-+and+Multi-Objective+Approaches&rft.jtitle=IEEE+access&rft.au=Selim%2C+Ali&rft.au=Kamel%2C+Salah&rft.au=Alghamdi%2C+Ali+S.&rft.au=Jurado%2C+Francisco&rft.date=2020-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=52815&rft.epage=52829&rft_id=info:doi/10.1109%2FACCESS.2020.2980245&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_2980245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |