Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance
Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become ch...
Saved in:
| Published in: | Current microbiology Vol. 81; no. 10; p. 326 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0343-8651, 1432-0991, 1432-0991 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.
Graphical Abstract |
|---|---|
| AbstractList | Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review.Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients' well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients' health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as a result of these drugs. This hurts the patients’ well-being and quality of life. Tumor cells that survive treatment modalities can become chemotherapy resistant at the molecular level. Furthermore, negative effects on normal cells occur concurrently. Strategies that minimize the negative effects on normal cells while efficiently targeting infected cells are required. Nanotherapies, according to recent research, may be one option in this direction. The present study differs from previously published review studies as it concentrates on examining the most recently developed nanoparticles for anti-mycobacterial purposes. Such novel approaches have the potential to reduce harmful side effects and improve patients’ health prognoses. Current paper provides a comprehensive analysis of recent advances in nanotherapy systems for the pulmonary delivery of anti-tuberculous drugs. In addition, to low-priced and convenient alternatives for pulmonary delivery, different types of NPs for oral and topical application were also deliberated and summarized in this review. Graphical Abstract |
| ArticleNumber | 326 |
| Author | Alivirdiloo, Vahid Ghazi, Farhood Gholami, Sarah Naderian, Ramtin Mousavizade, Azamsadat Mobed, Ahmad Moshari, Amirreza |
| Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0001-8939-3688 surname: Mobed fullname: Mobed, Ahmad email: Mobed1980@gmail.com organization: Department of Community Medicine, Faculty of Medicine, Social Determinants of Health Research Center, Tabriz University of Medical Sciences – sequence: 2 givenname: Vahid surname: Alivirdiloo fullname: Alivirdiloo, Vahid organization: Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences – sequence: 3 givenname: Sarah surname: Gholami fullname: Gholami, Sarah organization: Young Researchers and Ellie Club, Babol Branch. Islamic Azad University – sequence: 4 givenname: Amirreza surname: Moshari fullname: Moshari, Amirreza organization: Shahid Beheshti University of Medical Sciences – sequence: 5 givenname: Azamsadat surname: Mousavizade fullname: Mousavizade, Azamsadat organization: National Institute of Genetic Engineering and Biotechnology (NIGEB) – sequence: 6 givenname: Ramtin surname: Naderian fullname: Naderian, Ramtin organization: Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Student Research Committee, Semnan University of Medical Sciences – sequence: 7 givenname: Farhood surname: Ghazi fullname: Ghazi, Farhood organization: Stem Cell Research Center, Tabriz University of Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39182006$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1vFSEUhompsbfVP-DCTOLGhaMHGIZhedP4ldSPmOuaMMzhSjMDV2AW9tdLvW1MuqgLYPM8Jy_nPSMnIQYk5DmFNxRAvs0AbOhaYPXwQfD2-hHZ0I6zFpSiJ2QDvOPt0At6Ss5yvgKgTAF9Qk65ogMD6Ddk_GJCbD_j5K0P2LiYml1CUxYMpYmu2a0jJrvOMfv8uvmW4uKzD_tmezikaOxPzM12b3zIpdmG4hdvUxy9mZvvWI1igsWn5LEzc8Znt-85-fH-3e7iY3v59cOni-1lazsYSuuEmTqOAMZQVM5IQ5VTkvFJSsaMQCOmvnd87Nk09hxwnKauXhak5FY5fk5eHefWZL9WzEXXrBbn2QSMa9acCi6ZVKL_PwpK0k7xgVb05T30Kq4p1I_cUL0YQHSiUi9uqXVccNKH5BeTfuu7RVdgOAJ1PzkndNr6YoqPoSTjZ01B33Sqj53q2qn-26m-riq7p95Nf1DiRylXOOwx_Yv9gPUHuOO0lA |
| CitedBy_id | crossref_primary_10_5599_admet_2774 crossref_primary_10_1016_j_jddst_2025_106912 |
| Cites_doi | 10.2147/IJN.S364634 10.1556/1886.2021.00021 10.1016/j.bioadv.2022.213003 10.1016/j.bcab.2019.101327 10.1080/01616412.2021.1979749 10.1016/j.ijid.2019.02.035 10.1016/j.jsps.2020.10.008 10.1016/j.ejps.2022.106261 10.1016/j.jddst.2019.05.025 10.1128/msphere.00443-19 10.1080/02652048.2022.2025935 10.1186/s12951-023-02156-y 10.1088/2053-1591/ab08ff 10.1016/j.ijtb.2020.02.005 10.1183/20734735.0079-2021 10.3390/pharmaceutics14081543 10.1080/10837450.2020.1852570 10.1016/j.ijpharm.2010.03.017 10.1128/iai.00291-19 10.1016/j.carbpol.2023.121449 10.1038/s41565-021-00866-8 10.3389/fphar.2022.906097 10.1039/D3CP05457H 10.1016/j.brainresbull.2014.05.007 10.1016/j.btre.2020.e00427 10.1016/B978-0-323-99278-7.00011-0 10.3390/tropicalmed8020100 10.1007/s10311-020-01074-x 10.1016/j.jmb.2019.02.016 10.1002/adtp.202000113 10.2174/1567201817999201103194626 10.18231/j.ijmmtd.2020.045 10.1039/D0NR01456G 10.3389/fmicb.2020.00800 10.1007/s11033-021-06611-7 10.1016/j.molstruc.2022.133452 10.3390/pharmaceutics16020216 10.1007/s13346-020-00849-7 10.1016/j.jddst.2020.102013 10.1128/iai.72.5.2564-2573.2004 10.1016/j.addr.2016.04.012 10.3390/nano12020177 10.22034/ijnc.2022.3.6 10.1007/978-3-031-50349-8_118 10.1186/s12889-017-4089-y 10.1155/2017/4920209 10.1016/B978-0-08-101975-7.00005-1 10.1039/C9TB00784A 10.1016/j.meegid.2019.103937 10.3390/ijms20122868 10.1039/D0CE00440E 10.1089/jamp.2022.0078 10.3390/antibiotics9090569 10.1016/j.jctube.2023.100412 10.5958/2231-5691.2018.00033.3 10.1016/j.carbpol.2020.116978 10.1136/bmjgh-2019-002280 10.1016/B978-0-323-91201-3.00007-4 10.1371/journal.pone.0212858 10.1002/adhm.202100453 10.1111/apt.16952 10.1002/jin2.61 10.1080/1061186X.2019.1613409 10.1039/D0TA05183G 10.1016/j.carbpol.2019.04.056 10.1155/2020/7372531 10.1016/j.physe.2021.115077 10.22038/ijbms.2023.69295.15100 10.1016/j.coph.2018.05.013 10.1016/j.microc.2021.106900 10.1016/j.lfs.2020.117961 10.1016/j.tube.2021.102083 10.3390/ijms15045852 10.1016/j.ijpharm.2021.121097 10.3389/fmicb.2018.01367 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 7S9 L.6 |
| DOI | 10.1007/s00284-024-03853-z |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1432-0991 |
| EndPage | 326 |
| ExternalDocumentID | 39182006 10_1007_s00284_024_03853_z |
| Genre | Journal Article Review |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M2O M4Y M7P MA- MM. N2Q N9A NB0 NDZJH NEJ NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PF- PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z87 Z8O Z8P Z8Q Z8S Z91 ZCG ZMTXR ZOVNA ZXP ~02 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ESTFP PUEGO 7S9 L.6 |
| ID | FETCH-LOGICAL-c408t-f5ad43e00aa1e9fa7a19f9723d7722a5ea5d66f3b62db630ebdd4ebdc0773c9f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300260500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0343-8651 1432-0991 |
| IngestDate | Thu Oct 02 06:04:29 EDT 2025 Wed Oct 01 10:33:14 EDT 2025 Wed Nov 26 14:51:16 EST 2025 Wed Feb 19 02:02:44 EST 2025 Sat Nov 29 04:52:32 EST 2025 Tue Nov 18 21:33:15 EST 2025 Fri Feb 21 02:38:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f5ad43e00aa1e9fa7a19f9723d7722a5ea5d66f3b62db630ebdd4ebdc0773c9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8939-3688 |
| PMID | 39182006 |
| PQID | 3096580545 |
| PQPubID | 54062 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3153727956 proquest_miscellaneous_3097149381 proquest_journals_3096580545 pubmed_primary_39182006 crossref_citationtrail_10_1007_s00284_024_03853_z crossref_primary_10_1007_s00284_024_03853_z springer_journals_10_1007_s00284_024_03853_z |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Current microbiology |
| PublicationTitleAbbrev | Curr Microbiol |
| PublicationTitleAlternate | Curr Microbiol |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | GeorgeEGoswamiALodhiyaTPadwalPIyerSGauttamISethiLJeyasankarSSharmaPRDravidAAImmunomodulatory effect of mycobacterial outer membrane vesicles coated nanoparticlesBioRxiv202210.1016/j.bioadv.2022.213003354113518996620 SundararajanSMuniyanRLatent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosisMole Biol Rep2021488618161961:CAS:528:DC%2BB3MXhslartL7K10.1007/s11033-021-06611-7 MukhtarMCsabaNRoblaSVarela-CalviñoRNagyABurianKKókaiDAmbrusRDry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosisPharmaceutics202214815431:CAS:528:DC%2BB38Xitleisr3O10.3390/pharmaceutics14081543358937999330414 PilcerGAmighiKFormulation strategy and use of excipients in pulmonary drug deliveryInt J Pharm20103921–21191:CAS:528:DC%2BC3cXmtVGku7g%3D10.1016/j.ijpharm.2010.03.01720223286 NolanCMBlumbergHMTaylorZBernardoJAmerican thoracic society/centers for disease control and prevention/infectious diseases society of America: Controlling tuberculosis in the United StatesAm J Respir Crit Care Med20051729116910.1016/j.ijtb.2020.02.005 GrobbelaarMLouwGESampsonSLvan HeldenPDDonaldPRWarrenRMEvolution of rifampicin treatment for tuberculosisInfect Genet Evol2019741039371:CAS:528:DC%2BC1MXht1GitrfN10.1016/j.meegid.2019.10393731247337 JadounSArifRJangidNKMeenaRKGreen synthesis of nanoparticles using plant extracts: a reviewEnviron Chem Lett20211913553741:CAS:528:DC%2BB3cXhs1Sgsr3N10.1007/s10311-020-01074-x BeitzingerBGerblFVomhofTSchmidRNoschkaRRodriguezAWieseSWeidingerGStändkerLWaltherPDelivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosisAdv Healthcare Mater2021101421004531:CAS:528:DC%2BB3MXhtlKmtLjF10.1002/adhm.202100453 ChoiS-RBritiganBENarayanasamyPTreatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine productionMsphere201944e00443e5191:CAS:528:DC%2BC1MXhvVWnsb3N10.1128/msphere.00443-19313410736656872 KochACoxHMizrahiVDrug-resistant tuberculosis: challenges and opportunities for diagnosis and treatmentCurr Opin Pharmacol2018427151:CAS:528:DC%2BC1cXhtVKjtb7N10.1016/j.coph.2018.05.013298856236219890 DiedericksBKokA-MMandiwanaVLallNA review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an active antimycobacterial compound, 7-methyljuglonePharmaceutics20241622161:CAS:528:DC%2BB2cXkvFylt7Y%3D10.3390/pharmaceutics160202163839927010893214 MaCWuMYeWHuangZMaXWangWWangWHuangYPanXWuCInhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive propertiesDrug Deliv Transl Res2021113121812351:CAS:528:DC%2BB3cXhvVyqtb3K10.1007/s13346-020-00849-732946043 DonnellanSGiardielloMNanomedicines towards targeting intracellular Mtb for the treatment of tuberculosisJ Interdiscip Nanomed201943768510.1002/jin2.61 Oga-OmenkaCTseja-AkinrinASenPMac-SeingMAgbajeAMenziesDZarowskyCFactors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: a mixed-methods systematic reviewBMJ Glob Health202057e00228010.1136/bmjgh-2019-002280326164817333807 VilchèzeCJacobsWRJrThe isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosisJ Mol Biol201943118345034611:CAS:528:DC%2BC1MXktFeiu7o%3D10.1016/j.jmb.2019.02.016307978606703971 JavadiFYazdiMETBaghaniMEs-haghiABiosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activitiesMater Res Express2019660654081:CAS:528:DC%2BC1MXps1yju7g%3D10.1088/2053-1591/ab08ff MoghaddamMDJamehbozorgiSRezvaniMIzadkhahVMoghimMTTheoretical treatment of interaction of pyrazinamide with graphene and h-SiC monolayer: a DFT-D3 studyPhys E Low-Dimens Syst Nanostruct20221381150771:CAS:528:DC%2BB38XmvVKrtrw%3D10.1016/j.physe.2021.115077 NairAGreenyANandanASahRKJoseADyawanapellySJunnuthulaVA. K. V, P. Sadanandan,Advanced drug delivery and therapeutic strategies for tuberculosis treatmentJ Nanobiotechnol202321141410.1186/s12951-023-02156-y AbdelghanySParumasivamTPangARoedigerBTangPJahnKBrittonWJChanH-KAlginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosisJ Drug Delivery Sci Technol2019526426511:CAS:528:DC%2BC1MXhtVGhsL%2FK10.1016/j.jddst.2019.05.025 SinghKKRole of nanotechnology and nanomaterials for water treatment and environmental remediationInt J New Chem2022933733981:CAS:528:DC%2BB38XjtlOjt74%3D10.22034/ijnc.2022.3.6 ZargarnezhadSGholamiAKhoshneviszadehMAbootalebiSNGhasemiY2020 Antimicrobial activity of isoniazid in conjugation with surface-modified magnetic nanoparticles against Mycobacterium tuberculosis and nonmycobacterial microorganismsJ Nanomater202010.1155/2020/7372531 SimõesMFOttoniCAAntunesAMycogenic metal nanoparticles for the treatment of mycobacteriosesAntibiotics2020995691:CAS:528:DC%2BB3cXisFCmtrzK10.3390/antibiotics9090569328873587559022 VieiraACChavesLLPinheiroMLimaSCNetoPJRFerreiraDSarmentoBReisSLipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophagesCarbohyd Polym20212521169781:CAS:528:DC%2BB3cXitVyms7bE10.1016/j.carbpol.2020.116978 MadkourLHProcessing of nanomaterials (NMs)Nanoelectronic Mater201910.1016/B978-0-323-99278-7.00011-0 CostaAPinheiroMMagalhãesJRibeiroRSeabraVReisSSarmentoBThe formulation of nanomedicines for treating tuberculosisAdv Drug Deliv Rev20161021021151:CAS:528:DC%2BC28XmslSgsb8%3D10.1016/j.addr.2016.04.01227108703 YulugBHanogluLKilicESchabitzWRRIFAMPICIN: an antibiotic with brain protective functionBrain Res Bull201410737421:CAS:528:DC%2BC2cXhtlCjsb7L10.1016/j.brainresbull.2014.05.00724905548 SinghAGautamPKVermaASinghVShivapriyaPMShivalkarSSahooAKSamantaSKGreen synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a reviewBiotechnol Rep202025e0042710.1016/j.btre.2020.e00427 PandeyRPKumarSAhmadSVibhutiARajVSVermaAKSharmaPLealEUse Chou’s 5-steps rule to evaluate protective efficacy induced by antigenic proteins of Mycobacterium tuberculosis encapsulated in chitosan nanoparticlesLife Sci20202561179611:CAS:528:DC%2BB3cXht1Wlt7nK10.1016/j.lfs.2020.11796132534039 T.N. Jilani, A. Avula, Z. Gondal, A.H. Siddiqui, Active tuberculosis, (2018). https://europepmc.org/article/nbk/nbk513246 N.A. Aleixo, P.S.d.S. Gomes, P.B.d. Silva, M.R. Sato, D.L. Campos, H.d.S. Barud, G.R. Castro, G.A. Islan, C. Toledo, F. Karp, M. Chorilli, F.R. Pavan, F.A. Resende, Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex, Journal of Microencapsulation 39(1) (2022) 61–71. https://doi.org/10.1080/02652048.2022.2025935 FergusonJSWeisJJMartinJLSchlesingerLSComplement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluidInfect Immu2004725256425731:CAS:528:DC%2BD2cXjslajsbY%3D10.1128/iai.72.5.2564-2573.2004 Borah SlaterKKimDChandPXuYShaikhHUndaleVA current perspective on the potential of nanomedicine for anti-tuberculosis therapyTrop Med Infect Dis20238210010.3390/tropicalmed8020100368285169965948 EstevezHPalaciosAGilDAnguitaJVallet-RegiMGonzálezBPrados-RosalesRLuque-GarciaJLAntimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosisFront Microbiol20201180010.3389/fmicb.2020.00800324259167212347 BanerjeeSRoySBhaumikKNPillaiJMechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosisJ Drug Target202028155691:CAS:528:DC%2BC1MXht1OqtLnJ10.1080/1061186X.2019.161340931035816 TenlandEPochertAKrishnanNUmashankar RaoKKalsumSBraunKGlegola-MadejskaILermMRobertsonBDLindénMEffective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticlesPLoS ONE2019142e02128581:CAS:528:DC%2BC1MXmtFaksLg%3D10.1371/journal.pone.0212858308076126391042 MachadoDGirardiniMViveirosMPieroniMChallenging the drug-likeness dogma for new drug discovery in tuberculosisFront Microbiol20189136710.3389/fmicb.2018.01367300185976037898 AkkiMReddyDSKatagiKSKumarADevarajegowdaHCBabagondVManeSJoshiSDSynthesis of coumarin–thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studiesJ Mol Struct202212661334521:CAS:528:DC%2BB38XhsFGhs77L10.1016/j.molstruc.2022.133452 NasiruddinMNeyazMKDasSNanotechnology-based approach in tuberculosis treatmentTuberc Res Treat201710.1155/2017/4920209282105055292193 BaranyaiZSoria-CarreraHAllevaMMillán-PlacerACLucíaAMartín-RapúnRAínsaJAde la FuenteJMNanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosisAdv Ther202141200011310.1002/adtp.202000113 KirtaneARVermaMKarandikarPFurinJLangerRTraversoGNanotechnology approaches for global infectious diseasesNature Nanotechnol20211643693841:CAS:528:DC%2BB3MXntVOrs7s%3D10.1038/s41565-021-00866-8 KiaPRumanUPratiwiARHusseinMZInnovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosisInt J Nanomedicine202318115911911:CAS:528:DC%2BB3sXlsVCksro%3D10.2147/IJN.S3646343691909510008450 RaoMIppolitoGMfinangaSNtoumiFYeboah-ManuDVilaplanaCZumlaAMaeurerMLatent TB Infection (LTBI)–Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battlegroundInt J Infect Dis201980S58S6110.1016/j.ijid.2019.02.035 ChaGDLeeWHLimCChoiMKKimD-HMaterials engineering, processing, and device application of hydrogel nanocompositesNanoscale2020121910456104731:CAS:528:DC%2BB3cXovFyktr8%3D10.1039/D0NR01456G32388540 de OliveiraPFTorresiRMEmmerlingFCamargoPHChallenges and opportunities in the bottom-up mechanochemical synthesis of SR Fehily (3853_CR16) 2022 GB Migliori (3853_CR17) 2021 A Barhoum (3853_CR35) 2022; 12 3853_CR1 3853_CR68 3853_CR67 G Pilcer (3853_CR6) 2010; 392 M Rao (3853_CR2) 2019; 80 E George (3853_CR55) 2022 TR Sterling (3853_CR13) 2020 A Singh (3853_CR22) 2020; 25 3853_CR4 M Paranjpe (3853_CR5) 2014; 15 G Xu (3853_CR34) 2021; 128 AM Hoffmann (3853_CR78) 2022 A Mobed (3853_CR25) 2023; 34 E Torfs (3853_CR10) 2019; 20 S Donnellan (3853_CR45) 2019; 4 S Jadoun (3853_CR43) 2021; 19 A Yousefi Avarvand (3853_CR76) 2024; 27 MD Moghaddam (3853_CR26) 2022; 138 F Javadi (3853_CR42) 2019; 6 S Abdelghany (3853_CR53) 2019; 52 3853_CR11 H Estevez (3853_CR72) 2020; 11 SR Sagavkar (3853_CR3) 2018; 8 J Jayabalan (3853_CR44) 2019; 21 C Hutchison (3853_CR21) 2017; 17 K Borah Slater (3853_CR48) 2023; 8 R Ma (3853_CR66) 2022; 44 M Nasiruddin (3853_CR46) 2017 K Parmar (3853_CR77) 2014; 37 M Heidary (3853_CR18) 2022; 12 C Oga-Omenka (3853_CR20) 2020; 5 LH Madkour (3853_CR39) 2019 RP Pandey (3853_CR50) 2020; 256 M Grobbelaar (3853_CR33) 2019; 74 ER Zaki (3853_CR64) 2021 MD Ganji (3853_CR24) 2024; 26 S-R Choi (3853_CR70) 2019; 4 V Ramalingam (3853_CR49) 2019; 7 A Sharma (3853_CR62) 2021; 608 M Mukhtar (3853_CR63) 2022; 14 E Tenland (3853_CR71) 2019; 14 C Ma (3853_CR54) 2021; 11 3853_CR41 MF Simões (3853_CR19) 2020; 9 M Akki (3853_CR28) 2022; 1266 D Machado (3853_CR12) 2018; 9 LMDG Primo (3853_CR73) 2024; 323 M Fazal-ur-Rehman (3853_CR40) 2019; 5 S Shah (3853_CR60) 2021; 18 P Zhu (3853_CR52) 2022; 176 B Diedericks (3853_CR74) 2024; 16 S Sundararajan (3853_CR14) 2021; 48 C Vilchèze (3853_CR30) 2019; 431 A Costa (3853_CR27) 2016; 102 S Ahmad (3853_CR58) 2019; 87 S Zargarnezhad (3853_CR56) 2020 KK Singh (3853_CR36) 2022; 9 P Kia (3853_CR80) 2023; 18 AR Kirtane (3853_CR7) 2021; 16 A Koch (3853_CR29) 2018; 42 B Yulug (3853_CR32) 2014; 107 B Beitzinger (3853_CR57) 2021; 10 3853_CR75 AC Vieira (3853_CR61) 2021; 252 N Changsan (3853_CR65) 2021; 26 A Nair (3853_CR79) 2023; 21 A Jha (3853_CR8) 2022 GD Cha (3853_CR38) 2020; 12 Z Baranyai (3853_CR47) 2021; 4 JS Ferguson (3853_CR23) 2004; 72 CM Nolan (3853_CR15) 2005; 172 A Mobed (3853_CR9) 2022; 172 S Shah (3853_CR69) 2020; 60 K Zhang (3853_CR31) 2020; 22 S Banerjee (3853_CR59) 2020; 28 DM Pawde (3853_CR51) 2020; 28 PF de Oliveira (3853_CR37) 2020; 8 |
| References_xml | – reference: FehilySRAl-AniAHAbdelmalakJRentchCZhangEDenholmJTJohnsonDNgSCSharmaVRubinDTLatent tuberculosis in patients with inflammatory bowel diseases receiving immunosuppression—risks, screening, diagnosis and managementAliment Pharmacol Ther202210.1111/apt.16952355962429325436 – reference: Oga-OmenkaCTseja-AkinrinASenPMac-SeingMAgbajeAMenziesDZarowskyCFactors influencing diagnosis and treatment initiation for multidrug-resistant/rifampicin-resistant tuberculosis in six sub-Saharan African countries: a mixed-methods systematic reviewBMJ Glob Health202057e00228010.1136/bmjgh-2019-002280326164817333807 – reference: ParanjpeMMüller-GoymannCCNanoparticle-mediated pulmonary drug delivery: a reviewInt J Mol Sci2014154585258731:CAS:528:DC%2BC2cXhtlWltbnM10.3390/ijms15045852247174094013600 – reference: HutchisonCKhanMYoongJLinXCokerRFinancial barriers and coping strategies: a qualitative study of accessing multidrug-resistant tuberculosis and tuberculosis care in Yunnan ChinaBMC Public Health201717111110.1186/s12889-017-4089-y – reference: KochACoxHMizrahiVDrug-resistant tuberculosis: challenges and opportunities for diagnosis and treatmentCurr Opin Pharmacol2018427151:CAS:528:DC%2BC1cXhtVKjtb7N10.1016/j.coph.2018.05.013298856236219890 – reference: N.A. Aleixo, P.S.d.S. Gomes, P.B.d. Silva, M.R. Sato, D.L. Campos, H.d.S. Barud, G.R. Castro, G.A. Islan, C. Toledo, F. Karp, M. Chorilli, F.R. Pavan, F.A. Resende, Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex, Journal of Microencapsulation 39(1) (2022) 61–71. https://doi.org/10.1080/02652048.2022.2025935 – reference: ZhangKFellahNShtukenbergAGFuXHuCWardMDDiscovery of new polymorphs of the tuberculosis drug isoniazidCryst Eng Comm20202216270527081:CAS:528:DC%2BB3cXms1Wjtro%3D10.1039/D0CE00440E – reference: IE Uwidia EU Ikhuoria RO Okojie IH Ifijen ID Chikaodili 2024 Synthesis of ternary oxide nanoparticles of iron silver and vanadium from blended extracts for potential tuberculosis treatment TMS Annual Meeting & Exhibition Springer pp 1375–1386. https://doi.org/10.1007/978-3-031-50349-8_118 – reference: Fazal-ur-RehmanMQayyumIIbrahimMNanotechnology: an innovation in scientific research and technologyCurr Sci201954859 – reference: Yousefi AvarvandAMeshkatZKhademiFAryanESankianMTafaghodiMEnhancement of the immunogenicity of a Mycobacterium tuberculosis fusion protein using ISCOMATRIX and PLUSCOM nano-adjuvants as prophylactic vaccine after nasal administration in miceIran J Basic Med Sci2024271243010.22038/ijbms.2023.69295.151003816448110722485 – reference: CostaAPinheiroMMagalhãesJRibeiroRSeabraVReisSSarmentoBThe formulation of nanomedicines for treating tuberculosisAdv Drug Deliv Rev20161021021151:CAS:528:DC%2BC28XmslSgsb8%3D10.1016/j.addr.2016.04.01227108703 – reference: JadounSArifRJangidNKMeenaRKGreen synthesis of nanoparticles using plant extracts: a reviewEnviron Chem Lett20211913553741:CAS:528:DC%2BB3cXhs1Sgsr3N10.1007/s10311-020-01074-x – reference: AbdelghanySParumasivamTPangARoedigerBTangPJahnKBrittonWJChanH-KAlginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosisJ Drug Delivery Sci Technol2019526426511:CAS:528:DC%2BC1MXhtVGhsL%2FK10.1016/j.jddst.2019.05.025 – reference: SimõesMFOttoniCAAntunesAMycogenic metal nanoparticles for the treatment of mycobacteriosesAntibiotics2020995691:CAS:528:DC%2BB3cXisFCmtrzK10.3390/antibiotics9090569328873587559022 – reference: DiedericksBKokA-MMandiwanaVLallNA review of the Potential of Poly-(lactide-co-glycolide) Nanoparticles as a Delivery System for an active antimycobacterial compound, 7-methyljuglonePharmaceutics20241622161:CAS:528:DC%2BB2cXkvFylt7Y%3D10.3390/pharmaceutics160202163839927010893214 – reference: RamalingamVSundaramahalingamSRajaramRSize-dependent antimycobacterial activity of titanium oxide nanoparticles against Mycobacterium tuberculosisJ Mater Chem B2019727433843461:CAS:528:DC%2BC1MXhtFWks7nO10.1039/C9TB00784A – reference: SagavkarSRDevkarSRTuberculosis: a review, AsianJ Pharm Res20188319119410.5958/2231-5691.2018.00033.3 – reference: SundararajanSMuniyanRLatent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosisMole Biol Rep2021488618161961:CAS:528:DC%2BB3MXhslartL7K10.1007/s11033-021-06611-7 – reference: Borah SlaterKKimDChandPXuYShaikhHUndaleVA current perspective on the potential of nanomedicine for anti-tuberculosis therapyTrop Med Infect Dis20238210010.3390/tropicalmed8020100368285169965948 – reference: ChoiS-RBritiganBENarayanasamyPTreatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine productionMsphere201944e00443e5191:CAS:528:DC%2BC1MXhvVWnsb3N10.1128/msphere.00443-19313410736656872 – reference: TenlandEPochertAKrishnanNUmashankar RaoKKalsumSBraunKGlegola-MadejskaILermMRobertsonBDLindénMEffective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticlesPLoS ONE2019142e02128581:CAS:528:DC%2BC1MXmtFaksLg%3D10.1371/journal.pone.0212858308076126391042 – reference: PilcerGAmighiKFormulation strategy and use of excipients in pulmonary drug deliveryInt J Pharm20103921–21191:CAS:528:DC%2BC3cXmtVGku7g%3D10.1016/j.ijpharm.2010.03.01720223286 – reference: EstevezHPalaciosAGilDAnguitaJVallet-RegiMGonzálezBPrados-RosalesRLuque-GarciaJLAntimycobacterial effect of selenium nanoparticles on mycobacterium tuberculosisFront Microbiol20201180010.3389/fmicb.2020.00800324259167212347 – reference: AkkiMReddyDSKatagiKSKumarADevarajegowdaHCBabagondVManeSJoshiSDSynthesis of coumarin–thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studiesJ Mol Struct202212661334521:CAS:528:DC%2BB38XhsFGhs77L10.1016/j.molstruc.2022.133452 – reference: DonnellanSGiardielloMNanomedicines towards targeting intracellular Mtb for the treatment of tuberculosisJ Interdiscip Nanomed201943768510.1002/jin2.61 – reference: BanerjeeSRoySBhaumikKNPillaiJMechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosisJ Drug Target202028155691:CAS:528:DC%2BC1MXht1OqtLnJ10.1080/1061186X.2019.161340931035816 – reference: PrimoLMDGRoque-BordaCACarnero CanalesCSCarusoIPde LourençoIOColturatoVMMSábioRMde MeloFAVicenteEFChorilliMda Silva BarudHBarbugliPAFranzykHHansenPRPavanFRAntimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosisCarbohyd Polym20243231214491:CAS:528:DC%2BB3sXitVGqtLjO10.1016/j.carbpol.2023.121449 – reference: JayabalanJManiGKrishnanNPernabasJDevadossJMJangHTGreen biogenic synthesis of zinc oxide nanoparticles using Pseudomonas putida culture and its in vitro antibacterial and anti-biofilm activityBiocatal Agric Biotechnol20192110132710.1016/j.bcab.2019.101327 – reference: MoghaddamMDJamehbozorgiSRezvaniMIzadkhahVMoghimMTTheoretical treatment of interaction of pyrazinamide with graphene and h-SiC monolayer: a DFT-D3 studyPhys E Low-Dimens Syst Nanostruct20221381150771:CAS:528:DC%2BB38XmvVKrtrw%3D10.1016/j.physe.2021.115077 – reference: T.N. Jilani, A. Avula, Z. Gondal, A.H. Siddiqui, Active tuberculosis, (2018). https://europepmc.org/article/nbk/nbk513246 – reference: MadkourLHProcessing of nanomaterials (NMs)Nanoelectronic Mater201910.1016/B978-0-323-99278-7.00011-0 – reference: AhmadSBhattacharyaDKarSRanganathanAVan KaerLDasGCurcumin nanoparticles enhance Mycobacterium bovis BCG vaccine efficacy by modulating host immune responsesInfect Immun20198711e00291e3191:CAS:528:DC%2BC1MXitlKltLrP10.1128/iai.00291-19314814126803339 – reference: HoffmannAMWolkeMRybnikerJPlumGFuchsFIn vitro activity of repurposed nitroxoline against clinically isolated mycobacteria including multidrug-resistant Mycobacterium tuberculosisFront Pharmacol202210.3389/fphar.2022.906097363396019634131 – reference: MobedADarvishiMKohansalFDehfooliFMAlipourfardITahavvoriAGhaziFBiosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosisJ Clin Tuberc Other Mycobact Dis20233410.1016/j.jctube.2023.1004123822286210787265 – reference: JavadiFYazdiMETBaghaniMEs-haghiABiosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activitiesMater Res Express2019660654081:CAS:528:DC%2BC1MXps1yju7g%3D10.1088/2053-1591/ab08ff – reference: HeidaryMShiraniMMoradiMGoudarziMPouriranRRezaeianTKhoshnoodSTuberculosis challenges: resistance, co-infection, diagnosis, and treatmentEur J Microbiol Immunol20221211171:CAS:528:DC%2BB38XhvFOmsL3I10.1556/1886.2021.00021 – reference: PawdeDMViswanadhMKMehataAKSonkarRPoddarSBurandeASJhaAVajanthriKYMahtoSKDustakeerVAMannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosisSaudi Pharm J20202812161616251:CAS:528:DC%2BB3MXlt1Wmsg%3D%3D10.1016/j.jsps.2020.10.008334242547783224 – reference: SterlingTRNjieGZennerDCohnDLRevesRAhmedAMenziesDHorsburghCRCraneCMBurgosMGuidelines for the treatment of latent tuberculosis infectionRecommendations from the National Tuberculosis Controllers Association and CDC2020HobokenWiley11961206 – reference: AV Rane K Kanny VK Abitha S Thomas 2018 Chapter—5 methods for synthesis of nanoparticles and Fabrication of Nanocomposites. In: S Mohan Bhagyaraj, OS Oluwafemi, N Kalarikkal, S Thomas (eds) Synthesis of inorganic nanomaterials, Woodhead Publishing, Swaston, pp 121-139 https://doi.org/10.1016/B978-0-08-101975-7.00005-1 – reference: ZhuPCaiLLiuQFengSRuanHZhangLZhouLJiangHWangHWangJChenJOne-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosisEur J Pharm Sci20221761062611:CAS:528:DC%2BB38XhvFWktLjM10.1016/j.ejps.2022.10626135840102 – reference: ShahSCristopherDSharmaSSoniwalaMChavdaJInhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: design, development and in vitro evaluationJournal of Drug Delivery Science and Technology2020601020131:CAS:528:DC%2BB3cXhvVSls7%2FL10.1016/j.jddst.2020.102013 – reference: World Health Organization (2021) Meeting report of the WHO expert consultation on the definition of extensively drugresistant tuberculosis, 27–29 October 2020. World Health Organization – reference: BarhoumAGarcía-BetancourtMLJeevanandamJHussienEAMekkawySAMostafaMOmranMMAbdallaMSBechelanyMReview on natural, incidental, bioinspired, and engineered nanomaterials: history, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulationsNanomaterials20221221771:CAS:528:DC%2BB38XitFCnsb4%3D10.3390/nano12020177350551968780156 – reference: MukhtarMCsabaNRoblaSVarela-CalviñoRNagyABurianKKókaiDAmbrusRDry powder comprised of isoniazid-loaded nanoparticles of hyaluronic acid in conjugation with mannose-anchored chitosan for macrophage-targeted pulmonary administration in tuberculosisPharmaceutics202214815431:CAS:528:DC%2BB38Xitleisr3O10.3390/pharmaceutics14081543358937999330414 – reference: MiglioriGBOngCWPetroneLD'AmbrosioLCentisRGolettiDThe definition of tuberculosis infection based on the spectrum of tuberculosis diseaseBreathe202110.1183/20734735.0079-2021350355498753649 – reference: ChangsanNSinsuebpolCDry powder inhalation formulation of chitosan nanoparticles for co-administration of isoniazid and pyrazinamidePharm Dev Technol20212621811921:CAS:528:DC%2BB3cXisVagt7rN10.1080/10837450.2020.185257033213232 – reference: VilchèzeCJacobsWRJrThe isoniazid paradigm of killing, resistance, and persistence in Mycobacterium tuberculosisJ Mol Biol201943118345034611:CAS:528:DC%2BC1MXktFeiu7o%3D10.1016/j.jmb.2019.02.016307978606703971 – reference: BaranyaiZSoria-CarreraHAllevaMMillán-PlacerACLucíaAMartín-RapúnRAínsaJAde la FuenteJMNanotechnology-based targeted drug delivery: an emerging tool to overcome tuberculosisAdv Ther202141200011310.1002/adtp.202000113 – reference: NasiruddinMNeyazMKDasSNanotechnology-based approach in tuberculosis treatmentTuberc Res Treat201710.1155/2017/4920209282105055292193 – reference: XuGLiuHJiaXWangXXuPMechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: the phenomenon of drug resistance is complexTuberculosis20211281020831:CAS:528:DC%2BB3MXhtFGnu7vK10.1016/j.tube.2021.10208333975262 – reference: World Health Organization (2021) Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis, 27–29 October 2020. World Health Organization – reference: GeorgeEGoswamiALodhiyaTPadwalPIyerSGauttamISethiLJeyasankarSSharmaPRDravidAAImmunomodulatory effect of mycobacterial outer membrane vesicles coated nanoparticlesBioRxiv202210.1016/j.bioadv.2022.213003354113518996620 – reference: KiaPRumanUPratiwiARHusseinMZInnovative therapeutic approaches based on nanotechnology for the treatment and management of tuberculosisInt J Nanomedicine202318115911911:CAS:528:DC%2BB3sXlsVCksro%3D10.2147/IJN.S3646343691909510008450 – reference: ShahSGhetiyaRSoniwalaMChavdaJDevelopment and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosisCurr Drug Deliv20211867797931:CAS:528:DC%2BB3MXitF2hu7%2FK10.2174/156720181799920110319462633155907 – reference: MobedAHasanzadehMSensitive recognition of Shiga toxin using biosensor technology: an efficient platform towards bioanalysis of pathogenic bacterialMicrochem J20221721069001:CAS:528:DC%2BB3MXit1KgsrbM10.1016/j.microc.2021.106900 – reference: KirtaneARVermaMKarandikarPFurinJLangerRTraversoGNanotechnology approaches for global infectious diseasesNature Nanotechnol20211643693841:CAS:528:DC%2BB3MXntVOrs7s%3D10.1038/s41565-021-00866-8 – reference: TorfsEPillerTCosPCappoenDOpportunities for overcoming Mycobacterium tuberculosis drug resistance: emerging mycobacterial targets and host-directed therapyInt J Mol Sci2019201228681:CAS:528:DC%2BB3cXhtFGlu7s%3D10.3390/ijms20122868312127776627145 – reference: GrobbelaarMLouwGESampsonSLvan HeldenPDDonaldPRWarrenRMEvolution of rifampicin treatment for tuberculosisInfect Genet Evol2019741039371:CAS:528:DC%2BC1MXht1GitrfN10.1016/j.meegid.2019.10393731247337 – reference: JhaAPathakYPolymeric nanomaterials for infectious diseases, nanotheranostics for Treatment and Diagnosis of Infectious DiseasesElsevier202210.1016/B978-0-323-91201-3.00007-4 – reference: NolanCMBlumbergHMTaylorZBernardoJAmerican thoracic society/centers for disease control and prevention/infectious diseases society of America: Controlling tuberculosis in the United StatesAm J Respir Crit Care Med20051729116910.1016/j.ijtb.2020.02.005 – reference: de OliveiraPFTorresiRMEmmerlingFCamargoPHChallenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticlesJ Materials Chem A2020832161141614110.1039/D0TA05183G – reference: PandeyRPKumarSAhmadSVibhutiARajVSVermaAKSharmaPLealEUse Chou’s 5-steps rule to evaluate protective efficacy induced by antigenic proteins of Mycobacterium tuberculosis encapsulated in chitosan nanoparticlesLife Sci20202561179611:CAS:528:DC%2BB3cXht1Wlt7nK10.1016/j.lfs.2020.11796132534039 – reference: MachadoDGirardiniMViveirosMPieroniMChallenging the drug-likeness dogma for new drug discovery in tuberculosisFront Microbiol20189136710.3389/fmicb.2018.01367300185976037898 – reference: VieiraACChavesLLPinheiroMLimaSCNetoPJRFerreiraDSarmentoBReisSLipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophagesCarbohyd Polym20212521169781:CAS:528:DC%2BB3cXitVyms7bE10.1016/j.carbpol.2020.116978 – reference: ChaGDLeeWHLimCChoiMKKimD-HMaterials engineering, processing, and device application of hydrogel nanocompositesNanoscale2020121910456104731:CAS:528:DC%2BB3cXovFyktr8%3D10.1039/D0NR01456G32388540 – reference: GanjiMDKoHJamehbozorgiSTajbakhshMTanrehSPahlavan NejadRSepahvandMRezvaniMUnravelling performance of honeycomb structures as drug delivery systems for the isoniazid drug using DFT-D3 correction dispersion and molecular dynamic simulationsPhy Chem Chem Phys2024261814018140361:CAS:528:DC%2BB2cXpt1Srt74%3D10.1039/D3CP05457H – reference: RaoMIppolitoGMfinangaSNtoumiFYeboah-ManuDVilaplanaCZumlaAMaeurerMLatent TB Infection (LTBI)–Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battlegroundInt J Infect Dis201980S58S6110.1016/j.ijid.2019.02.035 – reference: MaRZhangJChenZMaHLiuXLiangSWuPGeZTreatment of spinal tuberculosis in rabbits using bovine serum albumin nanoparticles loaded with isoniazid and rifampicinNeurol Res20224432682741:CAS:528:DC%2BB3MXit1GgsbvO10.1080/01616412.2021.197974934581255 – reference: SharmaAGaurAKumarVSharmaNPatilSAVermaRKSinghAKAntimicrobial activity of synthetic antimicrobial peptides loaded in poly-Ɛ-caprolactone nanoparticles against mycobacteria and their functional synergy with rifampicinInt J Pharm20216081210971:CAS:528:DC%2BB3MXitVyksrzL10.1016/j.ijpharm.2021.12109734534632 – reference: ParmarKSondarvaSAerosolizable pyrazinamide-loaded biodegradable nanoparticles for the management of pulmonary tuberculosisJ Aerosol Med Pulm Drug Deli201437130401:CAS:528:DC%2BB2cXjs1KmsLs%3D10.1089/jamp.2022.0078 – reference: BeitzingerBGerblFVomhofTSchmidRNoschkaRRodriguezAWieseSWeidingerGStändkerLWaltherPDelivery by dendritic mesoporous silica nanoparticles enhances the antimicrobial activity of a napsin-derived peptide against intracellular Mycobacterium tuberculosisAdv Healthcare Mater2021101421004531:CAS:528:DC%2BB3MXhtlKmtLjF10.1002/adhm.202100453 – reference: SinghAGautamPKVermaASinghVShivapriyaPMShivalkarSSahooAKSamantaSKGreen synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a reviewBiotechnol Rep202025e0042710.1016/j.btre.2020.e00427 – reference: ZakiERMohsenDMEldeinDKYousefMBFagirMHChitosan nanoparticles biosynthesis and characterization for Inhalation as an operative treatment of tuberculosisIP Int J Med Microbiol Trop Dis202110.18231/j.ijmmtd.2020.045 – reference: FergusonJSWeisJJMartinJLSchlesingerLSComplement protein C3 binding to Mycobacterium tuberculosis is initiated by the classical pathway in human bronchoalveolar lavage fluidInfect Immu2004725256425731:CAS:528:DC%2BD2cXjslajsbY%3D10.1128/iai.72.5.2564-2573.2004 – reference: R.Y. Basha, S.K. TS, M. Doble, Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages, Carbohydrate polymers 218 (2019) 53–62. https://doi.org/10.1016/j.carbpol.2019.04.056 – reference: NairAGreenyANandanASahRKJoseADyawanapellySJunnuthulaVA. K. V, P. Sadanandan,Advanced drug delivery and therapeutic strategies for tuberculosis treatmentJ Nanobiotechnol202321141410.1186/s12951-023-02156-y – reference: SinghKKRole of nanotechnology and nanomaterials for water treatment and environmental remediationInt J New Chem2022933733981:CAS:528:DC%2BB38XjtlOjt74%3D10.22034/ijnc.2022.3.6 – reference: YulugBHanogluLKilicESchabitzWRRIFAMPICIN: an antibiotic with brain protective functionBrain Res Bull201410737421:CAS:528:DC%2BC2cXhtlCjsb7L10.1016/j.brainresbull.2014.05.00724905548 – reference: ZargarnezhadSGholamiAKhoshneviszadehMAbootalebiSNGhasemiY2020 Antimicrobial activity of isoniazid in conjugation with surface-modified magnetic nanoparticles against Mycobacterium tuberculosis and nonmycobacterial microorganismsJ Nanomater202010.1155/2020/7372531 – reference: MaCWuMYeWHuangZMaXWangWWangWHuangYPanXWuCInhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive propertiesDrug Deliv Transl Res2021113121812351:CAS:528:DC%2BB3cXhvVyqtb3K10.1007/s13346-020-00849-732946043 – volume: 18 start-page: 1159 year: 2023 ident: 3853_CR80 publication-title: Int J Nanomedicine doi: 10.2147/IJN.S364634 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 3853_CR18 publication-title: Eur J Microbiol Immunol doi: 10.1556/1886.2021.00021 – year: 2022 ident: 3853_CR55 publication-title: BioRxiv doi: 10.1016/j.bioadv.2022.213003 – ident: 3853_CR11 – volume: 21 start-page: 101327 year: 2019 ident: 3853_CR44 publication-title: Biocatal Agric Biotechnol doi: 10.1016/j.bcab.2019.101327 – volume: 44 start-page: 268 issue: 3 year: 2022 ident: 3853_CR66 publication-title: Neurol Res doi: 10.1080/01616412.2021.1979749 – start-page: 1196 volume-title: Recommendations from the National Tuberculosis Controllers Association and CDC year: 2020 ident: 3853_CR13 – volume: 80 start-page: S58 year: 2019 ident: 3853_CR2 publication-title: Int J Infect Dis doi: 10.1016/j.ijid.2019.02.035 – volume: 28 start-page: 1616 issue: 12 year: 2020 ident: 3853_CR51 publication-title: Saudi Pharm J doi: 10.1016/j.jsps.2020.10.008 – volume: 176 start-page: 106261 year: 2022 ident: 3853_CR52 publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2022.106261 – volume: 52 start-page: 642 year: 2019 ident: 3853_CR53 publication-title: J Drug Delivery Sci Technol doi: 10.1016/j.jddst.2019.05.025 – volume: 4 start-page: e00443 issue: 4 year: 2019 ident: 3853_CR70 publication-title: Msphere doi: 10.1128/msphere.00443-19 – ident: 3853_CR67 doi: 10.1080/02652048.2022.2025935 – volume: 21 start-page: 414 issue: 1 year: 2023 ident: 3853_CR79 publication-title: J Nanobiotechnol doi: 10.1186/s12951-023-02156-y – volume: 6 start-page: 065408 issue: 6 year: 2019 ident: 3853_CR42 publication-title: Mater Res Express doi: 10.1088/2053-1591/ab08ff – volume: 172 start-page: 1169 issue: 9 year: 2005 ident: 3853_CR15 publication-title: Am J Respir Crit Care Med doi: 10.1016/j.ijtb.2020.02.005 – year: 2021 ident: 3853_CR17 publication-title: Breathe doi: 10.1183/20734735.0079-2021 – volume: 14 start-page: 1543 issue: 8 year: 2022 ident: 3853_CR63 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14081543 – volume: 26 start-page: 181 issue: 2 year: 2021 ident: 3853_CR65 publication-title: Pharm Dev Technol doi: 10.1080/10837450.2020.1852570 – volume: 392 start-page: 1 issue: 1–2 year: 2010 ident: 3853_CR6 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2010.03.017 – ident: 3853_CR1 – volume: 87 start-page: e00291 issue: 11 year: 2019 ident: 3853_CR58 publication-title: Infect Immun doi: 10.1128/iai.00291-19 – volume: 323 start-page: 121449 year: 2024 ident: 3853_CR73 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2023.121449 – volume: 16 start-page: 369 issue: 4 year: 2021 ident: 3853_CR7 publication-title: Nature Nanotechnol doi: 10.1038/s41565-021-00866-8 – year: 2022 ident: 3853_CR78 publication-title: Front Pharmacol doi: 10.3389/fphar.2022.906097 – volume: 26 start-page: 14018 issue: 18 year: 2024 ident: 3853_CR24 publication-title: Phy Chem Chem Phys doi: 10.1039/D3CP05457H – volume: 107 start-page: 37 year: 2014 ident: 3853_CR32 publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2014.05.007 – volume: 25 start-page: e00427 year: 2020 ident: 3853_CR22 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2020.e00427 – year: 2019 ident: 3853_CR39 publication-title: Nanoelectronic Mater doi: 10.1016/B978-0-323-99278-7.00011-0 – volume: 8 start-page: 100 issue: 2 year: 2023 ident: 3853_CR48 publication-title: Trop Med Infect Dis doi: 10.3390/tropicalmed8020100 – volume: 19 start-page: 355 issue: 1 year: 2021 ident: 3853_CR43 publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01074-x – volume: 5 start-page: 48 year: 2019 ident: 3853_CR40 publication-title: Curr Sci – volume: 431 start-page: 3450 issue: 18 year: 2019 ident: 3853_CR30 publication-title: J Mol Biol doi: 10.1016/j.jmb.2019.02.016 – volume: 4 start-page: 2000113 issue: 1 year: 2021 ident: 3853_CR47 publication-title: Adv Ther doi: 10.1002/adtp.202000113 – volume: 18 start-page: 779 issue: 6 year: 2021 ident: 3853_CR60 publication-title: Curr Drug Deliv doi: 10.2174/1567201817999201103194626 – year: 2021 ident: 3853_CR64 publication-title: IP Int J Med Microbiol Trop Dis doi: 10.18231/j.ijmmtd.2020.045 – volume: 12 start-page: 10456 issue: 19 year: 2020 ident: 3853_CR38 publication-title: Nanoscale doi: 10.1039/D0NR01456G – volume: 11 start-page: 800 year: 2020 ident: 3853_CR72 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00800 – volume: 48 start-page: 6181 issue: 8 year: 2021 ident: 3853_CR14 publication-title: Mole Biol Rep doi: 10.1007/s11033-021-06611-7 – volume: 1266 start-page: 133452 year: 2022 ident: 3853_CR28 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2022.133452 – ident: 3853_CR4 – volume: 16 start-page: 216 issue: 2 year: 2024 ident: 3853_CR74 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics16020216 – volume: 11 start-page: 1218 issue: 3 year: 2021 ident: 3853_CR54 publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-020-00849-7 – volume: 60 start-page: 102013 year: 2020 ident: 3853_CR69 publication-title: Journal of Drug Delivery Science and Technology doi: 10.1016/j.jddst.2020.102013 – volume: 72 start-page: 2564 issue: 5 year: 2004 ident: 3853_CR23 publication-title: Infect Immu doi: 10.1128/iai.72.5.2564-2573.2004 – volume: 102 start-page: 102 year: 2016 ident: 3853_CR27 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2016.04.012 – volume: 12 start-page: 177 issue: 2 year: 2022 ident: 3853_CR35 publication-title: Nanomaterials doi: 10.3390/nano12020177 – volume: 9 start-page: 373 issue: 3 year: 2022 ident: 3853_CR36 publication-title: Int J New Chem doi: 10.22034/ijnc.2022.3.6 – ident: 3853_CR75 doi: 10.1007/978-3-031-50349-8_118 – volume: 17 start-page: 1 issue: 1 year: 2017 ident: 3853_CR21 publication-title: BMC Public Health doi: 10.1186/s12889-017-4089-y – year: 2017 ident: 3853_CR46 publication-title: Tuberc Res Treat doi: 10.1155/2017/4920209 – ident: 3853_CR41 doi: 10.1016/B978-0-08-101975-7.00005-1 – volume: 7 start-page: 4338 issue: 27 year: 2019 ident: 3853_CR49 publication-title: J Mater Chem B doi: 10.1039/C9TB00784A – volume: 74 start-page: 103937 year: 2019 ident: 3853_CR33 publication-title: Infect Genet Evol doi: 10.1016/j.meegid.2019.103937 – volume: 20 start-page: 2868 issue: 12 year: 2019 ident: 3853_CR10 publication-title: Int J Mol Sci doi: 10.3390/ijms20122868 – volume: 22 start-page: 2705 issue: 16 year: 2020 ident: 3853_CR31 publication-title: Cryst Eng Comm doi: 10.1039/D0CE00440E – volume: 37 start-page: 30 issue: 1 year: 2014 ident: 3853_CR77 publication-title: J Aerosol Med Pulm Drug Deli doi: 10.1089/jamp.2022.0078 – volume: 9 start-page: 569 issue: 9 year: 2020 ident: 3853_CR19 publication-title: Antibiotics doi: 10.3390/antibiotics9090569 – volume: 34 year: 2023 ident: 3853_CR25 publication-title: J Clin Tuberc Other Mycobact Dis doi: 10.1016/j.jctube.2023.100412 – volume: 8 start-page: 191 issue: 3 year: 2018 ident: 3853_CR3 publication-title: J Pharm Res doi: 10.5958/2231-5691.2018.00033.3 – volume: 252 start-page: 116978 year: 2021 ident: 3853_CR61 publication-title: Carbohyd Polym doi: 10.1016/j.carbpol.2020.116978 – volume: 5 start-page: e002280 issue: 7 year: 2020 ident: 3853_CR20 publication-title: BMJ Glob Health doi: 10.1136/bmjgh-2019-002280 – year: 2022 ident: 3853_CR8 publication-title: Elsevier doi: 10.1016/B978-0-323-91201-3.00007-4 – volume: 14 start-page: e0212858 issue: 2 year: 2019 ident: 3853_CR71 publication-title: PLoS ONE doi: 10.1371/journal.pone.0212858 – volume: 10 start-page: 2100453 issue: 14 year: 2021 ident: 3853_CR57 publication-title: Adv Healthcare Mater doi: 10.1002/adhm.202100453 – year: 2022 ident: 3853_CR16 publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.16952 – volume: 4 start-page: 76 issue: 3 year: 2019 ident: 3853_CR45 publication-title: J Interdiscip Nanomed doi: 10.1002/jin2.61 – volume: 28 start-page: 55 issue: 1 year: 2020 ident: 3853_CR59 publication-title: J Drug Target doi: 10.1080/1061186X.2019.1613409 – volume: 8 start-page: 16114 issue: 32 year: 2020 ident: 3853_CR37 publication-title: J Materials Chem A doi: 10.1039/D0TA05183G – ident: 3853_CR68 doi: 10.1016/j.carbpol.2019.04.056 – year: 2020 ident: 3853_CR56 publication-title: J Nanomater doi: 10.1155/2020/7372531 – volume: 138 start-page: 115077 year: 2022 ident: 3853_CR26 publication-title: Phys E Low-Dimens Syst Nanostruct doi: 10.1016/j.physe.2021.115077 – volume: 27 start-page: 24 issue: 1 year: 2024 ident: 3853_CR76 publication-title: Iran J Basic Med Sci doi: 10.22038/ijbms.2023.69295.15100 – volume: 42 start-page: 7 year: 2018 ident: 3853_CR29 publication-title: Curr Opin Pharmacol doi: 10.1016/j.coph.2018.05.013 – volume: 172 start-page: 106900 year: 2022 ident: 3853_CR9 publication-title: Microchem J doi: 10.1016/j.microc.2021.106900 – volume: 256 start-page: 117961 year: 2020 ident: 3853_CR50 publication-title: Life Sci doi: 10.1016/j.lfs.2020.117961 – volume: 128 start-page: 102083 year: 2021 ident: 3853_CR34 publication-title: Tuberculosis doi: 10.1016/j.tube.2021.102083 – volume: 15 start-page: 5852 issue: 4 year: 2014 ident: 3853_CR5 publication-title: Int J Mol Sci doi: 10.3390/ijms15045852 – volume: 608 start-page: 121097 year: 2021 ident: 3853_CR62 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.121097 – volume: 9 start-page: 1367 year: 2018 ident: 3853_CR12 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01367 |
| SSID | ssj0012901 |
| Score | 2.4194655 |
| SecondaryResourceType | review_article |
| Snippet | Even though the number of effective anti-tuberculosis or anti-mycobacterial agents is increasing, a large number of patients experience severe side effects as... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 326 |
| SubjectTerms | Animals antibiotic resistance Antimicrobial resistance Antitubercular Agents - pharmacology Antitubercular Agents - therapeutic use Biomedical and Life Sciences Biotechnology Chemotherapy Drug delivery Drug Delivery Systems - methods Drug resistance Drug Resistance, Bacterial Drugs Humans Life Sciences Microbiology Mycobacterium tuberculosis - drug effects nanomedicine Nanomedicine - methods Nanoparticles Nanoparticles - chemistry neoplasms Quality of life Review Side effects Topical application Tuberculosis Tuberculosis - drug therapy Tuberculosis - microbiology Tumor cells Well being |
| SummonAdditionalLinks | – databaseName: Springer LINK Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Kvji98d0SgTfNNA2_XwcovjiGHOKbyVpEynMVtZNcH-9l6ytiDrQl77k0h7XS-53XPI7gPMktUTouY6-3Y4JCi4nKnATpCrxuKZ_clMmTLOJoNcLn56ifnUprKxPu9clSbNTN5fddHrgUowpVFezGJ0twwqGu1Avx8H9Y1M70JVBUztwGQ19z66uyvz8jq_h6BvG_FYfNWHnZvN_Cm_BRgUzSXfuF9uwJPMdWJs3nnzfBYGbakHvqro6QeBKhvWJc1IoMpwKOU6mo6LMykvSHxfoDfhp0q0YyGVJus88Q2hJuvkke8kMnRN-cCBLDUjRk_bg4eZ6eHVLq24LNHGtcEKVx1OXScvi3JaR4gG3I6V7kqUIwB3uSe6lvq-Y8J1U-MySIk1dfCRWELAkUmwfWnmRy0MgTHmOJgYMfXQDxXyOwravQoYzbBE4bbBro8dJRUWuO2KM4oZE2dguRtvFxnbxrA0XzZzXORHHQulO_S_jalGWMTNMN4hRvTacNcNoQF0j4bkspkYmwKQRccwCGYwSCPsws2zDwdxPGpVYpBnxLRy5rJ3iU4Hf9T36m_gxrDvar8yhwg60JuOpPIHV5G2SleNTsxw-AHftA_s priority: 102 providerName: Springer Nature |
| Title | Nano-Medicine for Treatment of Tuberculosis, Promising Approaches Against Antimicrobial Resistance |
| URI | https://link.springer.com/article/10.1007/s00284-024-03853-z https://www.ncbi.nlm.nih.gov/pubmed/39182006 https://www.proquest.com/docview/3096580545 https://www.proquest.com/docview/3097149381 https://www.proquest.com/docview/3153727956 |
| Volume | 81 |
| WOSCitedRecordID | wos001300260500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1432-0991 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012901 issn: 0343-8651 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdoW9tNvabtm6oMHeWlHb8ufTSEfLXpqFLCt5M_oshs7u4mTQ_vU7KbLLKMvLXgRGJ3zoTtJPOul3AJ-kCkSexJF93Y4bFBxOVOAkSI1MuKV_ihUTLtlENh7n83kx8Qdurb9W2c2JbqJWjbRn5GfM0ZQgwEg-3_2iNmuUja76FBpbsGNZEpi7ujfpowg2RuiiCDGjeZqE_tGMezpnNxsxxRWK2tgYow9_L0xP0OaTSKlbgC73_1f1l7DnoScZrX3lFTzT9WvYXSejvD8AgRNtQ698rJ0gmCWz7hY6aQyZrYReyNVt01btKZksGvQQVJSMPCu5bsnohlcIN8moXlY_K0fxhD-c6taCVPSuQ_hxeTH78pX6DAxUxkG-pCbhKmY6CDgPdWF4xsPC2DxlCkF5xBPNE5Wmhok0UiJlgRZKxVjIIMuYLAw7gu26qfVbIMwkkSULzFN0DcNSjsJhanKGLUKRRQMIu-4vpacnt1kybsueWNmZrESTlc5k5cMATvo2d2tyjo3Sx515Sj9Q2_LRNgP42FdjB9q4Ca91s3IyGW4kEdtskEHvQyiIu80BvFl7TK8SKyxLfoA1p50LPSrwb33fbdb3PbyIrPu6i4XHsL1crPQHeC5_L6t2MYStbJ65Mh_CzvnFeDLFr6vo29ANESyn36__AGb0Eq4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78fSAkaCE7VI7DwPqFoBVau2qxVapN6CnyhSScpml6r9Uf2NjJ1HhSr21gOXXGInjv2N55vMeAbgrdKBzOKIudPtaKCgOFGJmyC1KhYu_VOkufTFJtLJJDs6yqdrcNGfhXFhlf2e6DdqXSv3j_wD92lKkGDE2ye_qKsa5byrfQmNFhb75uwUTbbm495nXN93jO18mX3apV1VAaqiIFtQGwsdcRMEQoQmtyIVYW5d7S2NRJOJ2IhYJ4nlMmFaJjwwUusILypIU65yy_G5N-Am0giW-VDB6eC1cD5J77WIOM2SOOwO6fijes64iShqROp8cZye_60Ir7DbK55Zr_B27v9vU_UA7nXUmoxbWXgIa6Z6BLfbYptnj0GiIqnpYRdLQJCsk1kfZU9qS2ZLaeZqeVw3ZbNFpvMaJQAnhoy7rOumIeMfokQ6TcbVovxZ-hRW-MKvpnEkHKXnCXy7lg98CutVXZnnQLiNmUuGmCUIfcsTgY3DxGYce4QyZSMI--UuVJd-3VUBOS6GxNEeIgVCpPAQKc5H8H7oc9ImH1nZerOHQ9FtRE1xiYURvBlu4wQ6v5CoTL30bVI0lJG7rWiDmhGpLlrTI3jWInQYEs9dFYAA72z1kL0cwL_H-2L1eF_Dnd3Z4UFxsDfZ34C7zImOD6LchPXFfGlewi31e1E281deCAl8v24o_wGgjW0l |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUXnn2EFlgkONFVba-fB1RFlIiqEEUoSL25-6wstXYbJ6D2p_HrmF0_KlSRWw9ccvE62ay_2fnGM_sNwDupPJFGYWBPt2OAguZEBW6C1MiIW_mnUDHhmk0k43F6fJxNVuB3dxbGllV2e6LbqFUl7TvyPeZkSpBgRHumLYuYHIz2Ly6p7SBlM61dO40GIkf66heGb_XHwwN81u-DYPR5-ukLbTsMUBl66ZyaiKuQac_j3NeZ4Qn3M2P7cCkknQGPNI9UHBsm4kCJmHlaKBXih_SShMnMMPzee3A_saLlrmxw0mcwbH7SZTBCRtM48tsDO-7Yng10Qorekdq8HKPXfzvFW0z3VpbWOb_Rk_952Z7C45Zyk2FjI89gRZfP4WHThPPqBQh0MBX91tYYECTxZNpV35PKkOlC6JlcnFV1Ue-SyaxCy8BFIsNWjV3XZHjKC6TZZFjOi_PCSVvhD37XtSXnaFXr8ONO_uAGrJZVqbeAMBMFViQxjdEkDIs5DvZjkzK8wxdJMAC_e_S5bGXZbXeQs7wXlHZwyREuuYNLfj2AD_09F40oydLROx008naDqvMbXAzgbX8ZF9Dmi3ipq4Ubk2AAjZxuyRj0mEiBMcoewGaD1n5KLLPdATy8stvB92YC_57vy-XzfQNriOD86-H4aBseBdaKXG3lDqzOZwv9Ch7In_Oinr129kjg5K6R_AdazHXi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-Medicine+for+Treatment+of+Tuberculosis%2C+Promising+Approaches+Against+Antimicrobial+Resistance&rft.jtitle=Current+microbiology&rft.au=Mobed%2C+Ahmad&rft.au=Alivirdiloo%2C+Vahid&rft.au=Gholami%2C+Sarah&rft.au=Moshari%2C+Amirreza&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0343-8651&rft.eissn=1432-0991&rft.volume=81&rft.issue=10&rft.spage=326&rft_id=info:doi/10.1007%2Fs00284-024-03853-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0343-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0343-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0343-8651&client=summon |