Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework

Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 2001 - 2016
Hlavní autoři: Peng, Bo, Huang, Qunying, Vongkusolkit, Jamp, Gao, Song, Wright, Daniel B., Fang, Zheng N., Qiang, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near realtime or fail to generalize well to other floods, for several reasons. First, multitemporal pixel-wise flood mapping requires accurate image registration, hindering the efficiency of large-scale processing. Although automatic image registration has been investigated, precisely coregistered multitemporal image sequence requires time-consuming fine tuning. Additionally, the floods may lead to the loss of many corresponding image points across multitemporal images for accurate coregistration. Second, existing unsupervised methods generally rely on hand-crafted features for floodwater detection. Such features may not well represent the patterns of floodwaters in different areas due to inconsistent weather conditions, illumination, and floodwater spectra. This article proposes a self-supervised learning framework for patch-wise urban flood mapping using bitemporal multispectral satellite imagery. Patch-wise change vector analysis is used with patch features learned through a self-supervised autoencoder to produce patch-wise change maps showing potentially flood-affected areas. Postprocessing including spectral and spatial filtering is applied to these patch-wise change maps to remove nonflood related changes. Final flood maps and parameter sensitivities were evaluated using several performance metrics. Two flood events from areas with differing degrees of urbanization were considered: Hurricane Harvey flood (2017) in Houston, Texas, and Hurricane Florence flood (2018) in Lumberton, North Carolina. The proposed method shows strong performance for self-supervised urban flood mapping.
AbstractList Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near realtime or fail to generalize well to other floods, for several reasons. First, multitemporal pixel-wise flood mapping requires accurate image registration, hindering the efficiency of large-scale processing. Although automatic image registration has been investigated, precisely coregistered multitemporal image sequence requires time-consuming fine tuning. Additionally, the floods may lead to the loss of many corresponding image points across multitemporal images for accurate coregistration. Second, existing unsupervised methods generally rely on hand-crafted features for floodwater detection. Such features may not well represent the patterns of floodwaters in different areas due to inconsistent weather conditions, illumination, and floodwater spectra. This article proposes a self-supervised learning framework for patch-wise urban flood mapping using bitemporal multispectral satellite imagery. Patch-wise change vector analysis is used with patch features learned through a self-supervised autoencoder to produce patch-wise change maps showing potentially flood-affected areas. Postprocessing including spectral and spatial filtering is applied to these patch-wise change maps to remove nonflood related changes. Final flood maps and parameter sensitivities were evaluated using several performance metrics. Two flood events from areas with differing degrees of urbanization were considered: Hurricane Harvey flood (2017) in Houston, Texas, and Hurricane Florence flood (2018) in Lumberton, North Carolina. The proposed method shows strong performance for self-supervised urban flood mapping.
Author Huang, Qunying
Fang, Zheng N.
Qiang, Yi
Peng, Bo
Vongkusolkit, Jamp
Gao, Song
Wright, Daniel B.
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0003-1514-6881
  surname: Peng
  fullname: Peng, Bo
  email: bo.peng@wisc.edu
  organization: Department of Geography, Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI, USA
– sequence: 2
  givenname: Qunying
  surname: Huang
  fullname: Huang, Qunying
  email: qhuang46@wisc.edu
  organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA
– sequence: 3
  givenname: Jamp
  surname: Vongkusolkit
  fullname: Vongkusolkit, Jamp
  email: vongkusolkit@wisc.edu
  organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA
– sequence: 4
  givenname: Song
  surname: Gao
  fullname: Gao, Song
  email: song.gao@wisc.edu
  organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA
– sequence: 5
  givenname: Daniel B.
  surname: Wright
  fullname: Wright, Daniel B.
  email: danielb.wright@wisc.edu
  organization: Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA
– sequence: 6
  givenname: Zheng N.
  surname: Fang
  fullname: Fang, Zheng N.
  email: nickfang@uta.edu
  organization: Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX, USA
– sequence: 7
  givenname: Yi
  surname: Qiang
  fullname: Qiang, Yi
  email: qiangy@usf.edu
  organization: School of Geosciences, University of South Florida, Tampa, FL, USA
BookMark eNp9kUFv1DAQha2qSGxLf0EvljhnsWM7iY-lYstWWyGxbTlaE2e89ZKNg-MF9d83IYUDBw7WyNZ8z0_vnZHTLnRIyCVnS86Z_nC7vb_6ul3mLGdLwWRZlOUJWeRc8YwroU7JgmuhMy6ZfEvOhmHPWJGXWixI_RBr6OiqDaGhd9D3vtvRbz490Y8-4aEPEVp6d2yTH3q0abqtD7DD-EwfPVCgW2xdtj32GH_6ARu6QYjdJLKKcMBfIX5_R944aAe8eJ3n5GH16f76c7b5crO-vtpkVrIqZS7XKOrKgcqdFg6gkOCKWjeytELkdcNL7uqmhkpJyxtAzpQoK2e5LlSNuTgn61m3CbA3ffQHiM8mgDe_H0LcGYjJ2xaNFajFeNBpJyvgwKtCWjVmae0YSz1qvZ-1-hh-HHFIZh-OsRvtm1xWhdJjytOPet6yMQxDRGesT5B86MagfGs4M1M9Zq7HTPWY13pGVvzD_nH8f-pypjwi_iVGN1ooKV4A5Wie_A
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1109_MGRS_2023_3269979
crossref_primary_10_1109_JSTARS_2023_3316302
crossref_primary_10_1016_j_cities_2022_103925
crossref_primary_10_3390_rs14030734
crossref_primary_10_1109_ACCESS_2025_3539346
crossref_primary_10_1016_j_scitotenv_2024_173273
crossref_primary_10_1080_2150704X_2025_2522934
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1016_j_jag_2024_104251
crossref_primary_10_1109_LGRS_2022_3205807
crossref_primary_10_3390_s24092955
crossref_primary_10_1175_AIES_D_22_0015_1
crossref_primary_10_1016_j_isprsjprs_2023_12_009
crossref_primary_10_1002_ldr_4742
crossref_primary_10_3389_fenvs_2022_973192
crossref_primary_10_3390_rs15133263
crossref_primary_10_1080_01431161_2024_2387132
crossref_primary_10_3390_hydrology10010017
crossref_primary_10_1109_JSTARS_2022_3215730
crossref_primary_10_1109_JSTARS_2024_3460531
crossref_primary_10_3390_hydrology10080158
crossref_primary_10_1109_JSTARS_2025_3557311
crossref_primary_10_3390_w15244202
crossref_primary_10_3390_rs17050904
Cites_doi 10.1109/TGRS.2003.817268
10.1109/TGRS.2019.2917001
10.1109/JSTARS.2011.2179638
10.1145/3219819.3220053
10.1109/LGRS.2015.2439575
10.3390/rs11020114
10.3390/rs70810347
10.1016/j.neunet.2017.07.017
10.1016/0034-4257(94)90144-9
10.1109/TGRS.2019.2903875
10.1109/TSMC.1979.4310076
10.1109/TSMC.1985.6313443
10.1038/234034a0
10.1016/0031-3203(86)90030-0
10.1109/TGRS.2018.2886643
10.1016/S0031-3203(00)00136-9
10.3390/rs11192330
10.1145/3347146.3359068
10.1109/TGRS.2019.2930682
10.3390/rs11212492
10.1109/JSTARS.2017.2725382
10.3390/rs3112473
10.1109/IGARSS.2016.7730533
10.1006/cviu.2002.0960
10.1109/CVPR.2019.00202
10.3390/s19071486
10.1016/j.isprsjprs.2019.04.014
10.1109/TPAMI.2020.2992393
10.1016/j.jag.2014.12.001
10.1109/LGRS.2018.2882516
10.1109/TGRS.2012.2210901
10.1080/01431161.2014.890299
10.1109/TGRS.2018.2797536
10.3390/rs71114853
10.1109/TGRS.2006.876288
10.1016/j.isprsjprs.2014.11.006
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.3047677
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 2016
ExternalDocumentID oai_doaj_org_article_c3e933e9ef9f48a1a1864c5110cc793b
10_1109_JSTARS_2020_3047677
9309354
Genre orig-research
GrantInformation_xml – fundername: Department of Geography at UW-Madison
– fundername: National Science Foundation
  grantid: 1940091
  funderid: 10.13039/501100008982
– fundername: University of Wisconsin-Madison
  funderid: 10.13039/100007015
– fundername: Microsoft AI
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c408t-f29e3b8fa52f93faa64af6b9d47c332bd171fbdba854c1dae105378fc1965be23
IEDL.DBID DOA
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615042800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:51:06 EDT 2025
Fri Jul 25 10:45:28 EDT 2025
Tue Nov 18 20:42:37 EST 2025
Sat Nov 29 04:51:07 EST 2025
Wed Aug 27 02:50:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f29e3b8fa52f93faa64af6b9d47c332bd171fbdba854c1dae105378fc1965be23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1514-6881
OpenAccessLink https://doaj.org/article/c3e933e9ef9f48a1a1864c5110cc793b
PQID 2486593042
PQPubID 75722
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_c3e933e9ef9f48a1a1864c5110cc793b
ieee_primary_9309354
crossref_primary_10_1109_JSTARS_2020_3047677
crossref_citationtrail_10_1109_JSTARS_2020_3047677
proquest_journals_2486593042
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
pilon (ref2) 2002
ref11
ref10
digitalglobe (ref15) 0
ref16
ref18
song (ref29) 2019; 11
levandowsky (ref49) 1971; 234
ref51
goodfellow (ref28) 2016
ref46
ref45
ref47
ref42
ref44
ref43
(ref1) 2019
(ref48) 2018
ref8
ref9
ref4
ref6
malila (ref41) 1980
wieland (ref7) 2019; 11
peng (ref13) 0
kingma (ref40) 0
ref35
ref34
ref37
ref36
ref30
ref33
ref32
ref39
(ref14) 2018
ref38
adam (ref50) 0
skakun (ref17) 2012; 29
ref23
ref26
malinowski (ref5) 2015; 7
ref20
ref22
ref21
ref27
dhakal (ref31) 2002; 68
(ref3) 2018
byun (ref24) 2015; 7
feng (ref19) 2015; 7
(ref25) 0
References_xml – ident: ref23
  doi: 10.1109/TGRS.2003.817268
– year: 0
  ident: ref15
  article-title: Open Data Program
– ident: ref11
  doi: 10.1109/TGRS.2019.2917001
– ident: ref34
  doi: 10.1109/JSTARS.2011.2179638
– ident: ref16
  doi: 10.1145/3219819.3220053
– ident: ref18
  doi: 10.1109/LGRS.2015.2439575
– volume: 11
  year: 2019
  ident: ref29
  article-title: A patch-based light convolutional neural network for land-cover mapping using Landsat-8 images
  publication-title: Remote Sensing
  doi: 10.3390/rs11020114
– volume: 7
  start-page: 10 347
  year: 2015
  ident: ref24
  article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images
  publication-title: Remote Sens
  doi: 10.3390/rs70810347
– ident: ref30
  doi: 10.1016/j.neunet.2017.07.017
– year: 2002
  ident: ref2
  article-title: United Nations Int. Strategy Disaster Reduction
  publication-title: Guidelines for Reducing Flood Losses
– ident: ref42
  doi: 10.1016/0034-4257(94)90144-9
– ident: ref10
  doi: 10.1109/TGRS.2019.2903875
– ident: ref38
  doi: 10.1109/TSMC.1979.4310076
– year: 0
  ident: ref40
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref51
  doi: 10.1109/TSMC.1985.6313443
– volume: 234
  start-page: 34
  year: 1971
  ident: ref49
  article-title: Distance between sets
  publication-title: Nature
  doi: 10.1038/234034a0
– ident: ref35
  doi: 10.1016/0031-3203(86)90030-0
– volume: 68
  start-page: 233
  year: 2002
  ident: ref31
  article-title: Detection of areas associated with flood and erosion caused by a heavy rainfall using multitemporal Landsat TM data
  publication-title: Photogrammetric Eng Remote Sens
– ident: ref44
  doi: 10.1109/TGRS.2018.2886643
– ident: ref46
  doi: 10.1016/S0031-3203(00)00136-9
– volume: 11
  year: 2019
  ident: ref7
  article-title: A modular processing chain for automated flood monitoring from multi-spectral satellite data
  publication-title: Remote Sens
  doi: 10.3390/rs11192330
– ident: ref22
  doi: 10.1145/3347146.3359068
– ident: ref39
  doi: 10.1109/TGRS.2019.2930682
– ident: ref12
  doi: 10.3390/rs11212492
– ident: ref8
  doi: 10.1109/JSTARS.2017.2725382
– start-page: p. 385
  year: 1980
  ident: ref41
  article-title: Change vector analysis: An approach for detecting forest changes with landsat
  publication-title: LARS Symposia
– ident: ref43
  doi: 10.3390/rs3112473
– ident: ref9
  doi: 10.1109/IGARSS.2016.7730533
– ident: ref45
  doi: 10.1006/cviu.2002.0960
– ident: ref27
  doi: 10.1109/CVPR.2019.00202
– year: 0
  ident: ref25
  article-title: Federal Emergency Management Agency Flood Mapping Products
– ident: ref20
  doi: 10.3390/s19071486
– ident: ref21
  doi: 10.1016/j.isprsjprs.2019.04.014
– ident: ref26
  doi: 10.1109/TPAMI.2020.2992393
– ident: ref32
  doi: 10.1016/j.jag.2014.12.001
– year: 2018
  ident: ref3
  article-title: Sustainable Development Goals Report
  publication-title: United Nations
– year: 2018
  ident: ref14
  article-title: Planet application program interface
  publication-title: Space for Life on Earth
– ident: ref6
  doi: 10.1109/LGRS.2018.2882516
– year: 2016
  ident: ref28
  publication-title: Deep Learning
– ident: ref33
  doi: 10.1109/TGRS.2012.2210901
– ident: ref37
  doi: 10.1080/01431161.2014.890299
– year: 2018
  ident: ref48
  article-title: Microsoft Building Footprints
  publication-title: Microsoft Bing Maps Team
– ident: ref47
  doi: 10.1109/TGRS.2018.2797536
– volume: 7
  start-page: 1437
  year: 2015
  ident: ref19
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier-A Case of Yuyao, China
– volume: 7
  start-page: 14 853
  year: 2015
  ident: ref5
  article-title: Detection and delineation of localized flooding from WorldView-2 multispectral data
  publication-title: Remote Sens
  doi: 10.3390/rs71114853
– volume: 29
  start-page: 1013
  year: 2012
  ident: ref17
  article-title: A neural network approach to flood mapping using satellite imagery
  publication-title: Inform Comput
– ident: ref36
  doi: 10.1109/TGRS.2006.876288
– year: 0
  ident: ref50
  article-title: Automatic differentiation in Pytorch
  publication-title: Proc Neural Inf Process Syst
– ident: ref4
  doi: 10.1016/j.isprsjprs.2014.11.006
– year: 2019
  ident: ref1
  article-title: Flood Inundation Mapping (FIM) Program
– start-page: 40
  year: 0
  ident: ref13
  article-title: Urban flood mapping with residual patch similarity learning
  publication-title: Proc 3rd ACM SIGSPATIAL Int Workshop AI Geographic Knowl Discov - GeoAI
SSID ssj0062793
Score 2.3989697
Snippet Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2001
SubjectTerms Emergency preparedness
Emergency response
Flood control
Flood mapping
Floods
Floodwater
Handicrafts
Heterogeneity
Hurricanes
Image registration
Imagery
Labeling
Mapping
Methods
multispectral (MS) imagery
Optical imaging
Optical sensors
Parameter sensitivity
Performance evaluation
Performance measurement
Population density
Real time
Satellite imagery
Self-supervised learning
Sensitivity analysis
Spaceborne remote sensing
Spatial filtering
Spatial resolution
Supervised learning
urban
Urban areas
Urbanization
Vector analysis
Weather
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_aouCLX1V6WiUPPnbt5mPz8diWngpaxLO1b0s-24PrtVzvCv3vm8nlDkQRfFjYXSZh2d9kMklmfgPwIXvQUgdvMUpcNiIl2TjZxSbFrnPKtIGV8m1nX9XJiT4_N983YG-dCxNjLMFn8SPelrP8cO0XuFW2b8qxndiETaXUMldrZXUlU4VgN_sjpkHKmMowRFuzn1X84McorwVZXqK2QkmlfpuFCll_ra7yh0ku88zw2f994XN4Wv1JcrBUgBewEacv4fGnUq_3fhvc6czZKRlieDr5ZpGM4YL8Gs8vyeG4slJNSEnCLSmX-PTlCmkt7snZ2BJLRnGSmtHiBk3KbQyk8rFekOEqqusVnA6Pfx59bmpZhcaLVs-bxEzkTifbsWR4slYKm6QzQSjPOXOBKppccFZ3wtNgI0XOF508kg-6yPhr2JpeT-MOkCwRkqFcOtUJ7qNLkuZus9ckA08dHQBb_ebeV85xLH0x6cvaozX9EpsesekrNgPYWze6WVJu_Fv8EPFbiyJfdnmRgenr8Os9j4bnKyaThLbUUi2Fz85m631WHDeAbQRz3UnFcQC7K23o69i-7ZnQsjO4DfTm763ewhOGkS9lo2YXtuazRXwHj_xdxnL2vqjtA-8O6bI
  priority: 102
  providerName: IEEE
Title Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework
URI https://ieeexplore.ieee.org/document/9309354
https://www.proquest.com/docview/2486593042
https://doaj.org/article/c3e933e9ef9f48a1a1864c5110cc793b
Volume 14
WOSCitedRecordID wos000615042800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqRCUuFU-xLSAfeiQifsSxj4DYFokixPK6WX7CStstWhYk_j0ex7sCIcGlxyQTJ5qZjGec8fch9DNl0EJ6Z6BLXFQ8RlFZ0YQqhqaxrao9zfRtVyft6am8uVFnr6i-oCesgwfuFLfnWEg1d1AhqsilIYZIwV1KE2rnkm9ZiL4p65kVU10MFjRdKhhDpFZ7ycn3zwepGqSpSK15K9r2zTyU4foLv8q7oJxnmv4y-lZSRLzfvdoK-hLGq-jrr0zB-7yG7OXEmjHuQ8c5_mMAX-EWXw-nd_hgWICmRjjvq827KOHo-C8gVTzjq6HBBg_CKFaDx3uIEg_B4wKxeov7s0atdXTZP7o4_F0VpoTK8VpOq0hVYFZG09CoWDRGcBOFVZ63jjFqPWlJtN4a2XBHvAkEYFxkdIAnaANlG2hh_G8cNhFOEj4qwoRtG85csFGQNGxKhIRnsSE9RGd6067AiAObxUjncqJWulO2BmXrouwe2p3fdN-haHwsfgAGmYsCBHY-kRxDF8fQnzlGD62BOeeDqPzPl_fQ1sy8unyuD5pyKRoFKzvf_8ejf6AlCq0veaVmCy1MJ49hGy26p2T5yU721J280_AFU6zr3g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VAqIXXi1qoIAPHLt0_V4fW0RoRRoh0pbeLD9LpJBWaYLUf4_tOJEQCInDSrursbXabzwe2zPfALxLHrTovDM5Slw0LEbRWMFDEwPnVqrWk1K-7WIgh8Pu8lJ92YD9dS5MCKEEn4X3-bac5ftrt8hbZQeqHNuxe3CfM0bwMltrZXcFkYViN3kkqsmkMZVjCLfqICn54ddRWg2StEhtmRRS_jYPFbr-Wl_lD6NcZpr-k__7xqfwuHqU6HCpAs9gI0yfw8NPpWLv3TbY85k1U9TPAero1GQ6hiv0bTz_jo7GlZdqgkoabkm6zE8nPzKxxR26GBtk0ChMYjNa3GSjchs8qoysV6i_iuvagfP-x7MPx00trNA41nbzJhIVqO2i4SQqGo0RzERhlWfSUUqsxxJH663pOHPYm4Az60sXXaYftIHQF7A5vZ6GXUBJwkeFqbCSM-qCjQKnbpPfJDyNHPeArH6zdpV1PBe_mOiy-miVXmKjMza6YtOD_XWjmyXpxr_FjzJ-a9HMmF1eJGB0HYDa0aBoukJUkXUGG9wJ5pK72TqXFMf2YDuDue6k4tiDvZU26Dq6bzVhneAqbwS9_Hurt_Do-Ox0oAcnw8-vYIvkOJiybbMHm_PZIryGB-5nwnX2pqjwLzsC7Pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+Flood+Mapping+With+Bitemporal+Multispectral+Imagery+Via+a+Self-Supervised+Learning+Framework&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Peng%2C+Bo&rft.au=Huang%2C+Qunying&rft.au=Vongkusolkit%2C+Jamp&rft.au=Gao%2C+Song&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=2001&rft.epage=2016&rft_id=info:doi/10.1109%2FJSTARS.2020.3047677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_3047677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon