An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting

This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a res...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 1
Hlavní autoři: Massaoudi, Mohamed, Chihi, Ines, Sidhom, Lilia, Trabelsi, Mohamed, Refaat, Shady S., Abu-Rub, Haitham, Oueslati, Fakhreddine S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a residual error vector. Then, the stacked LSTM model, optimized by Tabu search algorithm, uses the residual error correction associated with the original data to produce a point and interval PVPF. The performance of the proposed PVPF technique was investigated using two real datasets with different scales and locations. The comparative analysis of the NARX-LSTM with twelve existing benchmarks confirms its superiority in terms of accuracy measures. In summary, the proposed NARX-LSTM technique has the following major achievements: 1) Improves the prediction performance of the original LSTM and NARXNN models; 2) Evaluates the uncertainties associated with point forecasts with high accuracy; 3) Provides a high generalization capability for PV systems with different scales. Numerical results of the comparison of the proposed NARX-LSTM method with two real-world PV systems in Australia and USA demonstrate its improved prediction accuracy, outperforming the benchmark approaches with an overall normalized Rooted Mean Squared Error (nRMSE) of 1.98% and 1.33% respectively.
AbstractList This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a residual error vector. Then, the stacked LSTM model, optimized by Tabu search algorithm, uses the residual error correction associated with the original data to produce a point and interval PVPF. The performance of the proposed PVPF technique was investigated using two real datasets with different scales and locations. The comparative analysis of the NARX-LSTM with twelve existing benchmarks confirms its superiority in terms of accuracy measures. In summary, the proposed NARX-LSTM technique has the following major achievements: 1) Improves the prediction performance of the original LSTM and NARXNN models; 2) Evaluates the uncertainties associated with point forecasts with high accuracy; 3) Provides a high generalization capability for PV systems with different scales. Numerical results of the comparison of the proposed NARX-LSTM method with two real-world PV systems in Australia and USA demonstrate its improved prediction accuracy, outperforming the benchmark approaches with an overall normalized Rooted Mean Squared Error (nRMSE) of 1.98% and 1.33% respectively.
Author Abu-Rub, Haitham
Trabelsi, Mohamed
Sidhom, Lilia
Oueslati, Fakhreddine S.
Chihi, Ines
Massaoudi, Mohamed
Refaat, Shady S.
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Massaoudi
  fullname: Massaoudi, Mohamed
  organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar and Laboratoire matériaux molécules et applications (LMMA) à l'IPEST, Carthage University, Tunis, Tunisia. (e-mail: mohamedsadeg_123@hotmail.com)
– sequence: 2
  givenname: Ines
  surname: Chihi
  fullname: Chihi, Ines
  organization: Laboratory of Energy Applications and Renewable Energy Efficiency (LAPER), El Manar University, Tunisia
– sequence: 3
  givenname: Lilia
  surname: Sidhom
  fullname: Sidhom, Lilia
  organization: Laboratory of Energy Applications and Renewable Energy Efficiency (LAPER), El Manar University, Tunisia
– sequence: 4
  givenname: Mohamed
  surname: Trabelsi
  fullname: Trabelsi, Mohamed
  organization: Department of Electronic and Communications Engineering, Kuwait College of Science and Technology, Kuwait
– sequence: 5
  givenname: Shady S.
  surname: Refaat
  fullname: Refaat, Shady S.
  organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 6
  givenname: Haitham
  surname: Abu-Rub
  fullname: Abu-Rub, Haitham
  organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
– sequence: 7
  givenname: Fakhreddine S.
  surname: Oueslati
  fullname: Oueslati, Fakhreddine S.
  organization: Laboratoire matériaux molécules et applications (LMMA) à l'IPEST, Carthage University, Tunis, Tunisia
BookMark eNqFUV1LHDEUDWJBa_0FvgT6PNskk695XJa1LqxVulZ8C0nmRrJME5uJiv--Y0ek9KX35V4O5-PC-YgOU06A0BklC0pJ92W5Wq13uwUjjC5aIplS8gAdMyq7phWtPPzrPkKn47gn0-gJEuoYXS0TXocAvsYnwBcvrsQef1t-v2u2u5tLfJl7GHDIBV_nmCq2qcebVKE82QFf307oMxR8ngt4O9aY7j-hD8EOI5y-7RP043x9s7potldfN6vltvGc6NoELVmgXninO-YIddMNWlIGgjJGAhFCONFaQaUinbLOB-ZcCJZJKR137QnazL59tnvzUOJPW15MttH8AXK5N7bU6Acw1AnneicgcMuF7h3RXCjriRQ2KM8mr8-z10PJvx5hrGafH0ua3jeMd1orxSWfWO3M8iWPY4HwnkqJeS3CzEWY1yLMWxGTqvtH5WO1NeZUi43Df7RnszYCwHta10reKdr-BqIplgA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3100105
crossref_primary_10_1049_tje2_12186
crossref_primary_10_1109_ACCESS_2025_3584859
crossref_primary_10_1007_s00202_024_02759_0
crossref_primary_10_1109_ACCESS_2023_3276646
crossref_primary_10_1016_j_ref_2025_100682
crossref_primary_10_1142_S0218126624502207
crossref_primary_10_1007_s00202_023_01805_7
crossref_primary_10_1080_19942060_2021_1974093
crossref_primary_10_1016_j_eswa_2025_127412
crossref_primary_10_1002_adts_202301289
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_1109_TIM_2021_3132053
crossref_primary_10_1155_2022_8169510
crossref_primary_10_1016_j_prime_2024_100433
crossref_primary_10_1088_1755_1315_1079_1_012067
crossref_primary_10_3390_en15062243
crossref_primary_10_3390_electronics11182935
crossref_primary_10_1016_j_energy_2022_125592
crossref_primary_10_1016_j_epsr_2024_110495
crossref_primary_10_1109_TIM_2022_3227552
crossref_primary_10_1109_TPWRS_2022_3146982
crossref_primary_10_1016_j_jastp_2025_106583
crossref_primary_10_3390_en15093320
crossref_primary_10_3390_en18112692
crossref_primary_10_3390_en15239008
crossref_primary_10_1109_ACCESS_2021_3125895
crossref_primary_10_1007_s12517_021_06982_y
crossref_primary_10_1016_j_energy_2022_125746
crossref_primary_10_3390_su15108266
crossref_primary_10_1109_ACCESS_2021_3117004
crossref_primary_10_3390_electricity6020029
crossref_primary_10_3390_en18133557
crossref_primary_10_1016_j_asoc_2024_112086
crossref_primary_10_1016_j_renene_2025_122687
crossref_primary_10_3390_app14188110
crossref_primary_10_1109_ACCESS_2025_3539463
crossref_primary_10_1016_j_ref_2025_100739
crossref_primary_10_1016_j_cej_2024_157476
crossref_primary_10_3390_math11061432
crossref_primary_10_1177_10775463241260111
crossref_primary_10_1016_j_egyr_2022_08_180
crossref_primary_10_1007_s11600_023_01241_y
crossref_primary_10_1109_ACCESS_2023_3287408
crossref_primary_10_3390_toxics12080554
crossref_primary_10_1038_s41597_025_04750_1
crossref_primary_10_3390_en14133992
crossref_primary_10_1016_j_energy_2023_128669
crossref_primary_10_1016_j_ast_2025_110045
crossref_primary_10_1007_s00607_024_01348_0
crossref_primary_10_1007_s12145_023_01020_9
crossref_primary_10_1007_s13762_023_05110_5
crossref_primary_10_1016_j_egyr_2022_09_077
crossref_primary_10_1515_teme_2021_0075
crossref_primary_10_1016_j_procs_2024_09_438
crossref_primary_10_3390_s24030882
crossref_primary_10_2298_TSCI2302133L
crossref_primary_10_1109_ACCESS_2022_3211387
crossref_primary_10_3390_app15116260
crossref_primary_10_1002_ese3_1875
crossref_primary_10_1016_j_egyr_2023_04_070
crossref_primary_10_3390_bioengineering9090482
crossref_primary_10_1016_j_energy_2022_124156
crossref_primary_10_3390_electronics13081545
Cites_doi 10.1109/78.650098
10.1016/j.rser.2014.07.113
10.1109/ACCESS.2018.2868478
10.1016/j.rser.2017.05.212
10.1109/TNNLS.2019.2918795
10.1016/j.apenergy.2019.01.193
10.1016/j.apenergy.2020.115023
10.1016/j.eswa.2019.07.025
10.1109/TIA.2020.3025742
10.1109/TIE.2018.2889611
10.1109/ACCESS.2020.2978635
10.1016/j.apenergy.2019.113842
10.1016/j.renene.2019.02.087
10.1016/j.jclepro.2019.119476
10.1049/iet-gtd.2020.0625
10.1109/IECON43393.2020.9255098
10.1007/978-3-030-36402-1_46
10.1016/j.solener.2017.07.052
10.1016/j.engappai.2019.103409
10.1109/KPEC47870.2020.9167596
10.1109/ICCOINS.2014.6868354
10.1016/j.ijforecast.2017.11.009
10.1016/j.energy.2020.118874
10.1049/iet-rpg.2018.5649
10.3390/en13205464
10.1145/2786984.2786995
10.1016/j.renene.2017.02.052
10.1016/j.jclepro.2020.123948
10.4018/IJGHPC.2017010106
10.1109/ACCESS.2019.2921238
10.1109/TSTE.2017.2762435
10.1016/j.apenergy.2020.114823
10.1016/j.jestch.2019.03.006
10.1109/TSTE.2018.2832634
10.1109/TII.2020.2987916
10.1109/TIE.2017.2714127
10.24963/ijcai.2017/366
10.1109/ACCESS.2019.2946057
10.1016/j.ijepes.2019.105790
10.1016/j.rser.2020.109792
10.3390/en13102576
10.1016/j.renene.2020.05.134
10.1109/TCOMM.2011.070511.110058
10.1080/10652469508819082
10.1016/j.rser.2017.08.017
10.1109/IECON.2019.8927778
10.1049/iet-rpg.2019.0949
10.1016/j.enconman.2017.10.008
10.1166/jctn.2013.2736
10.1016/j.enconman.2020.112766
10.1109/SGRE46976.2019.9020965
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3062776
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_1b5bbdb5ef4a458db08457ac065af7c2
10_1109_ACCESS_2021_3062776
9364971
Genre orig-research
GrantInformation_xml – fundername: NPRP100101170082
– fundername: Qatar National library
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f862f1c5cb892b01b1c5e8612e51220f0555b53a5167097abcf2bbffa2666b4b3
IEDL.DBID DOA
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:47 EDT 2025
Sun Jun 29 15:40:15 EDT 2025
Sat Nov 29 06:12:01 EST 2025
Tue Nov 18 21:15:17 EST 2025
Wed Aug 27 02:48:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f862f1c5cb892b01b1c5e8612e51220f0555b53a5167097abcf2bbffa2666b4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9388-2115
OpenAccessLink https://doaj.org/article/1b5bbdb5ef4a458db08457ac065af7c2
PQID 2498877464
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2021_3062776
doaj_primary_oai_doaj_org_article_1b5bbdb5ef4a458db08457ac065af7c2
ieee_primary_9364971
proquest_journals_2498877464
crossref_primary_10_1109_ACCESS_2021_3062776
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
adele kuzmiakova (ref44) 2020
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref47
ref42
ref41
ref49
ref8
ref7
ref9
blanke (ref48) 2019
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
chollet (ref46) 2020
ref24
ref23
ref26
ref25
ref20
(ref43) 2019
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1109/78.650098
– ident: ref1
  doi: 10.1016/j.rser.2014.07.113
– ident: ref14
  doi: 10.1109/ACCESS.2018.2868478
– year: 2020
  ident: ref44
  publication-title: Machine-Learning-for-Solar-Energy-Prediction
– ident: ref13
  doi: 10.1016/j.rser.2017.05.212
– ident: ref31
  doi: 10.1109/TNNLS.2019.2918795
– ident: ref19
  doi: 10.1016/j.apenergy.2019.01.193
– ident: ref50
  doi: 10.1016/j.apenergy.2020.115023
– ident: ref39
  doi: 10.1016/j.eswa.2019.07.025
– ident: ref23
  doi: 10.1109/TIA.2020.3025742
– ident: ref18
  doi: 10.1109/TIE.2018.2889611
– ident: ref21
  doi: 10.1109/ACCESS.2020.2978635
– ident: ref45
  doi: 10.1016/j.apenergy.2019.113842
– ident: ref38
  doi: 10.1016/j.renene.2019.02.087
– ident: ref5
  doi: 10.1016/j.jclepro.2019.119476
– ident: ref54
  doi: 10.1049/iet-gtd.2020.0625
– ident: ref7
  doi: 10.1109/IECON43393.2020.9255098
– ident: ref9
  doi: 10.1007/978-3-030-36402-1_46
– ident: ref53
  doi: 10.1016/j.solener.2017.07.052
– ident: ref52
  doi: 10.1016/j.engappai.2019.103409
– ident: ref3
  doi: 10.1109/KPEC47870.2020.9167596
– ident: ref37
  doi: 10.1109/ICCOINS.2014.6868354
– ident: ref29
  doi: 10.1016/j.ijforecast.2017.11.009
– ident: ref4
  doi: 10.1016/j.energy.2020.118874
– ident: ref10
  doi: 10.1049/iet-rpg.2018.5649
– ident: ref42
  doi: 10.3390/en13205464
– ident: ref47
  doi: 10.1145/2786984.2786995
– ident: ref11
  doi: 10.1016/j.renene.2017.02.052
– year: 2019
  ident: ref48
  publication-title: Hyperactive A Hyperparameter Optimization and Meta-Learning Toolbox for Machine-/Deep-Learning Models
– ident: ref24
  doi: 10.1016/j.jclepro.2020.123948
– ident: ref27
  doi: 10.4018/IJGHPC.2017010106
– year: 2020
  ident: ref46
  publication-title: Keras Deep Learning for humans
– ident: ref17
  doi: 10.1109/ACCESS.2019.2921238
– ident: ref49
  doi: 10.1109/TSTE.2017.2762435
– ident: ref32
  doi: 10.1016/j.apenergy.2020.114823
– ident: ref20
  doi: 10.1016/j.jestch.2019.03.006
– year: 2019
  ident: ref43
  publication-title: Download Data | DKA Solar Centre
– ident: ref16
  doi: 10.1109/TSTE.2018.2832634
– ident: ref22
  doi: 10.1109/TII.2020.2987916
– ident: ref15
  doi: 10.1109/TIE.2017.2714127
– ident: ref30
  doi: 10.24963/ijcai.2017/366
– ident: ref28
  doi: 10.1109/ACCESS.2019.2946057
– ident: ref26
  doi: 10.1016/j.ijepes.2019.105790
– ident: ref12
  doi: 10.1016/j.rser.2020.109792
– ident: ref34
  doi: 10.3390/en13102576
– ident: ref51
  doi: 10.1016/j.renene.2020.05.134
– ident: ref40
  doi: 10.1109/TCOMM.2011.070511.110058
– ident: ref41
  doi: 10.1080/10652469508819082
– ident: ref6
  doi: 10.1016/j.rser.2017.08.017
– ident: ref2
  doi: 10.1109/IECON.2019.8927778
– ident: ref55
  doi: 10.1049/iet-rpg.2019.0949
– ident: ref33
  doi: 10.1016/j.enconman.2017.10.008
– ident: ref36
  doi: 10.1166/jctn.2013.2736
– ident: ref25
  doi: 10.1016/j.enconman.2020.112766
– ident: ref8
  doi: 10.1109/SGRE46976.2019.9020965
SSID ssj0000816957
Score 2.5404081
Snippet This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Benchmarks
Computational modeling
Data acquisition
Data models
Error correction
Forecasting
Long Short-Term Memory (LSTM)
Mathematical models
Meteorology
Neural networks
Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN)
Photovoltaic cells
photovoltaic power forecasting
Predictive models
Regression analysis
Search algorithms
Tabu search
Tabu Search Algorithm (TSA)
Training
Uncertainty
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSxwxFA9WPLSH2taWrlrJoUdH5yOZTI7roniw69LasreQl0lAkFnZXRX_e9_LxEFoKXgLIRnezC_J-5i832PsO3GY16ry6JuokIlK2UwHXWWihYIWVWkBYrEJNZ0287mebbDDIRfGex8vn_kjasZ_-e3C3VGo7FhXtdCUMP5GqbrP1RriKVRAQkuViIWKXB-PJxN8B3QBy-KoIjZe4hV5oXwiR38qqvLXSRzVy9n26wT7wN4nM5KPe9w_sg3ffWLvXpAL7rDLccd7bmI80Pj5I6Vm8en45zy7-HX1g1MRtBuOJiufLa67Nbddy2N4EJcen_3B3ge_5FS509kV3Y3-zH6fnV5NzrNUPiFzIm_WWUBnJRROOmh0CXkB2PYNWjQelXyZB6L6AllZWRCHm7LgQgkQgkWdXYOA6gvb7Bad_8q4QD9K1HRhH61FD4oofpyTBUgrlS7KESufv6txiVucSlzcmOhj5Nr0YBgCwyQwRuxwmHTbU2v8f_gJATYMJV7s2IFImLTNDEoE0IL0QVghmxbyRkhlHRpaNiiHgu4QesNDEnAjtv8Mv0l7eGXQMcUTWIla7P571h57SwL2AZl9trle3vlvbMvdr69Xy4O4PJ8A_IPf9w
  priority: 102
  providerName: IEEE
Title An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting
URI https://ieeexplore.ieee.org/document/9364971
https://www.proquest.com/docview/2498877464
https://doaj.org/article/1b5bbdb5ef4a458db08457ac065af7c2
Volume 9
WOSCitedRecordID wos000626504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ4lAOqHyJpbDyoccG4sSO4-N2BeLAbleUor1ZHq8tIaGAdpdWvfS3d8YJq5WQ4MIliiLnw-PJzDzLfo-xr8RhXukyIDbRMZOldpmJpszkDAQ5VeEAktiEHo_r6dRM1qS-aE1YSw_cGu5cgAKYgQpROqnqGeS1VNp5TJ0uap-ib67NGphKMbgWlVG6oxkSuTkfDIfYIwSEhTgriZuXWEbWUlFi7O8kVl7F5ZRsLj-zna5K5IP263bZRmj22PYad-A--zFoeEs9jPGKX_2lnVd8PLiZZtc_b0ecNM4eOFakfPJ43yy5a2Y8zf6hZ_HJHV79E-achDm9W9DS5wP26_LidniVdeoImZd5vcwiYpEovPJQmwJyAXgeaixYAubwIo_E5AWqdEoQRZt24GMBEKPDlFyBhPKQbTaPTThiXCJMkhWtx8diMIAmBh_vFZreKW1E0WPFi6Gs76jDScHiwSYIkRvbWteSdW1n3R77trrpqWXOeLv5dxqBVVOivU4X0Bls5wz2PWfosX0av9VDTFlJo0WPnbyMp-1-0YVF3IkBVstKHn_Eq7-wT9SddnbmhG0u58_hlG3538v7xbyfvBOPo38X_bTH8D_M2OYk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lCuqDX7V4WjUPPnbb_Ug2m8fzsJx4PQ895d5CJptAoezJ3dXS_96ZbLoUFMG3EJJldn9J5mMzv2HsPXGY16ry6JuokIlK2UwHXWWihYIWVWkBYrEJNZ83q5Ve7LHjIRfGex8vn_kTasZ_-e3aXVGo7FRXtdCUMH6PKmelbK0hokIlJLRUiVqoyPXpeDLBt0AnsCxOKuLjJWaRO-onsvSnsip_nMVRwZw9-T_RnrLHyZDk4x75Z2zPd8_Zozv0ggfsy7jjPTsxHml8ekPJWXw-_rrKZt-W55zKoF1yNFr5Yn3R7bjtWh4DhLj4-OIH9l77Dafanc5u6Xb0C_b97ONyMs1SAYXMibzZZQHdlVA46aDRJeQFYNs3aNN4VPNlHojsC2RlZUEsbsqCCyVACBa1dg0CqkO23607_5JxgZ6UqOnKPtqLHhSR_DgnC5BWKl2UI1beflfjErs4Fbm4NNHLyLXpwTAEhklgjNjxMOlnT67x7-EfCLBhKDFjxw5EwqSNZlAigBakD8IK2bSQN0Iq69DUskE5FPSA0BsekoAbsaNb-E3axVuDrimewUrU4tXfZ71jD6bL85mZfZp_fs0ekrB9eOaI7e82V_4Nu-9-7S62m7dxqf4Gz1PjQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Hybrid+NARX-LSTM+Model+for+Point+and+Interval+PV+Power+Forecasting&rft.jtitle=IEEE+access&rft.au=Massaoudi%2C+Mohamed&rft.au=Chihi%2C+Ines&rft.au=Sidhom%2C+Lilia&rft.au=Trabelsi%2C+Mohamed&rft.date=2021-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=36571&rft.epage=36588&rft_id=info:doi/10.1109%2FACCESS.2021.3062776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3062776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon