Grouped SMOTE With Noise Filtering Mechanism for Classifying Imbalanced Data

SMOTE (Synthetic Minority Oversampling TEchnique) is one of the most popular and well-known sampling algorithms for addressing class imbalance learning problem. The merits of SMOTE reflect at that in comparison with the random oversampling technique, it can alleviate the problem of overfitting to a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 170668 - 170681
Hlavní autori: Cheng, Ke, Zhang, Chen, Yu, Hualong, Yang, Xibei, Zou, Haitao, Gao, Shang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SMOTE (Synthetic Minority Oversampling TEchnique) is one of the most popular and well-known sampling algorithms for addressing class imbalance learning problem. The merits of SMOTE reflect at that in comparison with the random oversampling technique, it can alleviate the problem of overfitting to a large extent. However, two drawbacks of SMOTE have also been observed as follows, 1) it tends to propagate the noisy information in the procedure of oversampling; 2) it always assigns a global neighborhood parameter K but neglects the local distribution characteristics. To synchronously deal with these two problems, a grouped SMOTE algorithm with noise filtering mechanism (GSMOTE-NFM) is presented in this article. The algorithm firstly adopts Gaussian-Mixture Model (GMM) to explore the real distributions of the majority and minority classes, respectively. Then, most noisy instances can be removed by comparing the probability densities of the same instance in two different classes. Next, two new GMMs are constructed on the rest majority and minority class instances, respectively. Furthermore, all minority class instances can be divided into three different groups: safety, boundary and outlier, based on the corresponding probability density information. Finally, we assign an individual parameter K to the instances belonging to each specific group to generate new instances. We tested GSMOTE-NFM algorithm on 24 benchmark binary-class data sets with three popular classification models, and compared it with several state-of-the-art oversampling algorithms. The results indicate that our algorithm is significantly superior than the original SMOTE algorithm and several SMOTE-based modified methods.
AbstractList SMOTE (Synthetic Minority Oversampling TEchnique) is one of the most popular and well-known sampling algorithms for addressing class imbalance learning problem. The merits of SMOTE reflect at that in comparison with the random oversampling technique, it can alleviate the problem of overfitting to a large extent. However, two drawbacks of SMOTE have also been observed as follows, 1) it tends to propagate the noisy information in the procedure of oversampling; 2) it always assigns a global neighborhood parameter K but neglects the local distribution characteristics. To synchronously deal with these two problems, a grouped SMOTE algorithm with noise filtering mechanism (GSMOTE-NFM) is presented in this article. The algorithm firstly adopts Gaussian-Mixture Model (GMM) to explore the real distributions of the majority and minority classes, respectively. Then, most noisy instances can be removed by comparing the probability densities of the same instance in two different classes. Next, two new GMMs are constructed on the rest majority and minority class instances, respectively. Furthermore, all minority class instances can be divided into three different groups: safety, boundary and outlier, based on the corresponding probability density information. Finally, we assign an individual parameter K to the instances belonging to each specific group to generate new instances. We tested GSMOTE-NFM algorithm on 24 benchmark binary-class data sets with three popular classification models, and compared it with several state-of-the-art oversampling algorithms. The results indicate that our algorithm is significantly superior than the original SMOTE algorithm and several SMOTE-based modified methods.
Author Zou, Haitao
Zhang, Chen
Gao, Shang
Cheng, Ke
Yu, Hualong
Yang, Xibei
Author_xml – sequence: 1
  givenname: Ke
  orcidid: 0000-0001-8034-9496
  surname: Cheng
  fullname: Cheng, Ke
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 2
  givenname: Chen
  orcidid: 0000-0002-8558-6543
  surname: Zhang
  fullname: Zhang, Chen
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 3
  givenname: Hualong
  orcidid: 0000-0001-9621-4158
  surname: Yu
  fullname: Yu, Hualong
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 4
  givenname: Xibei
  orcidid: 0000-0002-2182-0070
  surname: Yang
  fullname: Yang, Xibei
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 5
  givenname: Haitao
  orcidid: 0000-0001-8925-7125
  surname: Zou
  fullname: Zou, Haitao
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
– sequence: 6
  givenname: Shang
  orcidid: 0000-0002-1687-412X
  surname: Gao
  fullname: Gao, Shang
  email: gao_shang1972@163.com
  organization: School of Computer, Jiangsu University of Science and Technology, Zhenjiang, China
BookMark eNp9kU9P4zAQxS3ESgssn4BLJM4t_hc3PqJQoFKBQ1nt0Ro7NrhK42K7h357XMKuVhzwxdb4_d7M6J2i4yEMFqELgqeEYHl13bbz1WpKMZFTKusaN-IInVAi5ITVTBz_9_6JzlNa43KaUqpnJ2h5F8Nua7tq9fD0PK_--PxaPQafbHXr-2yjH16qB2teYfBpU7kQq7aHlLzbH34WGw09DKbwN5DhF_rhoE_2_PM-Q79v58_t_WT5dLdor5cTw3GTJ044prUBI4yuO8lYV8-ACg7UGOuMMQ3lhpVVRMct8KZzjnUUS9CO0SJkZ2gx-nYB1mob_QbiXgXw6qMQ4ouCmL3prXJAobTQQlPKHbbaEawb1gkMDXACxety9NrG8LazKat12MWhjK8or2vBBJe4qOSoMjGkFK1TxmfIPgw5gu8VweqQhRqzUIcs1GcWhWVf2L8Tf09djJS31v4jGkmwIDP2DjEnl2c
CODEN IAECCG
CitedBy_id crossref_primary_10_2147_RMHP_S331077
crossref_primary_10_1016_j_knosys_2022_110235
crossref_primary_10_1109_TAI_2022_3160658
crossref_primary_10_1186_s40537_025_01119_4
crossref_primary_10_1016_j_ins_2023_119621
crossref_primary_10_1016_j_jksuci_2022_06_005
crossref_primary_10_1016_j_compeleceng_2021_107370
crossref_primary_10_1186_s13036_022_00319_3
crossref_primary_10_1007_s10796_024_10533_7
crossref_primary_10_1016_j_ins_2022_02_038
crossref_primary_10_3389_fonc_2021_601425
crossref_primary_10_1016_j_asoc_2023_110895
crossref_primary_10_1007_s40009_023_01249_4
crossref_primary_10_1057_s41599_023_02382_7
crossref_primary_10_7717_peerj_cs_2682
crossref_primary_10_1186_s40635_025_00724_0
crossref_primary_10_1038_s41598_025_09506_w
crossref_primary_10_1061__ASCE_CO_1943_7862_0002124
crossref_primary_10_1016_j_engstruct_2025_120754
crossref_primary_10_1016_j_ins_2020_10_013
crossref_primary_10_1007_s11042_024_19528_7
crossref_primary_10_1088_1361_6501_acf0df
crossref_primary_10_2478_fcds_2025_0009
crossref_primary_10_1016_j_isprsjprs_2023_05_015
crossref_primary_10_1109_ACCESS_2022_3185129
crossref_primary_10_32604_cmc_2023_046187
crossref_primary_10_1109_TKDE_2022_3179381
crossref_primary_10_1016_j_aei_2024_102606
crossref_primary_10_1017_aer_2025_10053
crossref_primary_10_3390_info14010054
crossref_primary_10_1016_j_eswa_2022_117023
crossref_primary_10_1049_itr2_12267
crossref_primary_10_1109_ACCESS_2020_3047838
crossref_primary_10_3390_math13030368
crossref_primary_10_3390_mi15121501
crossref_primary_10_2166_wpt_2025_109
crossref_primary_10_1016_j_eswa_2021_116213
crossref_primary_10_1007_s10489_022_03408_4
crossref_primary_10_1016_j_eswa_2023_120379
crossref_primary_10_1007_s10845_021_01873_1
crossref_primary_10_1016_j_knosys_2024_112236
crossref_primary_10_1016_j_knosys_2025_113580
crossref_primary_10_1109_JIOT_2025_3526160
crossref_primary_10_1109_ACCESS_2023_3303509
crossref_primary_10_1109_ACCESS_2020_2975630
crossref_primary_10_1007_s13755_020_00112_w
Cites_doi 10.1109/TR.2013.2259203
10.1007/978-3-642-01307-2_43
10.1016/j.jtbi.2014.10.008
10.1109/TCSS.2014.2377811
10.3390/app8091597
10.1016/j.neunet.2015.06.005
10.1016/j.neucom.2012.08.018
10.1145/1273496.1273614
10.1109/IJCNN.2010.5596787
10.1016/j.knosys.2015.10.012
10.1145/2601248.2601294
10.2991/ijcis.10.1.82
10.1109/TSMCA.2009.2029559
10.1109/TKDE.2006.17
10.1109/TCYB.2016.2579658
10.1177/1536867X1601600407
10.1016/j.sbspro.2012.09.168
10.1016/j.knosys.2014.12.007
10.1007/s11280-012-0178-0
10.1109/ACCESS.2018.2789428
10.1016/j.patcog.2007.04.009
10.1016/j.neucom.2015.10.042
10.1109/TKDE.2014.2345380
10.1007/s12559-014-9301-0
10.1016/j.ins.2014.08.051
10.1109/ACCESS.2019.2931865
10.1007/s13748-012-0027-5
10.1016/j.ins.2009.12.010
10.1145/1007730.1007733
10.1109/LSENS.2018.2879990
10.1016/j.knosys.2011.01.012
10.1145/3343440
10.1142/S0219622006002258
10.1109/JBHI.2014.2332001
10.1109/TSMCC.2011.2161285
10.1109/ACCESS.2018.2839340
10.5705/ss.2014.105
10.1016/j.eswa.2016.12.035
10.1613/jair.953
10.1109/TNNLS.2013.2246188
10.1371/journal.pone.0139654
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2955086
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 170681
ExternalDocumentID oai_doaj_org_article_fa2ad93b6b224f0ebf10b83d60a8a41a
10_1109_ACCESS_2019_2955086
8910617
Genre orig-research
GrantInformation_xml – fundername: Jiangsu Planned Projects for Postdoctoral Research Funds
  grantid: 1401037B
  funderid: 10.13039/501100010242
– fundername: Open Project of Artificial Intelligence Key Laboratory of Sichuan Province
  grantid: 2019RYJ02
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20191457
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61305058; 61572242
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2013M540404; 2015T80481
  funderid: 10.13039/501100002858
– fundername: Qing Lan Project of Jiangsu Province of China
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c408t-f6f3bbcac6cb5d933d57a264a2ccefccc824c32956d4ea48dff3d209abf32a263
IEDL.DBID RIE
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000560454900117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:29:46 EDT 2025
Mon Jun 30 03:47:42 EDT 2025
Sat Nov 29 02:41:36 EST 2025
Tue Nov 18 21:49:03 EST 2025
Wed Aug 27 02:40:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f6f3bbcac6cb5d933d57a264a2ccefccc824c32956d4ea48dff3d209abf32a263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8558-6543
0000-0002-1687-412X
0000-0001-9621-4158
0000-0002-2182-0070
0000-0001-8034-9496
0000-0001-8925-7125
OpenAccessLink https://ieeexplore.ieee.org/document/8910617
PQID 2455636490
PQPubID 4845423
PageCount 14
ParticipantIDs proquest_journals_2455636490
crossref_citationtrail_10_1109_ACCESS_2019_2955086
ieee_primary_8910617
doaj_primary_oai_doaj_org_article_fa2ad93b6b224f0ebf10b83d60a8a41a
crossref_primary_10_1109_ACCESS_2019_2955086
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
japkowicz (ref3) 2000
ref14
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref49
ref8
ref7
he (ref36) 2005
ref9
ref40
ref35
ref34
ref37
ref31
ref30
ref33
chawla (ref5) 2009
ref32
ref2
ref1
engen (ref11) 2008; 12
bunkhumpornpat (ref39) 2009
ref24
han (ref38) 2005
ref23
ref26
ref25
ref20
ref22
ref21
chawla (ref4) 2003
ref28
ref27
ref29
demšar (ref48) 2006; 7
blake (ref43) 1998
wang (ref6) 2017
References_xml – start-page: 1
  year: 2003
  ident: ref4
  article-title: Workshop learning from imbalanced data sets II
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TR.2013.2259203
– start-page: 475
  year: 2009
  ident: ref39
  article-title: Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem
  publication-title: Proc Pacific-Asia Conf Knowl Discovery Data Mining
  doi: 10.1007/978-3-642-01307-2_43
– ident: ref18
  doi: 10.1016/j.jtbi.2014.10.008
– ident: ref21
  doi: 10.1109/TCSS.2014.2377811
– ident: ref14
  doi: 10.3390/app8091597
– ident: ref27
  doi: 10.1016/j.neunet.2015.06.005
– ident: ref24
  doi: 10.1016/j.neucom.2012.08.018
– ident: ref37
  doi: 10.1145/1273496.1273614
– ident: ref22
  doi: 10.1109/IJCNN.2010.5596787
– ident: ref31
  doi: 10.1016/j.knosys.2015.10.012
– ident: ref16
  doi: 10.1145/2601248.2601294
– ident: ref44
  doi: 10.2991/ijcis.10.1.82
– ident: ref34
  doi: 10.1109/TSMCA.2009.2029559
– ident: ref29
  doi: 10.1109/TKDE.2006.17
– year: 1998
  ident: ref43
  article-title: UCI repository of machine learning databases
– ident: ref35
  doi: 10.1109/TCYB.2016.2579658
– ident: ref45
  doi: 10.1177/1536867X1601600407
– ident: ref17
  doi: 10.1016/j.sbspro.2012.09.168
– volume: 7
  start-page: 1
  year: 2006
  ident: ref48
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref30
  doi: 10.1016/j.knosys.2014.12.007
– ident: ref9
  doi: 10.1007/s11280-012-0178-0
– start-page: 537
  year: 2005
  ident: ref36
  article-title: An over-sampling expert system for learing from imbalanced data sets
  publication-title: Proc Int Conf Neural Netw Brain
– ident: ref13
  doi: 10.1109/ACCESS.2018.2789428
– volume: 12
  start-page: 357
  year: 2008
  ident: ref11
  article-title: Enhancing network based intrusion detection for imbalanced data
  publication-title: Int J Knowl -Based Intell Eng Syst
– ident: ref25
  doi: 10.1016/j.patcog.2007.04.009
– ident: ref10
  doi: 10.1016/j.neucom.2015.10.042
– ident: ref33
  doi: 10.1109/TKDE.2014.2345380
– ident: ref20
  doi: 10.1007/s12559-014-9301-0
– ident: ref40
  doi: 10.1016/j.ins.2014.08.051
– ident: ref47
  doi: 10.1109/ACCESS.2019.2931865
– start-page: 10
  year: 2000
  ident: ref3
  article-title: Learning from imbalanced data sets: A comparison of various strategies
  publication-title: Proc Amer Assoc Artif Intell (AAAI) Workshop
– ident: ref41
  doi: 10.1007/s13748-012-0027-5
– ident: ref49
  doi: 10.1016/j.ins.2009.12.010
– ident: ref7
  doi: 10.1145/1007730.1007733
– ident: ref12
  doi: 10.1109/LSENS.2018.2879990
– ident: ref50
  doi: 10.1016/j.knosys.2011.01.012
– start-page: 1
  year: 2017
  ident: ref6
  publication-title: Proc IJCAI Workshop Learn Presence Class Imbalance Concept Drift (LPCICD)
– start-page: 878
  year: 2005
  ident: ref38
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Proc Int Conf Intell Comput
– ident: ref1
  doi: 10.1145/3343440
– ident: ref8
  doi: 10.1142/S0219622006002258
– ident: ref46
  doi: 10.1109/JBHI.2014.2332001
– ident: ref32
  doi: 10.1109/TSMCC.2011.2161285
– ident: ref28
  doi: 10.1109/ACCESS.2018.2839340
– ident: ref42
  doi: 10.5705/ss.2014.105
– ident: ref2
  doi: 10.1016/j.eswa.2016.12.035
– ident: ref23
  doi: 10.1613/jair.953
– start-page: 1
  year: 2009
  ident: ref5
  article-title: Workshop on data mining when classes are imbalanced and errors have costs
  publication-title: Proc 13th Pacific-Asia Conf Adv Knowl Discovery Data Mining
– ident: ref26
  doi: 10.1109/TNNLS.2013.2246188
– ident: ref19
  doi: 10.1371/journal.pone.0139654
SSID ssj0000816957
Score 2.4173362
Snippet SMOTE (Synthetic Minority Oversampling TEchnique) is one of the most popular and well-known sampling algorithms for addressing class imbalance learning...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 170668
SubjectTerms Algorithms
class imbalance learning
Classification
Classification algorithms
Data models
Estimation
Filtering
Filtering algorithms
Filtration
Gaussian-Mixture model
Machine learning
Noise measurement
Outliers (statistics)
Oversampling
Parameters
Probabilistic models
probability density
Safety
Sampling
SMOTE
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhB1CrWFzl4dDWbTbObY60tCloF6-MW8sQFrWJXf7-T7LYUBL14XWYf-TLJfMlmvkHoyHch8GitEqssS1hqYcylxCZAbVMnqHckZsg9XOWjUfH0JG4XSn2FM2G1PHAN3KlXVFmRaa4h2HjitE-JLjLLiSoUSyM1IrlYWEzFObhIuejmjcxQSsRpr9-HFoWzXOKECuDlIXt6IRRFxf6mxMqPeTkGm-E6WmtYIu7VX7eBltxkE60uaAe20VXcNXIW313fjAf4saye8eitnDo8LMMfcDDC1y7k9ZbTVwzUFMf6l2XMa8KXrzqcaTRw_7mq1Ba6Hw7G_YukKY2QGEaKKvHcZ1obZbjRXYAns91cAbdR1BjnjTEFZSaDdnLLnGKF9T6zlAilfUbBMNtGrcnbxO0grIGjGOG45kYxYYAxeE0AaBju3ipCOojOUJKm0Q0P5SteZFw_ECFraGWAVjbQdtDx_Kb3Wjbjd_OzAP_cNGhexwvgCbLxBPmXJ3RQO3Te_CGFCMvdvIP2Z50pm_E5lZQFYTTOBNn9j1fvoZXQnHprZh-1qo9Pd4CWzVdVTj8Oo2t-AyI15oI
  priority: 102
  providerName: Directory of Open Access Journals
Title Grouped SMOTE With Noise Filtering Mechanism for Classifying Imbalanced Data
URI https://ieeexplore.ieee.org/document/8910617
https://www.proquest.com/docview/2455636490
https://doaj.org/article/fa2ad93b6b224f0ebf10b83d60a8a41a
Volume 7
WOSCitedRecordID wos000560454900117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qE99ItWXQrIhx4JOI7XiY90u6tWYreVCpSb5U8RqexWbODIb2fsmAiJqlIvURSNI9svjp_HnjcAn8IYJx5jdOG04wUvHY65kroCqW3pJQuepgi585N6sWguLuSPDTgYYmG89-nwmT-Mt2kv363sTXSVHTUyLmDqTdisa9HHag3-lJhAQo7rLCxUUnl0PJlgG-LpLXnIJDLxGC_9aPJJGv05qcqTP3GaXmav_q9ir-FlppHkuMf9DWz45Vt48UhccBtOklvJO_Jz_v10Sn613SVZrNq1J7M2bpGjEZn7GPjbrq8IcleSEmS2KfCJfLsy8dCjxfJfdKffwdlsejr5WuTcCYXltOmKIEJljNVWWDN2sqrcuNZIfjSz1gdrbcO4rbBbhONe88aFUDlGpTahYmhYvYet5WrpPwAxSGKs9MIIq7m0SCmCoYF6_B8EpykdAXvoVGWzsHjMb_FbpQUGlapHQkUkVEZiBAdDoT-9rsa_zT9HtAbTKIqdHiAMKo8xFTTT2FQjDPISrKAJJTVN5QTVjealHsF2hG54SUZtBLsP2Ks8gNeK8aicJrikO38v9RGexwr23phd2Oqub_wePLO3Xbu-3k9Le7zO76b76Tu9Bz705Lo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PTxQxFH4BJEEPKKJxBbUHjwx0Op3Z6REXNhB3VxMW5Nb0Z5xEdg07-Pf72ikTEoiJt8nkddL2m7ZfX_u-B_DZl7jwaK0yqyzPeG5xzOXUZkhtcyeYdzRGyF1NhrNZfX0tvq_BQR8L45yLl8_cYXiMZ_l2ae6Cq-yoFmEDM1yHZyXHfU8XrdV7VEIKCVEOk7RQTsXR8WiErQj3t8QhE8jFQ8T0g-UnqvSntCqP5uK4wIxf_l_VXsF2IpLkuEN-B9bc4jW8eCAvuAuT6FhyllxMv81PyY-m_Ulmy2blyLgJh-RoRKYuhP42qxuC7JXEFJlNDH0i5zc6XHs0WP5EteoNXI5P56OzLGVPyAyndZv5yhdaG2Uqo0srisKWQ4X0RzFjnDfG1IybArulstwpXlvvC8uoUNoXDA2Lt7CxWC7cOyAaaYwRrtKVUVwYJBVeU08dzgjeKkoHwO47VZokLR4yXPyScYtBheyQkAEJmZAYwEFf6HenrPFv8y8Brd40yGLHFwiDTKNMesUUNlVXGpkJVlD7nOq6sBVVteK5GsBugK7_SEJtAPv32Ms0hFeS8aCdVnFB3z9d6hNsnc2nEzk5n33dg-ehsp1vZh822ts79wE2zZ-2Wd1-jP_pX3_u5ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grouped+SMOTE+With+Noise+Filtering+Mechanism+for+Classifying+Imbalanced+Data&rft.jtitle=IEEE+access&rft.au=Cheng%2C+Ke&rft.au=Zhang%2C+Chen&rft.au=Yu%2C+Hualong&rft.au=Yang%2C+Xibei&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=170668&rft.epage=170681&rft_id=info:doi/10.1109%2FACCESS.2019.2955086&rft.externalDocID=8910617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon