Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering Label Correlation and Class-Imbalance
Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep lear...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 84306 - 84315 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep learning model and a new accuracy calculation method. The data processing step consists of a multi-feature and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest (RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method can effectively improve electrical appliance recognition accuracy and realize NILM. |
|---|---|
| AbstractList | Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep learning model and a new accuracy calculation method. The data processing step consists of a multi-feature and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest (RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method can effectively improve electrical appliance recognition accuracy and realize NILM. |
| Author | Xiao, Tianying Zhou, Xiao Liu, Chengxi Zhu, Haojun Li, Shujian Dong, Nan |
| Author_xml | – sequence: 1 givenname: Xiao orcidid: 0000-0002-6346-3104 surname: Zhou fullname: Zhou, Xiao organization: Energy Development Research Institute, CSG, Guangzhou, China – sequence: 2 givenname: Shujian surname: Li fullname: Li, Shujian organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Chengxi orcidid: 0000-0003-0262-5314 surname: Liu fullname: Liu, Chengxi email: liuchengxi@whu.edu.cn organization: Department of Electrical Engineering and Automation, Wuhan University, Wuhan, China – sequence: 4 givenname: Haojun surname: Zhu fullname: Zhu, Haojun organization: Energy Development Research Institute, CSG, Guangzhou, China – sequence: 5 givenname: Nan surname: Dong fullname: Dong, Nan organization: Energy Development Research Institute, CSG, Guangzhou, China – sequence: 6 givenname: Tianying surname: Xiao fullname: Xiao, Tianying organization: Energy Development Research Institute, CSG, Guangzhou, China |
| BookMark | eNqFUctu3CAURVUqNa8vyMZS156CMRiWkZXHSM5UyiRrdHlFjBxIwVOpfx_POIqqbsrigg7nnMvlnKGTmKJD6IrgFSFY_rju-5vtdtXghqwoFh2X_As6bQiXNWWUn_x1_oYuS9nheYkZYt0pCpsU63Wc8r6E364aEtjqIcUwpRziS_VcDhWqfrOph-3TQ_14O19bN1Z9iiVYd2QNoI9Izm6EKaRYQbRVP0Ip9fpVwwjRuAv01cNY3OXHfo6eb2-e-vt6-Hm37q-H2rRYTLVvmRRa8sZo0oCl1nsiraFUSMMbIa0WQgvdgsHNYdpOA--slYx1zErs6TlaL742wU695fAK-Y9KENQRSPlFQZ6CGZ2iWlvvXOuB45ZzAp0TjeDGGAzMOzF7fV-83nL6tXdlUru0z3F-vmpYS1ouBMMziy4sk1Mp2fnPrgSrQ0RqiUgdIlIfEc0q-Y_KhOn4e1OGMP5He7Vog3Pus5tsWyk6Rt8BD1SgTA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126689 crossref_primary_10_3390_buildings13040911 crossref_primary_10_1007_s12053_025_10308_2 crossref_primary_10_1371_journal_pone_0296979 crossref_primary_10_1109_ACCESS_2021_3133292 crossref_primary_10_3233_ICA_240738 crossref_primary_10_3390_s22145250 crossref_primary_10_1007_s11042_023_16723_w crossref_primary_10_1049_enc2_12118 crossref_primary_10_1145_3699729 crossref_primary_10_1007_s12273_023_1074_5 crossref_primary_10_1016_j_measen_2024_101298 crossref_primary_10_3390_en14206796 crossref_primary_10_3390_en14227609 crossref_primary_10_1109_JSEN_2025_3577680 crossref_primary_10_2174_0122127976325514241001045948 crossref_primary_10_3390_s21165366 crossref_primary_10_3390_info15020087 crossref_primary_10_1109_TII_2024_3456858 crossref_primary_10_3390_en15031215 crossref_primary_10_3390_en15239073 crossref_primary_10_1109_ACCESS_2024_3474798 |
| Cites_doi | 10.1109/5.192069 10.1109/ACCESS.2020.3003778 10.1109/TSG.2018.2871620 10.1109/ISGT-LA.2019.8895291 10.1109/TSG.2016.2584581 10.1109/TSG.2019.2938068 10.1109/TIA.2011.2180497 10.1109/TIA.2013.2258875 10.1109/TII.2019.2955470 10.1109/TSG.2019.2938090 10.1016/j.apenergy.2017.08.203 10.1109/TIM.2020.3035193 10.1109/GlobalSIP.2015.7418157 10.1109/TLA.2020.9085291 10.1145/2821650.2821672 10.1109/SmartGridComm.2014.7007702 10.1109/ICASSP.2019.8683110 10.1109/TIM.2013.2289700 10.1109/EI2.2017.8245612 10.1109/ACCESS.2020.2981969 10.1109/TSG.2018.2815763 10.1109/TIM.2020.3034989 10.1109/TSG.2018.2865702 10.1109/TCE.2020.2977964 10.1109/TSG.2017.2743760 10.1109/TCE.2018.2843292 10.1109/ACCESS.2020.2988366 10.1109/TSG.2016.2626389 10.1109/TSG.2015.2484258 10.1109/TSG.2018.2886849 10.3934/energy.2016.1.1 10.1109/TPAMI.2019.2914680 10.1109/ACCESS.2020.2978513 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2021.3087696 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 84315 |
| ExternalDocumentID | oai_doaj_org_article_3bbdfee4fa604661a7e8286ccc0a5fe8 10_1109_ACCESS_2021_3087696 9449875 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-f4598b962cb12ad3dff19dc3389c6289db88b8b4ac0230877ba67dd95575d90f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:45:30 EDT 2025 Sun Nov 30 04:08:53 EST 2025 Sat Nov 29 06:12:21 EST 2025 Tue Nov 18 21:49:03 EST 2025 Wed Aug 27 02:50:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f4598b962cb12ad3dff19dc3389c6289db88b8b4ac0230877ba67dd95575d90f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6346-3104 0000-0003-0262-5314 |
| OpenAccessLink | https://doaj.org/article/3bbdfee4fa604661a7e8286ccc0a5fe8 |
| PQID | 2541468850 |
| PQPubID | 4845423 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3087696 doaj_primary_oai_doaj_org_article_3bbdfee4fa604661a7e8286ccc0a5fe8 proquest_journals_2541468850 ieee_primary_9449875 crossref_citationtrail_10_1109_ACCESS_2021_3087696 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 ref16 garg (ref34) 2015 ref19 ref18 yang (ref33) 2018 (ref37) 2021 huang (ref35) 2020; 42 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 kolter (ref36) 2011 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 kolter (ref30) 2012 jihyun (ref20) 2017; 2017 |
| References_xml | – ident: ref28 doi: 10.1109/5.192069 – ident: ref2 doi: 10.1109/ACCESS.2020.3003778 – ident: ref8 doi: 10.1109/TSG.2018.2871620 – ident: ref25 doi: 10.1109/ISGT-LA.2019.8895291 – ident: ref38 doi: 10.1109/TSG.2016.2584581 – ident: ref19 doi: 10.1109/TSG.2019.2938068 – ident: ref1 doi: 10.1109/TIA.2011.2180497 – ident: ref15 doi: 10.1109/TIA.2013.2258875 – ident: ref13 doi: 10.1109/TII.2019.2955470 – ident: ref18 doi: 10.1109/TSG.2019.2938090 – ident: ref31 doi: 10.1016/j.apenergy.2017.08.203 – ident: ref11 doi: 10.1109/TIM.2020.3035193 – ident: ref21 doi: 10.1109/GlobalSIP.2015.7418157 – start-page: 3915 year: 2018 ident: ref33 article-title: SGM: Sequence generation model for multi-label classification publication-title: Proc 27th Int Conf Comput Linguistics – ident: ref6 doi: 10.1109/TLA.2020.9085291 – ident: ref9 doi: 10.1145/2821650.2821672 – ident: ref27 doi: 10.1109/SmartGridComm.2014.7007702 – ident: ref22 doi: 10.1109/ICASSP.2019.8683110 – start-page: 59 year: 2011 ident: ref36 article-title: REDD: A public data set for energy disaggregation research publication-title: Proc SustKDD Workshop Data Mining Appl Sustainability – volume: 2017 year: 2017 ident: ref20 article-title: Nonintrusive load monitoring based on advanced deep learning and novel signature publication-title: Comput Intell Neurosci – ident: ref5 doi: 10.1109/TIM.2013.2289700 – ident: ref23 doi: 10.1109/EI2.2017.8245612 – year: 2021 ident: ref37 publication-title: Pecan street dataset – ident: ref4 doi: 10.1109/ACCESS.2020.2981969 – ident: ref16 doi: 10.1109/TSG.2018.2815763 – start-page: 1472 year: 2012 ident: ref30 article-title: Approximate inference in additive factorial HMMs with application to energy disaggregation publication-title: Proc AISTATS – ident: ref12 doi: 10.1109/TIM.2020.3034989 – ident: ref17 doi: 10.1109/TSG.2018.2865702 – ident: ref24 doi: 10.1109/TCE.2020.2977964 – ident: ref39 doi: 10.1109/TSG.2017.2743760 – ident: ref10 doi: 10.1109/TCE.2018.2843292 – ident: ref29 doi: 10.1109/ACCESS.2020.2988366 – ident: ref32 doi: 10.1109/TSG.2016.2626389 – ident: ref7 doi: 10.1109/TSG.2015.2484258 – ident: ref3 doi: 10.1109/TSG.2018.2886849 – ident: ref26 doi: 10.3934/energy.2016.1.1 – volume: 42 start-page: 2781 year: 2020 ident: ref35 article-title: Deep imbalanced learning for face recognition and attribute prediction publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2914680 – ident: ref14 doi: 10.1109/ACCESS.2020.2978513 – year: 2015 ident: ref34 article-title: Exploring correlation between labels to improve multi-label classification publication-title: Comput Sci |
| SSID | ssj0000816957 |
| Score | 2.380976 |
| Snippet | Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 84306 |
| SubjectTerms | Algorithms Artificial neural networks class-imbalance CNN Correlation Data models Data processing Datasets Deep learning Electric appliances Electrical products Feature extraction Hidden Markov models Load modeling LSTM Machine learning Model accuracy Monitoring multi-label classification NILM |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeyqsV29LKB44YkmwS20dYdQXSNkItSNwse2xLSJBFC-3vr8fxRkitKvVm-RE5-fyYccbfB3AcdyQ19b7kJYaCx0HhuKHIHRmsspgshsSuvxBdJ-_u1PUGnIx3Ybz3KfjMn1Iy_ct3S_xJR2Vnqq6ji9xswqYQYrirNZ6nkICEakQmFioLdXY-m8V3iC5gVZ4S711LxPyvNp_E0Z9FVf5YidP2Mt_5v47twrtsRrLzAfc92PD9Prx9RS54APfdsudXPV2qiCsaWyyNY8MMpnKWYgWYYbOu44sfN9_49zkjYbQHttbwpPKFsSlntcpBc8z0jiUlTX71aCkuEv17uJ1_vZld8iyswLEu5AsPdaOkVW2FtqyMm7oQSuUweqsK2-iBOSullbY2SB6KFMKaVjinmmjbOVWE6QfY6pe9PwRm4xqBvg0V2QnCI9lbaGOTxso6JiZQrb-4xsw6TuIXDzp5H4XSA0yaYNIZpgmcjI2eBtKNf1e_ICjHqsSYnTIiRjpPQD211gXv62Daoo5GiRGebtAjYmGa4GNHDwjX8SEZ0gkcrQeGzrP7WVeknd5K2RQf_97qE7yhDg5HNUewFaH2n2Ebf73cP6--pIH7G6yb6sA priority: 102 providerName: IEEE |
| Title | Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering Label Correlation and Class-Imbalance |
| URI | https://ieeexplore.ieee.org/document/9449875 https://www.proquest.com/docview/2541468850 https://doaj.org/article/3bbdfee4fa604661a7e8286ccc0a5fe8 |
| Volume | 9 |
| WOSCitedRecordID | wos000673197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYNHo223TZOjLi4KaxEf4C3kCYJ2ZVc8-tudSbPLgqAXL6Xk0TaTSTJfmfmGkBM4kWTf-5zlNmQMlMIxjZ47IhhpbLQYIrv-qG4a8fws7xZSfaFPWEcP3AnuvG-MC96XQXOAcjzXtcfIZ2ttpqvgY5gvWD0LYCruwSLnsqoTzVCeyfOLwQBGBICwyM-QBY8jTf_CURQZ-1OKlR_7cjxshhtkPVmJ9KL7uk2y5NstsrbAHbhNXppxy25ajJmADYuOxtrRboFiPY2uAFTTQdOw0cPjLbsfUsx79kpnKTqxfqRNLJlMkk8c1a2jMVEmu3kz6PZo_Q55Gl49Dq5ZypvAbJmJDxbKSgojeWFNXmjXdyHk0lkAo9JyAFjOCGGEKbVFACLq2mheOycrMN2czEJ_lyy349bvEWpgC7CehwLNgNpbNKesgS6VESXc9EgxE6GyiVQcc1u8qgguMqk6uSuUu0py75HTeaf3jlPj9-aXODfzpkiIHQtATVRSE_WXmvTINs7s_CGyLCVAtR45nM20Sot3qgpMjc6FqLL9_3j1AVnF4XT_bQ7JMiiGPyIr9vPjZTo5jnoL19uvq-MYffgNGSDxRw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceBXEQgEfONZtknUS-1hWrLoijRAsUm-WPbalSiWLtoXfj8fxRpVASNwsPyInnx8zzvj7AN7HHUnNvS95iaHgcVA4bihyRwarLCaLIbHrd23fy4sL9XkPjqa7MN77FHzmjymZ_uW7Df6ko7ITJUR0kes7cLcWoirH21rTiQpJSKi6zdRCZaFOTheL-BbRCazKY2K-a4ia_9b2k1j6s6zKH2tx2mCWj_-va0_gUTYk2emI_FPY88MzeHiLXvAALvvNwFcDXauIaxrrNsaxcQ5TOUvRAsywRd_z7uv6nH9ZMpJGu2I7FU8q74xNOdttDptjZnAsaWny1XdLkZHon8O35cf14oxnaQWOopA3PIhaSauaCm1ZGTd3IZTKYfRXFTbRB3NWSiutMEg-imxba5rWOVVH686pIsxfwP6wGfxLYDauEuibUJGl0HokiwttbFJbKWJiBtXui2vMvOMkf3Glk_9RKD3CpAkmnWGawdHU6MdIu_Hv6h8IyqkqcWanjIiRzlNQz611wXsRTFOIaJaY1tMdekQsTB187OgB4To9JEM6g8PdwNB5fl_ritTTGynr4tXfW72D-2fr8053q_7Ta3hAnR0Pbg5hP8Lu38A9_HVzeb19mwbxbwVr7gc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Intrusive+Load+Monitoring+Using+a+CNN-LSTM-RF+Model+Considering+Label+Correlation+and+Class-Imbalance&rft.jtitle=IEEE+access&rft.au=Zhou%2C+Xiao&rft.au=Li%2C+Shujian&rft.au=Liu%2C+Chengxi&rft.au=Zhu%2C+Haojun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=84306&rft.epage=84315&rft_id=info:doi/10.1109%2FACCESS.2021.3087696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3087696 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |