Distributed Algorithms for Spectral and Energy-Efficiency Maximization of K-User Interference Channels

In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the minimum-weighted rate or the global EE, for the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 96948 - 96963
Hlavní autoři: Soleymani, Mohammad, Santamaria, Ignacio, Schreier, Peter J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the minimum-weighted rate or the global EE, for the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user interference channel. We focus on the single-input multiple-output (SIMO) case, where each user, based solely on local channel state information (CSI) and limited exchange information from other users, optimizes its transmit power and receive beamformer, although the framework can also be extended to the multiple-output multiple-input (MIMO) case. The distributed framework combines an alternating optimization approach with majorization-minimization (MM) techniques, thus ensuring convergence to a stationary point of the centralized cost function. Closed-form power update rules are obtained for some utility functions, thus obtaining very fast convergence algorithms. The receivers treat interference as noise (TIN) and apply the beamformers that maximize the signal-to-interference-plus-noise (SINR). The proposed cooperative distributed algorithms are robust against channel variations and network topology changes and, as our simulation results suggest, they perform close to the centralized solution that requires global CSI. As a benchmark, we also study a non-cooperative distributed framework based on the so-called "signal-to-leakage-plus-noise ratio" (SNLR) that further reduces the overhead of the cooperative version.
AbstractList In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the minimum-weighted rate or the global EE, for the <tex-math notation="LaTeX">$K$ </tex-math>-user interference channel. We focus on the single-input multiple-output (SIMO) case, where each user, based solely on local channel state information (CSI) and limited exchange information from other users, optimizes its transmit power and receive beamformer, although the framework can also be extended to the multiple-output multiple-input (MIMO) case. The distributed framework combines an alternating optimization approach with majorization-minimization (MM) techniques, thus ensuring convergence to a stationary point of the centralized cost function. Closed-form power update rules are obtained for some utility functions, thus obtaining very fast convergence algorithms. The receivers treat interference as noise (TIN) and apply the beamformers that maximize the signal-to-interference-plus-noise (SINR). The proposed cooperative distributed algorithms are robust against channel variations and network topology changes and, as our simulation results suggest, they perform close to the centralized solution that requires global CSI. As a benchmark, we also study a non-cooperative distributed framework based on the so-called "signal-to-leakage-plus-noise ratio" (SNLR) that further reduces the overhead of the cooperative version.
In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the minimum-weighted rate or the global EE, for the [Formula Omitted]-user interference channel. We focus on the single-input multiple-output (SIMO) case, where each user, based solely on local channel state information (CSI) and limited exchange information from other users, optimizes its transmit power and receive beamformer, although the framework can also be extended to the multiple-output multiple-input (MIMO) case. The distributed framework combines an alternating optimization approach with majorization-minimization (MM) techniques, thus ensuring convergence to a stationary point of the centralized cost function. Closed-form power update rules are obtained for some utility functions, thus obtaining very fast convergence algorithms. The receivers treat interference as noise (TIN) and apply the beamformers that maximize the signal-to-interference-plus-noise (SINR). The proposed cooperative distributed algorithms are robust against channel variations and network topology changes and, as our simulation results suggest, they perform close to the centralized solution that requires global CSI. As a benchmark, we also study a non-cooperative distributed framework based on the so-called “signal-to-leakage-plus-noise ratio” (SNLR) that further reduces the overhead of the cooperative version.
In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the minimum-weighted rate or the global EE, for the <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula>-user interference channel. We focus on the single-input multiple-output (SIMO) case, where each user, based solely on local channel state information (CSI) and limited exchange information from other users, optimizes its transmit power and receive beamformer, although the framework can also be extended to the multiple-output multiple-input (MIMO) case. The distributed framework combines an alternating optimization approach with majorization-minimization (MM) techniques, thus ensuring convergence to a stationary point of the centralized cost function. Closed-form power update rules are obtained for some utility functions, thus obtaining very fast convergence algorithms. The receivers treat interference as noise (TIN) and apply the beamformers that maximize the signal-to-interference-plus-noise (SINR). The proposed cooperative distributed algorithms are robust against channel variations and network topology changes and, as our simulation results suggest, they perform close to the centralized solution that requires global CSI. As a benchmark, we also study a non-cooperative distributed framework based on the so-called "signal-to-leakage-plus-noise ratio" (SNLR) that further reduces the overhead of the cooperative version.
Author Schreier, Peter J.
Santamaria, Ignacio
Soleymani, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0003-2770-7236
  surname: Soleymani
  fullname: Soleymani, Mohammad
  email: mohammad.soleymani@sst.upb.de
  organization: Signal and System Theory Group, Universität Paderborn, Paderborn, Germany
– sequence: 2
  givenname: Ignacio
  orcidid: 0000-0003-0040-7436
  surname: Santamaria
  fullname: Santamaria, Ignacio
  organization: Department of Communications Engineering, University of Cantabria, Santander, Spain
– sequence: 3
  givenname: Peter J.
  orcidid: 0000-0001-8481-7031
  surname: Schreier
  fullname: Schreier, Peter J.
  organization: Signal and System Theory Group, Universität Paderborn, Paderborn, Germany
BookMark eNp9kUFvGyEQhVdVKiVN8gtyQep5XVhgF47W1m2tpsrBzRmx7OBgrcEFLNX99SXZJKpyKBfQ6H1vhnkfqjMfPFTVDcELQrD8tOz71WazaHBDFhRLJrv2XXXRkFbWlNP27J_3eXWd0g6XI0qJdxeV_exSjm44ZhjRctqG6PLDPiEbItocwOSoJ6T9iFYe4vZUr6x1xoE3J_RD_3Z790dnFzwKFn2v7xNEtPYZooVYNID6B-09TOmqem_1lOD6-b6s7r-sfvbf6tu7r-t-eVsbhkWurZCcEdwNA20xJoySzmhOBqEbBqRjhDRamFG0Y6eFHDkdJIi2bbjUvGiBXlbr2XcMeqcO0e11PKmgnXoqhLhVOmZnJlCS2tKActbxkckBC8MtEx1tJBjGjS1eH2evQwy_jpCy2oVj9GV81XBOaMsEE0UlZ5WJIaUIVhmXn3ZSVucmRbB6TEnNKanHlNRzSoWlb9iXif9P3cyUA4BXQpZ_4JbSv7h3npM
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TSP_2022_3182501
crossref_primary_10_1109_TSP_2023_3259145
crossref_primary_10_1109_ACCESS_2023_3294092
crossref_primary_10_1109_TVT_2022_3222633
Cites_doi 10.1109/TSP.2010.2092773
10.1109/TSP.2017.2684748
10.1109/TSP.2011.2147784
10.1109/TVT.2016.2536734
10.1109/TVT.2020.3015558
10.1109/TSP.2016.2601299
10.1561/0100000088
10.1109/MSP.2009.933370
10.1109/JSTSP.2016.2523924
10.1109/TWC.2007.360373
10.1109/TSP.2020.3000328
10.1109/TSP.2019.2923141
10.1109/TCOMM.2019.2957482
10.1109/MSP.2010.936021
10.1109/JSAC.2016.2550338
10.1109/JSAC.2014.2328098
10.1109/TWC.2007.05960
10.1109/TSP.2018.2866382
10.1109/TSP.2018.2868265
10.1109/TCOMM.2018.2884986
10.1109/JSAC.2016.2621379
10.23919/EUSIPCO.2019.8903023
10.1109/TCCN.2017.2758370
10.1109/TCOMM.2019.2939310
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3094976
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96963
ExternalDocumentID oai_doaj_org_article_93f14335475d49b08c5f487329ec45cf
10_1109_ACCESS_2021_3094976
9475063
Genre orig-research
GrantInformation_xml – fundername: Ministerio de Ciencia e Innovación (Gobierno de España) / Agencia Española de Investigación (AEI) / FEDER funds of the European Union (EU)
  grantid: PID2019-104958RB-C43 (ADELE)
  funderid: 10.13039/100008725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f8954107bb360014317ca51b8a24e174112a8cd86d7a89d53b9e866259a5317e3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673590400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:08 EDT 2025
Sun Nov 30 05:19:37 EST 2025
Sat Nov 29 06:12:25 EST 2025
Tue Nov 18 22:27:33 EST 2025
Wed Aug 27 02:40:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f8954107bb360014317ca51b8a24e174112a8cd86d7a89d53b9e866259a5317e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2770-7236
0000-0003-0040-7436
0000-0001-8481-7031
OpenAccessLink https://doaj.org/article/93f14335475d49b08c5f487329ec45cf
PQID 2551364848
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_93f14335475d49b08c5f487329ec45cf
ieee_primary_9475063
proquest_journals_2551364848
crossref_citationtrail_10_1109_ACCESS_2021_3094976
crossref_primary_10_1109_ACCESS_2021_3094976
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
lanckriet (ref16) 2009
ref11
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
soleymani (ref10) 2021
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TSP.2010.2092773
– ident: ref14
  doi: 10.1109/TSP.2017.2684748
– ident: ref18
  doi: 10.1109/TSP.2011.2147784
– ident: ref22
  doi: 10.1109/TVT.2016.2536734
– ident: ref7
  doi: 10.1109/TVT.2020.3015558
– ident: ref15
  doi: 10.1109/TSP.2016.2601299
– ident: ref4
  doi: 10.1561/0100000088
– start-page: 1759
  year: 2009
  ident: ref16
  article-title: On the convergence of the concave-convex procedure
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/MSP.2009.933370
– ident: ref2
  doi: 10.1109/JSTSP.2016.2523924
– ident: ref26
  doi: 10.1109/TWC.2007.360373
– ident: ref5
  doi: 10.1109/TSP.2020.3000328
– ident: ref11
  doi: 10.1109/TSP.2019.2923141
– ident: ref6
  doi: 10.1109/TCOMM.2019.2957482
– start-page: 1
  year: 2021
  ident: ref10
  article-title: Rate region of the K-user MIMO interference channel with imperfect transmitters
  publication-title: Proc 28th Eur Signal Process Conf (EUSIPCO)
– ident: ref19
  doi: 10.1109/MSP.2010.936021
– ident: ref3
  doi: 10.1109/JSAC.2016.2550338
– ident: ref1
  doi: 10.1109/JSAC.2014.2328098
– ident: ref17
  doi: 10.1109/TWC.2007.05960
– ident: ref24
  doi: 10.1109/TSP.2018.2866382
– ident: ref13
  doi: 10.1109/TSP.2018.2868265
– ident: ref12
  doi: 10.1109/TCOMM.2018.2884986
– ident: ref23
  doi: 10.1109/JSAC.2016.2621379
– ident: ref9
  doi: 10.23919/EUSIPCO.2019.8903023
– ident: ref25
  doi: 10.1109/TCCN.2017.2758370
– ident: ref8
  doi: 10.1109/TCOMM.2019.2939310
SSID ssj0000816957
Score 2.239428
Snippet In this paper, we propose a cooperative distributed framework to optimize a variety of rate and energy-efficiency (EE) utility functions, such as the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96948
SubjectTerms Algorithms
Beamforming
Convergence
Cost function
Deep learning
Distributed algorithms
Energy conversion efficiency
energy-efficiency region
fairness rate
global energy efficiency
Interference
majorization minimization
Measurement
MIMO communication
Network topologies
Noise
Optimization
Signal to noise ratio
SIMO systems
sum-rate maximization
Utility functions
Wireless communication
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN66Csp3TYNOuQYJbu2nsftZkOgNOTQQG5CluR2IfGG3U3pz--MrJhASyEHgzGSkfxJnoc93wdwpGRTaS889220XBjluY0mcq9VI3QKRjW92IS-vDQ3N_ZqC46HWpiUUv75LJ3Qaf6WH5fhgVJlp1agfVP1NmxrrfparSGfQgISVupCLDQZ29PpbIZzwBCwmpzUGMVY4hV5YnwyR38RVfnrTZzNy_nr5w3sDbwqbiSb9ri_ha3UvYOXT8gF96A9I05ckrNKkU1vfyxXi83PuzVDL5WR6jylOJjvIpvn8j8-z2QSVInJvvnfi7tSoMmWLfvKr3Glspw9LPWBjMoSOjSs-3B9Pv8-u-BFVYEHMTYb3horBQZ9TVOTs0MORPBy0hhfiYTxCTpg3oRoVNTe2CjrxiajKEzyuF91qt_DTrfs0gdgKqB_mSpfSdNTJCHobV0R1S0eyo-genzcLhTKcVK-uHU59Bhb12PkCCNXMBrB8dDpvmfc-H_zL4Tj0JTosvMFBMiV3eds3eJEa4kwRWGbsQmyxUgNh5qCkKEdwR6BOtyk4DmCg8dV4crWXruKJHGUMMJ8_HevT7BLA-zzNAews1k9pM_wIvzaLNarw7xq_wAMOej3
  priority: 102
  providerName: IEEE
Title Distributed Algorithms for Spectral and Energy-Efficiency Maximization of K-User Interference Channels
URI https://ieeexplore.ieee.org/document/9475063
https://www.proquest.com/docview/2551364848
https://doaj.org/article/93f14335475d49b08c5f487329ec45cf
Volume 9
WOSCitedRecordID wos000673590400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA6LeFgPi49ddtYHOXg0a086z-M4jgiieFjBW0gnaRW0R5xZ8eRvtyodhwFhveyh-9CkH6mqJN8Xur4iZF_JhmsvPPNttEwY5ZmNJjKvVSN0CkY1fbEJfXFhrq_t5VKpL_wnrJcH7g13aOsWlvRaCi2jsE1lgmwBZNfcpiBkaHH2rbRdIlN5DjZDZaUuMkPDyh6OxmPoERBCPvxdA6exqDKytBRlxf5SYuXDvJwXm5N18q2gRDrqv26DfEndJllb0g7cIu0xSt5itaoU6ej-Zgos__ZhRgGEUiwqjzsY1HeRTnJ2H5tkrQhMtKTn_uXuoeRf0mlLz9gVBCLNm4Ml_Y9i1kEH6-Z3cnUy-TM-ZaVoAguiMnPWGisFcLqmqRHLID4IXg4b47lIQD8AX3kTolFRe2OjrBubjEIW5GE46lT_ICvdtEs_CVUB4GPinkvTKyCBT1swvOV4KD8g_N1-LhRFcSxsce8ys6is643u0OiuGH1ADhY3PfaCGv9ufoSOWTRFNex8AWLElRhxn8XIgGyhWxcPsdAQoNmA7Ly72ZWRO3McK94oYYT59T9evU2-Ynf6TZsdsjJ_-pt2yWp4nt_NnvZy0ML5_HWyl1MP3wCFcu0v
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5ibNK2w34BohvbfNgRQ5vYjn3sShETUO0AEjfLsZ2tEqRTW9D-_L3nmAhp0yQOkaLIjux8dt6P5H0fwBcl66JywnHXBMOFVo6boAN3lapFFb1WdSc2Uc1m-urKfN-A_b4WJsaYfj6LB3SavuWHhb-lVNmhEWjfVPkEnpJyVq7W6jMqJCFhZJWphUZDczieTHAWGAQWo4MS4xhDzCIPzE9i6c-yKn-9i5OBOX79uKG9gVfZkWTjDvm3sBHbd_DyAb3gFjRHxIpLglYxsPH1j8Vyvv55s2LopzLSnackB3NtYNNUAMiniU6CajHZufs9v8klmmzRsFN-iWuVpfxhrhBkVJjQomndhsvj6cXkhGddBe7FUK95o40UGPbVdUnuDrkQ3slRrV0hIkYo6II57YNWoXLaBFnWJmpFgZLDHVvFcgc220Ubd4Epjx5mLFwhdUeShLA3ZUFkt3goN4Di_nFbn0nHSfvi2qbgY2hsh5EljGzGaAD7fadfHefG_5t_JRz7pkSYnS4gQDbvP2vKBidaSoQpCFMPtZcNxmo41OiF9M0AtgjU_iYZzwHs3a8Kmzf3yhYkiqOEFvr9v3t9hucnF-dn9uzb7PQDvKDBdlmbPdhcL2_jR3jm79bz1fJTWsF_AFWa7EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Algorithms+for+Spectral+and+Energy-Efficiency+Maximization+of+K+-User+Interference+Channels&rft.jtitle=IEEE+access&rft.au=Soleymani%2C+Mohammad&rft.au=Santamaria%2C+Ignacio&rft.au=Schreier%2C+Peter+J.&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=96948&rft.epage=96963&rft_id=info:doi/10.1109%2FACCESS.2021.3094976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3094976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon