An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting
This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a res...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a residual error vector. Then, the stacked LSTM model, optimized by Tabu search algorithm, uses the residual error correction associated with the original data to produce a point and interval PVPF. The performance of the proposed PVPF technique was investigated using two real datasets with different scales and locations. The comparative analysis of the NARX-LSTM with twelve existing benchmarks confirms its superiority in terms of accuracy measures. In summary, the proposed NARX-LSTM technique has the following major achievements: 1) Improves the prediction performance of the original LSTM and NARXNN models; 2) Evaluates the uncertainties associated with point forecasts with high accuracy; 3) Provides a high generalization capability for PV systems with different scales. Numerical results of the comparison of the proposed NARX-LSTM method with two real-world PV systems in Australia and USA demonstrate its improved prediction accuracy, outperforming the benchmark approaches with an overall normalized Rooted Mean Squared Error (nRMSE) of 1.98% and 1.33% respectively. |
|---|---|
| AbstractList | This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) with Long Short-Term Memory (LSTM) model. First, the NARXNN model acquires the data to generate a residual error vector. Then, the stacked LSTM model, optimized by Tabu search algorithm, uses the residual error correction associated with the original data to produce a point and interval PVPF. The performance of the proposed PVPF technique was investigated using two real datasets with different scales and locations. The comparative analysis of the NARX-LSTM with twelve existing benchmarks confirms its superiority in terms of accuracy measures. In summary, the proposed NARX-LSTM technique has the following major achievements: 1) Improves the prediction performance of the original LSTM and NARXNN models; 2) Evaluates the uncertainties associated with point forecasts with high accuracy; 3) Provides a high generalization capability for PV systems with different scales. Numerical results of the comparison of the proposed NARX-LSTM method with two real-world PV systems in Australia and USA demonstrate its improved prediction accuracy, outperforming the benchmark approaches with an overall normalized Rooted Mean Squared Error (nRMSE) of 1.98% and 1.33% respectively. |
| Author | Abu-Rub, Haitham Trabelsi, Mohamed Sidhom, Lilia Oueslati, Fakhreddine S. Chihi, Ines Massaoudi, Mohamed Refaat, Shady S. |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Massaoudi fullname: Massaoudi, Mohamed organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar and Laboratoire matériaux molécules et applications (LMMA) à l'IPEST, Carthage University, Tunis, Tunisia. (e-mail: mohamedsadeg_123@hotmail.com) – sequence: 2 givenname: Ines surname: Chihi fullname: Chihi, Ines organization: Laboratory of Energy Applications and Renewable Energy Efficiency (LAPER), El Manar University, Tunisia – sequence: 3 givenname: Lilia surname: Sidhom fullname: Sidhom, Lilia organization: Laboratory of Energy Applications and Renewable Energy Efficiency (LAPER), El Manar University, Tunisia – sequence: 4 givenname: Mohamed surname: Trabelsi fullname: Trabelsi, Mohamed organization: Department of Electronic and Communications Engineering, Kuwait College of Science and Technology, Kuwait – sequence: 5 givenname: Shady S. surname: Refaat fullname: Refaat, Shady S. organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 6 givenname: Haitham surname: Abu-Rub fullname: Abu-Rub, Haitham organization: Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar – sequence: 7 givenname: Fakhreddine S. surname: Oueslati fullname: Oueslati, Fakhreddine S. organization: Laboratoire matériaux molécules et applications (LMMA) à l'IPEST, Carthage University, Tunis, Tunisia |
| BookMark | eNqFUV1LHDEUDWJBa_0FvgT6PNskk695XJa1LqxVulZ8C0nmRrJME5uJiv--Y0ek9KX35V4O5-PC-YgOU06A0BklC0pJ92W5Wq13uwUjjC5aIplS8gAdMyq7phWtPPzrPkKn47gn0-gJEuoYXS0TXocAvsYnwBcvrsQef1t-v2u2u5tLfJl7GHDIBV_nmCq2qcebVKE82QFf307oMxR8ngt4O9aY7j-hD8EOI5y-7RP043x9s7potldfN6vltvGc6NoELVmgXninO-YIddMNWlIGgjJGAhFCONFaQaUinbLOB-ZcCJZJKR137QnazL59tnvzUOJPW15MttH8AXK5N7bU6Acw1AnneicgcMuF7h3RXCjriRQ2KM8mr8-z10PJvx5hrGafH0ua3jeMd1orxSWfWO3M8iWPY4HwnkqJeS3CzEWY1yLMWxGTqvtH5WO1NeZUi43Df7RnszYCwHta10reKdr-BqIplgA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3100105 crossref_primary_10_1049_tje2_12186 crossref_primary_10_1109_ACCESS_2025_3584859 crossref_primary_10_1007_s00202_024_02759_0 crossref_primary_10_1109_ACCESS_2023_3276646 crossref_primary_10_1016_j_ref_2025_100682 crossref_primary_10_1142_S0218126624502207 crossref_primary_10_1007_s00202_023_01805_7 crossref_primary_10_1080_19942060_2021_1974093 crossref_primary_10_1016_j_eswa_2025_127412 crossref_primary_10_1002_adts_202301289 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_1109_TIM_2021_3132053 crossref_primary_10_1155_2022_8169510 crossref_primary_10_1016_j_prime_2024_100433 crossref_primary_10_1088_1755_1315_1079_1_012067 crossref_primary_10_3390_en15062243 crossref_primary_10_3390_electronics11182935 crossref_primary_10_1016_j_energy_2022_125592 crossref_primary_10_1016_j_epsr_2024_110495 crossref_primary_10_1109_TIM_2022_3227552 crossref_primary_10_1109_TPWRS_2022_3146982 crossref_primary_10_1016_j_jastp_2025_106583 crossref_primary_10_3390_en15093320 crossref_primary_10_3390_en18112692 crossref_primary_10_3390_en15239008 crossref_primary_10_1109_ACCESS_2021_3125895 crossref_primary_10_1007_s12517_021_06982_y crossref_primary_10_1016_j_energy_2022_125746 crossref_primary_10_3390_su15108266 crossref_primary_10_1109_ACCESS_2021_3117004 crossref_primary_10_3390_electricity6020029 crossref_primary_10_3390_en18133557 crossref_primary_10_1016_j_asoc_2024_112086 crossref_primary_10_1016_j_renene_2025_122687 crossref_primary_10_3390_app14188110 crossref_primary_10_1109_ACCESS_2025_3539463 crossref_primary_10_1016_j_ref_2025_100739 crossref_primary_10_1016_j_cej_2024_157476 crossref_primary_10_3390_math11061432 crossref_primary_10_1177_10775463241260111 crossref_primary_10_1016_j_egyr_2022_08_180 crossref_primary_10_1007_s11600_023_01241_y crossref_primary_10_1109_ACCESS_2023_3287408 crossref_primary_10_3390_toxics12080554 crossref_primary_10_1038_s41597_025_04750_1 crossref_primary_10_3390_en14133992 crossref_primary_10_1016_j_energy_2023_128669 crossref_primary_10_1016_j_ast_2025_110045 crossref_primary_10_1007_s00607_024_01348_0 crossref_primary_10_1007_s12145_023_01020_9 crossref_primary_10_1007_s13762_023_05110_5 crossref_primary_10_1016_j_egyr_2022_09_077 crossref_primary_10_1515_teme_2021_0075 crossref_primary_10_1016_j_procs_2024_09_438 crossref_primary_10_3390_s24030882 crossref_primary_10_2298_TSCI2302133L crossref_primary_10_1109_ACCESS_2022_3211387 crossref_primary_10_3390_app15116260 crossref_primary_10_1002_ese3_1875 crossref_primary_10_1016_j_egyr_2023_04_070 crossref_primary_10_3390_bioengineering9090482 crossref_primary_10_1016_j_energy_2022_124156 crossref_primary_10_3390_electronics13081545 |
| Cites_doi | 10.1109/78.650098 10.1016/j.rser.2014.07.113 10.1109/ACCESS.2018.2868478 10.1016/j.rser.2017.05.212 10.1109/TNNLS.2019.2918795 10.1016/j.apenergy.2019.01.193 10.1016/j.apenergy.2020.115023 10.1016/j.eswa.2019.07.025 10.1109/TIA.2020.3025742 10.1109/TIE.2018.2889611 10.1109/ACCESS.2020.2978635 10.1016/j.apenergy.2019.113842 10.1016/j.renene.2019.02.087 10.1016/j.jclepro.2019.119476 10.1049/iet-gtd.2020.0625 10.1109/IECON43393.2020.9255098 10.1007/978-3-030-36402-1_46 10.1016/j.solener.2017.07.052 10.1016/j.engappai.2019.103409 10.1109/KPEC47870.2020.9167596 10.1109/ICCOINS.2014.6868354 10.1016/j.ijforecast.2017.11.009 10.1016/j.energy.2020.118874 10.1049/iet-rpg.2018.5649 10.3390/en13205464 10.1145/2786984.2786995 10.1016/j.renene.2017.02.052 10.1016/j.jclepro.2020.123948 10.4018/IJGHPC.2017010106 10.1109/ACCESS.2019.2921238 10.1109/TSTE.2017.2762435 10.1016/j.apenergy.2020.114823 10.1016/j.jestch.2019.03.006 10.1109/TSTE.2018.2832634 10.1109/TII.2020.2987916 10.1109/TIE.2017.2714127 10.24963/ijcai.2017/366 10.1109/ACCESS.2019.2946057 10.1016/j.ijepes.2019.105790 10.1016/j.rser.2020.109792 10.3390/en13102576 10.1016/j.renene.2020.05.134 10.1109/TCOMM.2011.070511.110058 10.1080/10652469508819082 10.1016/j.rser.2017.08.017 10.1109/IECON.2019.8927778 10.1049/iet-rpg.2019.0949 10.1016/j.enconman.2017.10.008 10.1166/jctn.2013.2736 10.1016/j.enconman.2020.112766 10.1109/SGRE46976.2019.9020965 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3062776 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_1b5bbdb5ef4a458db08457ac065af7c2 10_1109_ACCESS_2021_3062776 9364971 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NPRP100101170082 – fundername: Qatar National library |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-f862f1c5cb892b01b1c5e8612e51220f0555b53a5167097abcf2bbffa2666b4b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:42:47 EDT 2025 Sun Jun 29 15:40:15 EDT 2025 Sat Nov 29 06:12:01 EST 2025 Tue Nov 18 21:15:17 EST 2025 Wed Aug 27 02:48:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f862f1c5cb892b01b1c5e8612e51220f0555b53a5167097abcf2bbffa2666b4b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9388-2115 |
| OpenAccessLink | https://doaj.org/article/1b5bbdb5ef4a458db08457ac065af7c2 |
| PQID | 2498877464 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2021_3062776 doaj_primary_oai_doaj_org_article_1b5bbdb5ef4a458db08457ac065af7c2 ieee_primary_9364971 proquest_journals_2498877464 crossref_primary_10_1109_ACCESS_2021_3062776 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 adele kuzmiakova (ref44) 2020 ref17 ref16 ref19 ref18 ref51 ref50 ref45 ref47 ref42 ref41 ref49 ref8 ref7 ref9 blanke (ref48) 2019 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 chollet (ref46) 2020 ref24 ref23 ref26 ref25 ref20 (ref43) 2019 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref35 doi: 10.1109/78.650098 – ident: ref1 doi: 10.1016/j.rser.2014.07.113 – ident: ref14 doi: 10.1109/ACCESS.2018.2868478 – year: 2020 ident: ref44 publication-title: Machine-Learning-for-Solar-Energy-Prediction – ident: ref13 doi: 10.1016/j.rser.2017.05.212 – ident: ref31 doi: 10.1109/TNNLS.2019.2918795 – ident: ref19 doi: 10.1016/j.apenergy.2019.01.193 – ident: ref50 doi: 10.1016/j.apenergy.2020.115023 – ident: ref39 doi: 10.1016/j.eswa.2019.07.025 – ident: ref23 doi: 10.1109/TIA.2020.3025742 – ident: ref18 doi: 10.1109/TIE.2018.2889611 – ident: ref21 doi: 10.1109/ACCESS.2020.2978635 – ident: ref45 doi: 10.1016/j.apenergy.2019.113842 – ident: ref38 doi: 10.1016/j.renene.2019.02.087 – ident: ref5 doi: 10.1016/j.jclepro.2019.119476 – ident: ref54 doi: 10.1049/iet-gtd.2020.0625 – ident: ref7 doi: 10.1109/IECON43393.2020.9255098 – ident: ref9 doi: 10.1007/978-3-030-36402-1_46 – ident: ref53 doi: 10.1016/j.solener.2017.07.052 – ident: ref52 doi: 10.1016/j.engappai.2019.103409 – ident: ref3 doi: 10.1109/KPEC47870.2020.9167596 – ident: ref37 doi: 10.1109/ICCOINS.2014.6868354 – ident: ref29 doi: 10.1016/j.ijforecast.2017.11.009 – ident: ref4 doi: 10.1016/j.energy.2020.118874 – ident: ref10 doi: 10.1049/iet-rpg.2018.5649 – ident: ref42 doi: 10.3390/en13205464 – ident: ref47 doi: 10.1145/2786984.2786995 – ident: ref11 doi: 10.1016/j.renene.2017.02.052 – year: 2019 ident: ref48 publication-title: Hyperactive A Hyperparameter Optimization and Meta-Learning Toolbox for Machine-/Deep-Learning Models – ident: ref24 doi: 10.1016/j.jclepro.2020.123948 – ident: ref27 doi: 10.4018/IJGHPC.2017010106 – year: 2020 ident: ref46 publication-title: Keras Deep Learning for humans – ident: ref17 doi: 10.1109/ACCESS.2019.2921238 – ident: ref49 doi: 10.1109/TSTE.2017.2762435 – ident: ref32 doi: 10.1016/j.apenergy.2020.114823 – ident: ref20 doi: 10.1016/j.jestch.2019.03.006 – year: 2019 ident: ref43 publication-title: Download Data | DKA Solar Centre – ident: ref16 doi: 10.1109/TSTE.2018.2832634 – ident: ref22 doi: 10.1109/TII.2020.2987916 – ident: ref15 doi: 10.1109/TIE.2017.2714127 – ident: ref30 doi: 10.24963/ijcai.2017/366 – ident: ref28 doi: 10.1109/ACCESS.2019.2946057 – ident: ref26 doi: 10.1016/j.ijepes.2019.105790 – ident: ref12 doi: 10.1016/j.rser.2020.109792 – ident: ref34 doi: 10.3390/en13102576 – ident: ref51 doi: 10.1016/j.renene.2020.05.134 – ident: ref40 doi: 10.1109/TCOMM.2011.070511.110058 – ident: ref41 doi: 10.1080/10652469508819082 – ident: ref6 doi: 10.1016/j.rser.2017.08.017 – ident: ref2 doi: 10.1109/IECON.2019.8927778 – ident: ref55 doi: 10.1049/iet-rpg.2019.0949 – ident: ref33 doi: 10.1016/j.enconman.2017.10.008 – ident: ref36 doi: 10.1166/jctn.2013.2736 – ident: ref25 doi: 10.1016/j.enconman.2020.112766 – ident: ref8 doi: 10.1109/SGRE46976.2019.9020965 |
| SSID | ssj0000816957 |
| Score | 2.5404081 |
| Snippet | This paper proposes an effective Photovoltaic (PV) Power Forecasting (PVPF) technique based on hierarchical learning combining Nonlinear Auto-Regressive Neural... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Benchmarks Computational modeling Data acquisition Data models Error correction Forecasting Long Short-Term Memory (LSTM) Mathematical models Meteorology Neural networks Nonlinear Auto-Regressive Neural Networks with exogenous input (NARXNN) Photovoltaic cells photovoltaic power forecasting Predictive models Regression analysis Search algorithms Tabu search Tabu Search Algorithm (TSA) Training Uncertainty |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSxwxFA9WPLSH2taWrlrJoUdH5yOZTI7roniw69LasreQl0lAkFnZXRX_e9_LxEFoKXgLIRnezC_J-5i832PsO3GY16ry6JuokIlK2UwHXWWihYIWVWkBYrEJNZ0287mebbDDIRfGex8vn_kjasZ_-e3C3VGo7FhXtdCUMP5GqbrP1RriKVRAQkuViIWKXB-PJxN8B3QBy-KoIjZe4hV5oXwiR38qqvLXSRzVy9n26wT7wN4nM5KPe9w_sg3ffWLvXpAL7rDLccd7bmI80Pj5I6Vm8en45zy7-HX1g1MRtBuOJiufLa67Nbddy2N4EJcen_3B3ge_5FS509kV3Y3-zH6fnV5NzrNUPiFzIm_WWUBnJRROOmh0CXkB2PYNWjQelXyZB6L6AllZWRCHm7LgQgkQgkWdXYOA6gvb7Bad_8q4QD9K1HRhH61FD4oofpyTBUgrlS7KESufv6txiVucSlzcmOhj5Nr0YBgCwyQwRuxwmHTbU2v8f_gJATYMJV7s2IFImLTNDEoE0IL0QVghmxbyRkhlHRpaNiiHgu4QesNDEnAjtv8Mv0l7eGXQMcUTWIla7P571h57SwL2AZl9trle3vlvbMvdr69Xy4O4PJ8A_IPf9w priority: 102 providerName: IEEE |
| Title | An Effective Hybrid NARX-LSTM Model for Point and Interval PV Power Forecasting |
| URI | https://ieeexplore.ieee.org/document/9364971 https://www.proquest.com/docview/2498877464 https://doaj.org/article/1b5bbdb5ef4a458db08457ac065af7c2 |
| Volume | 9 |
| WOSCitedRecordID | wos000626504700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ4lAOqHyJpbDyoccG4sSO4-N2BeLAbleUor1ZHq8tIaGAdpdWvfS3d8YJq5WQ4MIliiLnw-PJzDzLfo-xr8RhXukyIDbRMZOldpmJpszkDAQ5VeEAktiEHo_r6dRM1qS-aE1YSw_cGu5cgAKYgQpROqnqGeS1VNp5TJ0uap-ib67NGphKMbgWlVG6oxkSuTkfDIfYIwSEhTgriZuXWEbWUlFi7O8kVl7F5ZRsLj-zna5K5IP263bZRmj22PYad-A--zFoeEs9jPGKX_2lnVd8PLiZZtc_b0ecNM4eOFakfPJ43yy5a2Y8zf6hZ_HJHV79E-achDm9W9DS5wP26_LidniVdeoImZd5vcwiYpEovPJQmwJyAXgeaixYAubwIo_E5AWqdEoQRZt24GMBEKPDlFyBhPKQbTaPTThiXCJMkhWtx8diMIAmBh_vFZreKW1E0WPFi6Gs76jDScHiwSYIkRvbWteSdW1n3R77trrpqWXOeLv5dxqBVVOivU4X0Bls5wz2PWfosX0av9VDTFlJo0WPnbyMp-1-0YVF3IkBVstKHn_Eq7-wT9SddnbmhG0u58_hlG3538v7xbyfvBOPo38X_bTH8D_M2OYk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lCuqDX7V4WjUPPnbb_Ug2m8fzsJx4PQ895d5CJptAoezJ3dXS_96ZbLoUFMG3EJJldn9J5mMzv2HsPXGY16ry6JuokIlK2UwHXWWihYIWVWkBYrEJNZ83q5Ve7LHjIRfGex8vn_kTasZ_-e3aXVGo7FRXtdCUMH6PKmelbK0hokIlJLRUiVqoyPXpeDLBt0AnsCxOKuLjJWaRO-onsvSnsip_nMVRwZw9-T_RnrLHyZDk4x75Z2zPd8_Zozv0ggfsy7jjPTsxHml8ekPJWXw-_rrKZt-W55zKoF1yNFr5Yn3R7bjtWh4DhLj4-OIH9l77Dafanc5u6Xb0C_b97ONyMs1SAYXMibzZZQHdlVA46aDRJeQFYNs3aNN4VPNlHojsC2RlZUEsbsqCCyVACBa1dg0CqkO23607_5JxgZ6UqOnKPtqLHhSR_DgnC5BWKl2UI1beflfjErs4Fbm4NNHLyLXpwTAEhklgjNjxMOlnT67x7-EfCLBhKDFjxw5EwqSNZlAigBakD8IK2bSQN0Iq69DUskE5FPSA0BsekoAbsaNb-E3axVuDrimewUrU4tXfZ71jD6bL85mZfZp_fs0ekrB9eOaI7e82V_4Nu-9-7S62m7dxqf4Gz1PjQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Hybrid+NARX-LSTM+Model+for+Point+and+Interval+PV+Power+Forecasting&rft.jtitle=IEEE+access&rft.au=Massaoudi%2C+Mohamed&rft.au=Chihi%2C+Ines&rft.au=Sidhom%2C+Lilia&rft.au=Trabelsi%2C+Mohamed&rft.date=2021-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=36571&rft.epage=36588&rft_id=info:doi/10.1109%2FACCESS.2021.3062776&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3062776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |