Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework
Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near r...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 14; s. 2001 - 2016 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near realtime or fail to generalize well to other floods, for several reasons. First, multitemporal pixel-wise flood mapping requires accurate image registration, hindering the efficiency of large-scale processing. Although automatic image registration has been investigated, precisely coregistered multitemporal image sequence requires time-consuming fine tuning. Additionally, the floods may lead to the loss of many corresponding image points across multitemporal images for accurate coregistration. Second, existing unsupervised methods generally rely on hand-crafted features for floodwater detection. Such features may not well represent the patterns of floodwaters in different areas due to inconsistent weather conditions, illumination, and floodwater spectra. This article proposes a self-supervised learning framework for patch-wise urban flood mapping using bitemporal multispectral satellite imagery. Patch-wise change vector analysis is used with patch features learned through a self-supervised autoencoder to produce patch-wise change maps showing potentially flood-affected areas. Postprocessing including spectral and spatial filtering is applied to these patch-wise change maps to remove nonflood related changes. Final flood maps and parameter sensitivities were evaluated using several performance metrics. Two flood events from areas with differing degrees of urbanization were considered: Hurricane Harvey flood (2017) in Houston, Texas, and Hurricane Florence flood (2018) in Lumberton, North Carolina. The proposed method shows strong performance for self-supervised urban flood mapping. |
|---|---|
| AbstractList | Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge for accurate near realtime flood mapping. However, previous studies on automatic methods for urban flood mapping perform infeasible in near realtime or fail to generalize well to other floods, for several reasons. First, multitemporal pixel-wise flood mapping requires accurate image registration, hindering the efficiency of large-scale processing. Although automatic image registration has been investigated, precisely coregistered multitemporal image sequence requires time-consuming fine tuning. Additionally, the floods may lead to the loss of many corresponding image points across multitemporal images for accurate coregistration. Second, existing unsupervised methods generally rely on hand-crafted features for floodwater detection. Such features may not well represent the patterns of floodwaters in different areas due to inconsistent weather conditions, illumination, and floodwater spectra. This article proposes a self-supervised learning framework for patch-wise urban flood mapping using bitemporal multispectral satellite imagery. Patch-wise change vector analysis is used with patch features learned through a self-supervised autoencoder to produce patch-wise change maps showing potentially flood-affected areas. Postprocessing including spectral and spatial filtering is applied to these patch-wise change maps to remove nonflood related changes. Final flood maps and parameter sensitivities were evaluated using several performance metrics. Two flood events from areas with differing degrees of urbanization were considered: Hurricane Harvey flood (2017) in Houston, Texas, and Hurricane Florence flood (2018) in Lumberton, North Carolina. The proposed method shows strong performance for self-supervised urban flood mapping. |
| Author | Huang, Qunying Fang, Zheng N. Qiang, Yi Peng, Bo Vongkusolkit, Jamp Gao, Song Wright, Daniel B. |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0003-1514-6881 surname: Peng fullname: Peng, Bo email: bo.peng@wisc.edu organization: Department of Geography, Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI, USA – sequence: 2 givenname: Qunying surname: Huang fullname: Huang, Qunying email: qhuang46@wisc.edu organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA – sequence: 3 givenname: Jamp surname: Vongkusolkit fullname: Vongkusolkit, Jamp email: vongkusolkit@wisc.edu organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA – sequence: 4 givenname: Song surname: Gao fullname: Gao, Song email: song.gao@wisc.edu organization: Department of Geography, University of Wisconsin - Madison, Madison, WI, USA – sequence: 5 givenname: Daniel B. surname: Wright fullname: Wright, Daniel B. email: danielb.wright@wisc.edu organization: Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA – sequence: 6 givenname: Zheng N. surname: Fang fullname: Fang, Zheng N. email: nickfang@uta.edu organization: Department of Civil Engineering, The University of Texas at Arlington, Arlington, TX, USA – sequence: 7 givenname: Yi surname: Qiang fullname: Qiang, Yi email: qiangy@usf.edu organization: School of Geosciences, University of South Florida, Tampa, FL, USA |
| BookMark | eNp9kUFv1DAQha2qSGxLf0EvljhnsWM7iY-lYstWWyGxbTlaE2e89ZKNg-MF9d83IYUDBw7WyNZ8z0_vnZHTLnRIyCVnS86Z_nC7vb_6ul3mLGdLwWRZlOUJWeRc8YwroU7JgmuhMy6ZfEvOhmHPWJGXWixI_RBr6OiqDaGhd9D3vtvRbz490Y8-4aEPEVp6d2yTH3q0abqtD7DD-EwfPVCgW2xdtj32GH_6ARu6QYjdJLKKcMBfIX5_R944aAe8eJ3n5GH16f76c7b5crO-vtpkVrIqZS7XKOrKgcqdFg6gkOCKWjeytELkdcNL7uqmhkpJyxtAzpQoK2e5LlSNuTgn61m3CbA3ffQHiM8mgDe_H0LcGYjJ2xaNFajFeNBpJyvgwKtCWjVmae0YSz1qvZ-1-hh-HHFIZh-OsRvtm1xWhdJjytOPet6yMQxDRGesT5B86MagfGs4M1M9Zq7HTPWY13pGVvzD_nH8f-pypjwi_iVGN1ooKV4A5Wie_A |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1109_MGRS_2023_3269979 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_1016_j_cities_2022_103925 crossref_primary_10_3390_rs14030734 crossref_primary_10_1109_ACCESS_2025_3539346 crossref_primary_10_1016_j_scitotenv_2024_173273 crossref_primary_10_1080_2150704X_2025_2522934 crossref_primary_10_1109_TGRS_2023_3276853 crossref_primary_10_1016_j_jag_2024_104251 crossref_primary_10_1109_LGRS_2022_3205807 crossref_primary_10_3390_s24092955 crossref_primary_10_1175_AIES_D_22_0015_1 crossref_primary_10_1016_j_isprsjprs_2023_12_009 crossref_primary_10_1002_ldr_4742 crossref_primary_10_3389_fenvs_2022_973192 crossref_primary_10_3390_rs15133263 crossref_primary_10_1080_01431161_2024_2387132 crossref_primary_10_3390_hydrology10010017 crossref_primary_10_1109_JSTARS_2022_3215730 crossref_primary_10_1109_JSTARS_2024_3460531 crossref_primary_10_3390_hydrology10080158 crossref_primary_10_1109_JSTARS_2025_3557311 crossref_primary_10_3390_w15244202 crossref_primary_10_3390_rs17050904 |
| Cites_doi | 10.1109/TGRS.2003.817268 10.1109/TGRS.2019.2917001 10.1109/JSTARS.2011.2179638 10.1145/3219819.3220053 10.1109/LGRS.2015.2439575 10.3390/rs11020114 10.3390/rs70810347 10.1016/j.neunet.2017.07.017 10.1016/0034-4257(94)90144-9 10.1109/TGRS.2019.2903875 10.1109/TSMC.1979.4310076 10.1109/TSMC.1985.6313443 10.1038/234034a0 10.1016/0031-3203(86)90030-0 10.1109/TGRS.2018.2886643 10.1016/S0031-3203(00)00136-9 10.3390/rs11192330 10.1145/3347146.3359068 10.1109/TGRS.2019.2930682 10.3390/rs11212492 10.1109/JSTARS.2017.2725382 10.3390/rs3112473 10.1109/IGARSS.2016.7730533 10.1006/cviu.2002.0960 10.1109/CVPR.2019.00202 10.3390/s19071486 10.1016/j.isprsjprs.2019.04.014 10.1109/TPAMI.2020.2992393 10.1016/j.jag.2014.12.001 10.1109/LGRS.2018.2882516 10.1109/TGRS.2012.2210901 10.1080/01431161.2014.890299 10.1109/TGRS.2018.2797536 10.3390/rs71114853 10.1109/TGRS.2006.876288 10.1016/j.isprsjprs.2014.11.006 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2020.3047677 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 2016 |
| ExternalDocumentID | oai_doaj_org_article_c3e933e9ef9f48a1a1864c5110cc793b 10_1109_JSTARS_2020_3047677 9309354 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Department of Geography at UW-Madison – fundername: National Science Foundation grantid: 1940091 funderid: 10.13039/501100008982 – fundername: University of Wisconsin-Madison funderid: 10.13039/100007015 – fundername: Microsoft AI |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c408t-f29e3b8fa52f93faa64af6b9d47c332bd171fbdba854c1dae105378fc1965be23 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615042800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:51:06 EDT 2025 Fri Jul 25 10:45:28 EDT 2025 Tue Nov 18 20:42:37 EST 2025 Sat Nov 29 04:51:07 EST 2025 Wed Aug 27 02:50:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f29e3b8fa52f93faa64af6b9d47c332bd171fbdba854c1dae105378fc1965be23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1514-6881 |
| OpenAccessLink | https://doaj.org/article/c3e933e9ef9f48a1a1864c5110cc793b |
| PQID | 2486593042 |
| PQPubID | 75722 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3e933e9ef9f48a1a1864c5110cc793b ieee_primary_9309354 crossref_primary_10_1109_JSTARS_2020_3047677 crossref_citationtrail_10_1109_JSTARS_2020_3047677 proquest_journals_2486593042 |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 pilon (ref2) 2002 ref11 ref10 digitalglobe (ref15) 0 ref16 ref18 song (ref29) 2019; 11 levandowsky (ref49) 1971; 234 ref51 goodfellow (ref28) 2016 ref46 ref45 ref47 ref42 ref44 ref43 (ref1) 2019 (ref48) 2018 ref8 ref9 ref4 ref6 malila (ref41) 1980 wieland (ref7) 2019; 11 peng (ref13) 0 kingma (ref40) 0 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref39 (ref14) 2018 ref38 adam (ref50) 0 skakun (ref17) 2012; 29 ref23 ref26 malinowski (ref5) 2015; 7 ref20 ref22 ref21 ref27 dhakal (ref31) 2002; 68 (ref3) 2018 byun (ref24) 2015; 7 feng (ref19) 2015; 7 (ref25) 0 |
| References_xml | – ident: ref23 doi: 10.1109/TGRS.2003.817268 – year: 0 ident: ref15 article-title: Open Data Program – ident: ref11 doi: 10.1109/TGRS.2019.2917001 – ident: ref34 doi: 10.1109/JSTARS.2011.2179638 – ident: ref16 doi: 10.1145/3219819.3220053 – ident: ref18 doi: 10.1109/LGRS.2015.2439575 – volume: 11 year: 2019 ident: ref29 article-title: A patch-based light convolutional neural network for land-cover mapping using Landsat-8 images publication-title: Remote Sensing doi: 10.3390/rs11020114 – volume: 7 start-page: 10 347 year: 2015 ident: ref24 article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images publication-title: Remote Sens doi: 10.3390/rs70810347 – ident: ref30 doi: 10.1016/j.neunet.2017.07.017 – year: 2002 ident: ref2 article-title: United Nations Int. Strategy Disaster Reduction publication-title: Guidelines for Reducing Flood Losses – ident: ref42 doi: 10.1016/0034-4257(94)90144-9 – ident: ref10 doi: 10.1109/TGRS.2019.2903875 – ident: ref38 doi: 10.1109/TSMC.1979.4310076 – year: 0 ident: ref40 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Representations – ident: ref51 doi: 10.1109/TSMC.1985.6313443 – volume: 234 start-page: 34 year: 1971 ident: ref49 article-title: Distance between sets publication-title: Nature doi: 10.1038/234034a0 – ident: ref35 doi: 10.1016/0031-3203(86)90030-0 – volume: 68 start-page: 233 year: 2002 ident: ref31 article-title: Detection of areas associated with flood and erosion caused by a heavy rainfall using multitemporal Landsat TM data publication-title: Photogrammetric Eng Remote Sens – ident: ref44 doi: 10.1109/TGRS.2018.2886643 – ident: ref46 doi: 10.1016/S0031-3203(00)00136-9 – volume: 11 year: 2019 ident: ref7 article-title: A modular processing chain for automated flood monitoring from multi-spectral satellite data publication-title: Remote Sens doi: 10.3390/rs11192330 – ident: ref22 doi: 10.1145/3347146.3359068 – ident: ref39 doi: 10.1109/TGRS.2019.2930682 – ident: ref12 doi: 10.3390/rs11212492 – ident: ref8 doi: 10.1109/JSTARS.2017.2725382 – start-page: p. 385 year: 1980 ident: ref41 article-title: Change vector analysis: An approach for detecting forest changes with landsat publication-title: LARS Symposia – ident: ref43 doi: 10.3390/rs3112473 – ident: ref9 doi: 10.1109/IGARSS.2016.7730533 – ident: ref45 doi: 10.1006/cviu.2002.0960 – ident: ref27 doi: 10.1109/CVPR.2019.00202 – year: 0 ident: ref25 article-title: Federal Emergency Management Agency Flood Mapping Products – ident: ref20 doi: 10.3390/s19071486 – ident: ref21 doi: 10.1016/j.isprsjprs.2019.04.014 – ident: ref26 doi: 10.1109/TPAMI.2020.2992393 – ident: ref32 doi: 10.1016/j.jag.2014.12.001 – year: 2018 ident: ref3 article-title: Sustainable Development Goals Report publication-title: United Nations – year: 2018 ident: ref14 article-title: Planet application program interface publication-title: Space for Life on Earth – ident: ref6 doi: 10.1109/LGRS.2018.2882516 – year: 2016 ident: ref28 publication-title: Deep Learning – ident: ref33 doi: 10.1109/TGRS.2012.2210901 – ident: ref37 doi: 10.1080/01431161.2014.890299 – year: 2018 ident: ref48 article-title: Microsoft Building Footprints publication-title: Microsoft Bing Maps Team – ident: ref47 doi: 10.1109/TGRS.2018.2797536 – volume: 7 start-page: 1437 year: 2015 ident: ref19 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier-A Case of Yuyao, China – volume: 7 start-page: 14 853 year: 2015 ident: ref5 article-title: Detection and delineation of localized flooding from WorldView-2 multispectral data publication-title: Remote Sens doi: 10.3390/rs71114853 – volume: 29 start-page: 1013 year: 2012 ident: ref17 article-title: A neural network approach to flood mapping using satellite imagery publication-title: Inform Comput – ident: ref36 doi: 10.1109/TGRS.2006.876288 – year: 0 ident: ref50 article-title: Automatic differentiation in Pytorch publication-title: Proc Neural Inf Process Syst – ident: ref4 doi: 10.1016/j.isprsjprs.2014.11.006 – year: 2019 ident: ref1 article-title: Flood Inundation Mapping (FIM) Program – start-page: 40 year: 0 ident: ref13 article-title: Urban flood mapping with residual patch similarity learning publication-title: Proc 3rd ACM SIGSPATIAL Int Workshop AI Geographic Knowl Discov - GeoAI |
| SSID | ssj0062793 |
| Score | 2.3989697 |
| Snippet | Near realtime flood mapping in densely populated urban areas is critical for emergency response. The strong heterogeneity of urban areas poses a big challenge... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2001 |
| SubjectTerms | Emergency preparedness Emergency response Flood control Flood mapping Floods Floodwater Handicrafts Heterogeneity Hurricanes Image registration Imagery Labeling Mapping Methods multispectral (MS) imagery Optical imaging Optical sensors Parameter sensitivity Performance evaluation Performance measurement Population density Real time Satellite imagery Self-supervised learning Sensitivity analysis Spaceborne remote sensing Spatial filtering Spatial resolution Supervised learning urban Urban areas Urbanization Vector analysis Weather |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_aouCLX1V6WiUPPnbt5mPz8diWngpaxLO1b0s-24PrtVzvCv3vm8nlDkQRfFjYXSZh2d9kMklmfgPwIXvQUgdvMUpcNiIl2TjZxSbFrnPKtIGV8m1nX9XJiT4_N983YG-dCxNjLMFn8SPelrP8cO0XuFW2b8qxndiETaXUMldrZXUlU4VgN_sjpkHKmMowRFuzn1X84McorwVZXqK2QkmlfpuFCll_ra7yh0ku88zw2f994XN4Wv1JcrBUgBewEacv4fGnUq_3fhvc6czZKRlieDr5ZpGM4YL8Gs8vyeG4slJNSEnCLSmX-PTlCmkt7snZ2BJLRnGSmtHiBk3KbQyk8rFekOEqqusVnA6Pfx59bmpZhcaLVs-bxEzkTifbsWR4slYKm6QzQSjPOXOBKppccFZ3wtNgI0XOF508kg-6yPhr2JpeT-MOkCwRkqFcOtUJ7qNLkuZus9ckA08dHQBb_ebeV85xLH0x6cvaozX9EpsesekrNgPYWze6WVJu_Fv8EPFbiyJfdnmRgenr8Os9j4bnKyaThLbUUi2Fz85m631WHDeAbQRz3UnFcQC7K23o69i-7ZnQsjO4DfTm763ewhOGkS9lo2YXtuazRXwHj_xdxnL2vqjtA-8O6bI priority: 102 providerName: IEEE |
| Title | Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework |
| URI | https://ieeexplore.ieee.org/document/9309354 https://www.proquest.com/docview/2486593042 https://doaj.org/article/c3e933e9ef9f48a1a1864c5110cc793b |
| Volume | 14 |
| WOSCitedRecordID | wos000615042800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqRCUuFU-xLSAfeiQifsSxj4DYFokixPK6WX7CStstWhYk_j0ex7sCIcGlxyQTJ5qZjGec8fch9DNl0EJ6Z6BLXFQ8RlFZ0YQqhqaxrao9zfRtVyft6am8uVFnr6i-oCesgwfuFLfnWEg1d1AhqsilIYZIwV1KE2rnkm9ZiL4p65kVU10MFjRdKhhDpFZ7ycn3zwepGqSpSK15K9r2zTyU4foLv8q7oJxnmv4y-lZSRLzfvdoK-hLGq-jrr0zB-7yG7OXEmjHuQ8c5_mMAX-EWXw-nd_hgWICmRjjvq827KOHo-C8gVTzjq6HBBg_CKFaDx3uIEg_B4wKxeov7s0atdXTZP7o4_F0VpoTK8VpOq0hVYFZG09CoWDRGcBOFVZ63jjFqPWlJtN4a2XBHvAkEYFxkdIAnaANlG2hh_G8cNhFOEj4qwoRtG85csFGQNGxKhIRnsSE9RGd6067AiAObxUjncqJWulO2BmXrouwe2p3fdN-haHwsfgAGmYsCBHY-kRxDF8fQnzlGD62BOeeDqPzPl_fQ1sy8unyuD5pyKRoFKzvf_8ejf6AlCq0veaVmCy1MJ49hGy26p2T5yU721J280_AFU6zr3g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6VAqIXXi1qoIAPHLt0_V4fW0RoRRoh0pbeLD9LpJBWaYLUf4_tOJEQCInDSrursbXabzwe2zPfALxLHrTovDM5Slw0LEbRWMFDEwPnVqrWk1K-7WIgh8Pu8lJ92YD9dS5MCKEEn4X3-bac5ftrt8hbZQeqHNuxe3CfM0bwMltrZXcFkYViN3kkqsmkMZVjCLfqICn54ddRWg2StEhtmRRS_jYPFbr-Wl_lD6NcZpr-k__7xqfwuHqU6HCpAs9gI0yfw8NPpWLv3TbY85k1U9TPAero1GQ6hiv0bTz_jo7GlZdqgkoabkm6zE8nPzKxxR26GBtk0ChMYjNa3GSjchs8qoysV6i_iuvagfP-x7MPx00trNA41nbzJhIVqO2i4SQqGo0RzERhlWfSUUqsxxJH663pOHPYm4Az60sXXaYftIHQF7A5vZ6GXUBJwkeFqbCSM-qCjQKnbpPfJDyNHPeArH6zdpV1PBe_mOiy-miVXmKjMza6YtOD_XWjmyXpxr_FjzJ-a9HMmF1eJGB0HYDa0aBoukJUkXUGG9wJ5pK72TqXFMf2YDuDue6k4tiDvZU26Dq6bzVhneAqbwS9_Hurt_Do-Ox0oAcnw8-vYIvkOJiybbMHm_PZIryGB-5nwnX2pqjwLzsC7Pk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+Flood+Mapping+With+Bitemporal+Multispectral+Imagery+Via+a+Self-Supervised+Learning+Framework&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Peng%2C+Bo&rft.au=Huang%2C+Qunying&rft.au=Vongkusolkit%2C+Jamp&rft.au=Gao%2C+Song&rft.date=2021&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=14&rft.spage=2001&rft.epage=2016&rft_id=info:doi/10.1109%2FJSTARS.2020.3047677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_3047677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |