Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering Label Correlation and Class-Imbalance

Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep lear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 84306 - 84315
Hlavní autoři: Zhou, Xiao, Li, Shujian, Liu, Chengxi, Zhu, Haojun, Dong, Nan, Xiao, Tianying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep learning model and a new accuracy calculation method. The data processing step consists of a multi-feature and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest (RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method can effectively improve electrical appliance recognition accuracy and realize NILM.
AbstractList Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to recognize the working state of electrical appliances using low frequency load data. The approach includes a data processing step, a deep learning model and a new accuracy calculation method. The data processing step consists of a multi-feature and high-dimensional method (MFHDM) and a pre-training process. The deep learning model consists of a convolutional neural network (CNN), a long-term short-term memory network (LSTM) and a random-forest (RF) algorithm. The proposed method addresses the label correlation problem and the class-imbalance problem. To test the proposed method, the Reference Energy Disaggregation Dataset (REDD) and the Pecan Street dataset (PSD) are used. A comparative analysis with several models shows that the proposed method can effectively improve electrical appliance recognition accuracy and realize NILM.
Author Xiao, Tianying
Zhou, Xiao
Liu, Chengxi
Zhu, Haojun
Li, Shujian
Dong, Nan
Author_xml – sequence: 1
  givenname: Xiao
  orcidid: 0000-0002-6346-3104
  surname: Zhou
  fullname: Zhou, Xiao
  organization: Energy Development Research Institute, CSG, Guangzhou, China
– sequence: 2
  givenname: Shujian
  surname: Li
  fullname: Li, Shujian
  organization: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Chengxi
  orcidid: 0000-0003-0262-5314
  surname: Liu
  fullname: Liu, Chengxi
  email: liuchengxi@whu.edu.cn
  organization: Department of Electrical Engineering and Automation, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Haojun
  surname: Zhu
  fullname: Zhu, Haojun
  organization: Energy Development Research Institute, CSG, Guangzhou, China
– sequence: 5
  givenname: Nan
  surname: Dong
  fullname: Dong, Nan
  organization: Energy Development Research Institute, CSG, Guangzhou, China
– sequence: 6
  givenname: Tianying
  surname: Xiao
  fullname: Xiao, Tianying
  organization: Energy Development Research Institute, CSG, Guangzhou, China
BookMark eNqFUctu3CAURVUqNa8vyMZS156CMRiWkZXHSM5UyiRrdHlFjBxIwVOpfx_POIqqbsrigg7nnMvlnKGTmKJD6IrgFSFY_rju-5vtdtXghqwoFh2X_As6bQiXNWWUn_x1_oYuS9nheYkZYt0pCpsU63Wc8r6E364aEtjqIcUwpRziS_VcDhWqfrOph-3TQ_14O19bN1Z9iiVYd2QNoI9Izm6EKaRYQbRVP0Ip9fpVwwjRuAv01cNY3OXHfo6eb2-e-vt6-Hm37q-H2rRYTLVvmRRa8sZo0oCl1nsiraFUSMMbIa0WQgvdgsHNYdpOA--slYx1zErs6TlaL742wU695fAK-Y9KENQRSPlFQZ6CGZ2iWlvvXOuB45ZzAp0TjeDGGAzMOzF7fV-83nL6tXdlUru0z3F-vmpYS1ouBMMziy4sk1Mp2fnPrgSrQ0RqiUgdIlIfEc0q-Y_KhOn4e1OGMP5He7Vog3Pus5tsWyk6Rt8BD1SgTA
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126689
crossref_primary_10_3390_buildings13040911
crossref_primary_10_1007_s12053_025_10308_2
crossref_primary_10_1371_journal_pone_0296979
crossref_primary_10_1109_ACCESS_2021_3133292
crossref_primary_10_3233_ICA_240738
crossref_primary_10_3390_s22145250
crossref_primary_10_1007_s11042_023_16723_w
crossref_primary_10_1049_enc2_12118
crossref_primary_10_1145_3699729
crossref_primary_10_1007_s12273_023_1074_5
crossref_primary_10_1016_j_measen_2024_101298
crossref_primary_10_3390_en14206796
crossref_primary_10_3390_en14227609
crossref_primary_10_1109_JSEN_2025_3577680
crossref_primary_10_2174_0122127976325514241001045948
crossref_primary_10_3390_s21165366
crossref_primary_10_3390_info15020087
crossref_primary_10_1109_TII_2024_3456858
crossref_primary_10_3390_en15031215
crossref_primary_10_3390_en15239073
crossref_primary_10_1109_ACCESS_2024_3474798
Cites_doi 10.1109/5.192069
10.1109/ACCESS.2020.3003778
10.1109/TSG.2018.2871620
10.1109/ISGT-LA.2019.8895291
10.1109/TSG.2016.2584581
10.1109/TSG.2019.2938068
10.1109/TIA.2011.2180497
10.1109/TIA.2013.2258875
10.1109/TII.2019.2955470
10.1109/TSG.2019.2938090
10.1016/j.apenergy.2017.08.203
10.1109/TIM.2020.3035193
10.1109/GlobalSIP.2015.7418157
10.1109/TLA.2020.9085291
10.1145/2821650.2821672
10.1109/SmartGridComm.2014.7007702
10.1109/ICASSP.2019.8683110
10.1109/TIM.2013.2289700
10.1109/EI2.2017.8245612
10.1109/ACCESS.2020.2981969
10.1109/TSG.2018.2815763
10.1109/TIM.2020.3034989
10.1109/TSG.2018.2865702
10.1109/TCE.2020.2977964
10.1109/TSG.2017.2743760
10.1109/TCE.2018.2843292
10.1109/ACCESS.2020.2988366
10.1109/TSG.2016.2626389
10.1109/TSG.2015.2484258
10.1109/TSG.2018.2886849
10.3934/energy.2016.1.1
10.1109/TPAMI.2019.2914680
10.1109/ACCESS.2020.2978513
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3087696
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 84315
ExternalDocumentID oai_doaj_org_article_3bbdfee4fa604661a7e8286ccc0a5fe8
10_1109_ACCESS_2021_3087696
9449875
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f4598b962cb12ad3dff19dc3389c6289db88b8b4ac0230877ba67dd95575d90f3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000673197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:30 EDT 2025
Sun Nov 30 04:08:53 EST 2025
Sat Nov 29 06:12:21 EST 2025
Tue Nov 18 21:49:03 EST 2025
Wed Aug 27 02:50:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f4598b962cb12ad3dff19dc3389c6289db88b8b4ac0230877ba67dd95575d90f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6346-3104
0000-0003-0262-5314
OpenAccessLink https://ieeexplore.ieee.org/document/9449875
PQID 2541468850
PQPubID 4845423
PageCount 10
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3087696
doaj_primary_oai_doaj_org_article_3bbdfee4fa604661a7e8286ccc0a5fe8
proquest_journals_2541468850
ieee_primary_9449875
crossref_citationtrail_10_1109_ACCESS_2021_3087696
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
garg (ref34) 2015
ref19
ref18
yang (ref33) 2018
(ref37) 2021
huang (ref35) 2020; 42
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
kolter (ref36) 2011
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
kolter (ref30) 2012
jihyun (ref20) 2017; 2017
References_xml – ident: ref28
  doi: 10.1109/5.192069
– ident: ref2
  doi: 10.1109/ACCESS.2020.3003778
– ident: ref8
  doi: 10.1109/TSG.2018.2871620
– ident: ref25
  doi: 10.1109/ISGT-LA.2019.8895291
– ident: ref38
  doi: 10.1109/TSG.2016.2584581
– ident: ref19
  doi: 10.1109/TSG.2019.2938068
– ident: ref1
  doi: 10.1109/TIA.2011.2180497
– ident: ref15
  doi: 10.1109/TIA.2013.2258875
– ident: ref13
  doi: 10.1109/TII.2019.2955470
– ident: ref18
  doi: 10.1109/TSG.2019.2938090
– ident: ref31
  doi: 10.1016/j.apenergy.2017.08.203
– ident: ref11
  doi: 10.1109/TIM.2020.3035193
– ident: ref21
  doi: 10.1109/GlobalSIP.2015.7418157
– start-page: 3915
  year: 2018
  ident: ref33
  article-title: SGM: Sequence generation model for multi-label classification
  publication-title: Proc 27th Int Conf Comput Linguistics
– ident: ref6
  doi: 10.1109/TLA.2020.9085291
– ident: ref9
  doi: 10.1145/2821650.2821672
– ident: ref27
  doi: 10.1109/SmartGridComm.2014.7007702
– ident: ref22
  doi: 10.1109/ICASSP.2019.8683110
– start-page: 59
  year: 2011
  ident: ref36
  article-title: REDD: A public data set for energy disaggregation research
  publication-title: Proc SustKDD Workshop Data Mining Appl Sustainability
– volume: 2017
  year: 2017
  ident: ref20
  article-title: Nonintrusive load monitoring based on advanced deep learning and novel signature
  publication-title: Comput Intell Neurosci
– ident: ref5
  doi: 10.1109/TIM.2013.2289700
– ident: ref23
  doi: 10.1109/EI2.2017.8245612
– year: 2021
  ident: ref37
  publication-title: Pecan street dataset
– ident: ref4
  doi: 10.1109/ACCESS.2020.2981969
– ident: ref16
  doi: 10.1109/TSG.2018.2815763
– start-page: 1472
  year: 2012
  ident: ref30
  article-title: Approximate inference in additive factorial HMMs with application to energy disaggregation
  publication-title: Proc AISTATS
– ident: ref12
  doi: 10.1109/TIM.2020.3034989
– ident: ref17
  doi: 10.1109/TSG.2018.2865702
– ident: ref24
  doi: 10.1109/TCE.2020.2977964
– ident: ref39
  doi: 10.1109/TSG.2017.2743760
– ident: ref10
  doi: 10.1109/TCE.2018.2843292
– ident: ref29
  doi: 10.1109/ACCESS.2020.2988366
– ident: ref32
  doi: 10.1109/TSG.2016.2626389
– ident: ref7
  doi: 10.1109/TSG.2015.2484258
– ident: ref3
  doi: 10.1109/TSG.2018.2886849
– ident: ref26
  doi: 10.3934/energy.2016.1.1
– volume: 42
  start-page: 2781
  year: 2020
  ident: ref35
  article-title: Deep imbalanced learning for face recognition and attribute prediction
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2914680
– ident: ref14
  doi: 10.1109/ACCESS.2020.2978513
– year: 2015
  ident: ref34
  article-title: Exploring correlation between labels to improve multi-label classification
  publication-title: Comput Sci
SSID ssj0000816957
Score 2.380976
Snippet Non-Intrusive Load Monitoring (NILM) is particularly important for demand response. This paper proposes an innovative method based on a deep learning model to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84306
SubjectTerms Algorithms
Artificial neural networks
class-imbalance
CNN
Correlation
Data models
Data processing
Datasets
Deep learning
Electric appliances
Electrical products
Feature extraction
Hidden Markov models
Load modeling
LSTM
Machine learning
Model accuracy
Monitoring
multi-label classification
NILM
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYh5JAeStK01M0DHXKs6n1otdIxMTENOEtJUshNjF5gSNfFNvn90WhlYwi0l1ylfWk0kuZbjb6PkEspWs6NAgYgcZuxAhbDiJoFI0xtKxDGJxLXWdt18ulJ_dqR-sKcsIEeeDDcuDbGBe95ABGhnCih9Xjy2VpbQBN8OuYbo54dMJXmYFkK1bSZZqgs1PhqMoktioCwKn8gC55Amv6dpSgx9meJlTfzclpspkfkY44S6dXwdcdkz_efyIcd7sATMu8WPbvt8cxEnLDobAGODgMU62lKBaBAJ13HZg-Pd-x-SlH37JluJDqxfgYmlSyXOSeOQu9oEspkt38Mpj1a_5n8nt48Tn6yrJvALC_kmgXeKGmUqKyJtne1C6FUzkYwqqyIAMsZKY00HCwCENm2BkTrnGpi6OZUEeovZL9f9P4roU1QLW6d1pUpeQklQOxJ5Liz0sbI0I1ItTGhtplUHLUtnnUCF4XSg9012l1nu4_I9-1NfwdOjX9ffo19s70UCbFTQXQTnd1E_89NRuQEe3b7EMW5ilBtRM42Pa3z4F3pCqXRhZRN8e09Xn1KDrE5w3-bM7IfHcOfkwP7sp6vlhfJb18BElvuxQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Non-Intrusive Load Monitoring Using a CNN-LSTM-RF Model Considering Label Correlation and Class-Imbalance
URI https://ieeexplore.ieee.org/document/9449875
https://www.proquest.com/docview/2541468850
https://doaj.org/article/3bbdfee4fa604661a7e8286ccc0a5fe8
Volume 9
WOSCitedRecordID wos000673197500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxUxFD60xYUubLWK1z7IwmXTziOTx7JeerFwO4hW6C7kCYV2rtxWl_52czK5Q0ER3AzDJBky8-VxTnLyfQAfJBeMWWWoMRK3GRtDkxnR0mi5bV1juA2ZxHUp-l7e3KjPW3AynYUJIeTgs3CKt3kv36_cD1wqO1OMJRe524ZtIcR4VmtaT0EBCdWJQixUV-rsfD5P35BcwKY-Rd47jsT8TyafzNFfRFX-GInz9LLY_b-K7cHLYkaS8xH3V7AVhtfw4gm54D7c9quBXg54qCKNaGS5Mp6MPRjTSY4VIIbM-54uv15f0S8LgsJod2Sj4YnpS2Pzk_W6BM0RM3iSlTTp5b3FuEgX3sC3xcX1_BMtwgrUsUo-0sg6Ja3ijbMJHN_6GGvlXfJWlePJA_NWSistMw49FCmENVx4r7pk23lVxfYt7AyrIbwD0kUlcG-1bWzNalMbk6BGEjwnXTId_QyazR_XrrCOo_jFnc7eR6X0CJNGmHSBaQYnU6HvI-nGv7N_RCinrMiYnR8kjHTpgLq11scQWDQ81ZfXRgQ8Qe-cq0wXg5zBPuI6vaRAOoPDTcPQpXc_6Aa107mUXfX-76UO4DlWcFyqOYSdBHU4gmfu5-Ptw_o4-_3pevXr4jg34t8M8eyW
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKmgfvFVxtWoefGzauWQyyWNdunRxOoiu0LeQKxTqrGyrv785mexQUIS-DbkMmflyO8k53wfwSfCWMSM11VrgNWOladxG1DQYbmpbaW58InHt2r4XFxfy6w4cTrEw3vvkfOaP8DHd5bu1_Y1HZceSsWgiNw_gYcNYVY7RWtOJCkpIyKbN1EJlIY9P5vP4FdEIrMojZL7jSM1_Z_lJLP1ZVuWvuTgtMItn92vac3iaN5LkZET-Bez44SXs3aEX3IfLfj3Q5YBhFXFOI91aOzKOYcwnyVuAaDLve9p9X53TbwuC0mhXZKviifmdNills8luc0QPjiQtTbr8adAz0vpX8GNxupqf0SytQC0rxA0NrJHCSF5ZE-FxtQuhlM5Ge1VaHm0wZ4QwwjBt0UYRbWs0b52TTdzdOVmE-jXsDuvBvwHSBNni7WpdmZKVutQ6go00eFbYuHl0M6i2f1zZzDuO8hdXKtkfhVQjTAphUhmmGRxOlX6NtBv_L_4ZoZyKImd2SogYqTwEVW2MC96zoHlsLy916zGG3lpb6CZ4MYN9xHV6SYZ0BgfbjqHy-L5WFaqncyGa4u2_a32Ex2er8051y_7LO3iCjR0Pbg5gN8Lu38Mj--fm8nrzIXXiW1jo7bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-Intrusive+Load+Monitoring+Using+a+CNN-LSTM-RF+Model+Considering+Label+Correlation+and+Class-Imbalance&rft.jtitle=IEEE+access&rft.au=Zhou%2C+Xiao&rft.au=Li%2C+Shujian&rft.au=Liu%2C+Chengxi&rft.au=Zhu%2C+Haojun&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=84306&rft.epage=84315&rft_id=info:doi/10.1109%2FACCESS.2021.3087696&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3087696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon