Constructive Approximation to Multivariate Function by Decay RBF Neural Network

It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parame...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks Vol. 21; no. 9; pp. 1517 - 1523
Main Authors: Hou, Muzhou, Han, Xuli
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.09.2010
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1045-9227, 1941-0093, 1941-0093
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n + 1 hidden neurons can interpolate n + 1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.
AbstractList It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n + 1 hidden neurons can interpolate n + 1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.
It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n+1 hidden neurons can interpolate n+1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n+1 hidden neurons can interpolate n+1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.
Author Xuli Han
Muzhou Hou
Author_xml – sequence: 1
  givenname: Muzhou
  surname: Hou
  fullname: Hou, Muzhou
  email: houmuzhou@sina.com
  organization: Central South University, Changsha, China. houmuzhou@sina.com
– sequence: 2
  givenname: Xuli
  surname: Han
  fullname: Han, Xuli
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23252802$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20693108$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx0Op9Kd3QZC5iKdpXzJJNjnWbdcKdQtSz0OSeYHo7MyaZLT73zftri140NNLeJ9v8nifY7I_jAMS8obCGaWgz--WyzMG5cZACKXUHjmimtMaQDf75Qxc1Jqx2SE5Tuk7AOUC5AE5ZCB1Q0Edkdv5OKQcJ5fDL6wu1us43oeVyWEcqjxWX6a-NEwMJmO1mAb31LCb6hKd2VRfPy6qJU7R9KXk32P8cUpeedMnfL2rJ-Tb4upufl3f3H76PL-4qR0HlWsPDXadZ56WUaRBPpNcWiU666RXvmFWorXOWGotdUpIQAauM9Rqqb23zQn5sH23DPxzwpTbVUgO-94MOE6pVZIK3iiu_kvOuAY6A80L-W5HTnaFXbuOZRNx0_7ZVgHe7wCTnOl9NIML6YVrmGAKWOFgy7k4phTRPyMU2kdxbRHXPoprd-JKRP4VcSE_acjRhP5fwbfbYEDE53-E4MC0bh4AAQqk2w
CODEN ITNNEP
CitedBy_id crossref_primary_10_1109_TNNLS_2018_2839655
crossref_primary_10_1371_journal_pone_0330429
crossref_primary_10_1109_TNNLS_2011_2178560
crossref_primary_10_1108_EC_08_2019_0387
crossref_primary_10_1186_s13662_018_1927_x
crossref_primary_10_1080_21642583_2019_1699474
crossref_primary_10_1080_21642583_2023_2207593
crossref_primary_10_1016_j_dsp_2022_103498
crossref_primary_10_1007_s00500_019_03944_1
crossref_primary_10_1016_j_knosys_2011_04_018
crossref_primary_10_1016_j_neucom_2018_08_020
crossref_primary_10_1109_ACCESS_2019_2913900
crossref_primary_10_1007_s00521_011_0604_8
crossref_primary_10_1007_s10489_016_0882_z
crossref_primary_10_1007_s11063_023_11254_9
crossref_primary_10_1016_j_neunet_2017_04_001
crossref_primary_10_3390_electronics11223734
crossref_primary_10_1016_j_jprocont_2012_03_007
crossref_primary_10_1109_TNNLS_2013_2263288
crossref_primary_10_1080_21642583_2021_1980130
crossref_primary_10_5370_KIEE_2012_61_1_135
crossref_primary_10_1007_s00521_015_1960_6
crossref_primary_10_1016_j_asoc_2013_10_013
crossref_primary_10_1080_09603123_2020_1745763
crossref_primary_10_1109_TNN_2011_2109736
crossref_primary_10_1016_j_knosys_2016_12_003
crossref_primary_10_1109_TSMC_2021_3076747
crossref_primary_10_1016_j_dsp_2019_102634
crossref_primary_10_1007_s10846_014_0152_4
crossref_primary_10_1109_TIE_2015_2424399
crossref_primary_10_1109_TNNLS_2013_2295813
crossref_primary_10_1002_int_21569
crossref_primary_10_1007_s00366_022_01770_y
crossref_primary_10_1186_s13662_019_2131_3
crossref_primary_10_3390_sym12060876
crossref_primary_10_1007_s11042_020_09382_8
crossref_primary_10_1109_ACCESS_2018_2815503
crossref_primary_10_1109_ACCESS_2023_3260251
crossref_primary_10_1109_TNNLS_2012_2227794
Cites_doi 10.1016/j.jsv.2007.10.050
10.1007/BF02124745
10.1016/0196-8858(92)90016-P
10.1016/S0893-6080(05)80131-5
10.1016/0022-0000(92)90039-L
10.1109/72.363469
10.1016/j.neucom.2005.12.126
10.1109/TNN.2003.809401
10.1016/j.cam.2005.04.019
10.1016/0893-6080(91)90009-T
10.1016/j.neunet.2005.03.013
10.1016/S0307-904X(02)00101-4
10.1109/TNN.2007.905851
10.1007/BF01893414
10.1109/IJCNN.2004.1380068
10.1109/TNN.2006.875974
10.1109/72.557662
10.1090/S0025-5718-1994-1240656-2
10.1109/TCSI.2002.805733
10.1109/TNN.2006.875977
10.1109/ICNC.2007.498
10.1016/j.neucom.2007.02.009
10.1109/TNN.2004.836241
10.1162/neco.1991.3.2.246
10.1109/TNN.2003.811355
10.1016/j.neucom.2007.10.008
10.1109/72.655045
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2010.2055888
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Mathematics
Applied Sciences
EISSN 1941-0093
EndPage 1523
ExternalDocumentID 20693108
23252802
10_1109_TNN_2010_2055888
5540299
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f03eddf2f12066ae47646b85dbc6f8f32b6ebbcab1bb1c8560e20cda1b969ffb3
IEDL.DBID RIE
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283231200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 13:45:34 EDT 2025
Fri Sep 05 04:04:57 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Mon Jul 21 09:16:24 EDT 2025
Sat Nov 29 03:59:24 EST 2025
Tue Nov 18 22:18:26 EST 2025
Tue Aug 26 17:15:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords Statistical analysis
Constructive mathematics
decay radial basis function (RBF) neural networks
uniformly approximation
Continuous function
Neural network
Radial basis function
Overtraining
Constructive neural networks
interpolation
Model matching
Approximation by function
Vector support machine
Proof theory
Feedforward
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f03eddf2f12066ae47646b85dbc6f8f32b6ebbcab1bb1c8560e20cda1b969ffb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20693108
PQID 749017094
PQPubID 23479
PageCount 7
ParticipantIDs pubmed_primary_20693108
pascalfrancis_primary_23252802
crossref_primary_10_1109_TNN_2010_2055888
ieee_primary_5540299
proquest_miscellaneous_861543848
proquest_miscellaneous_749017094
crossref_citationtrail_10_1109_TNN_2010_2055888
PublicationCentury 2000
PublicationDate 2010-09-01
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2010
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
ref12
ref15
ref14
ref31
chui (ref4) 1994
ding (ref6) 2002; 3
ref30
ref32
ref10
ref2
ref17
ref19
ref18
huang (ref16) 2003
ref24
ref23
ref26
ref25
ref20
gholizadeh (ref9) 2008; 312
ref22
ref21
chang (ref1) 2001
ref28
han (ref11) 2008; lncs 4975
ref29
ref8
ref7
huang (ref33) 0
ref3
ref5
miao (ref27) 2001; 31
yang (ref35) 2007; 30
References_xml – volume: 312
  start-page: 316
  year: 2008
  ident: ref9
  article-title: Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2007.10.050
– ident: ref3
  doi: 10.1007/BF02124745
– ident: ref26
  doi: 10.1016/0196-8858(92)90016-P
– ident: ref23
  doi: 10.1016/S0893-6080(05)80131-5
– ident: ref31
  doi: 10.1016/0022-0000(92)90039-L
– ident: ref5
  doi: 10.1109/72.363469
– year: 2001
  ident: ref1
  publication-title: LIBSVM A library for support vector machines
– ident: ref17
  doi: 10.1016/j.neucom.2005.12.126
– volume: lncs 4975
  start-page: 541
  year: 2008
  ident: ref11
  publication-title: GMP 2008
– ident: ref13
  doi: 10.1109/TNN.2003.809401
– year: 2003
  ident: ref16
  publication-title: Universal approximation using incremental feedforward networks with arbitrary input weights
– volume: 31
  start-page: 136
  year: 2001
  ident: ref27
  article-title: applications of radius basis function neural networks in scattered data interpolation
  publication-title: J Univ Sci Technol China
– ident: ref25
  doi: 10.1016/j.cam.2005.04.019
– ident: ref12
  doi: 10.1016/0893-6080(91)90009-T
– ident: ref34
  doi: 10.1016/j.neunet.2005.03.013
– volume: 3
  start-page: 756
  year: 2002
  ident: ref6
  article-title: algorithm of wavelet rbf neural network
  publication-title: Proc 3rd Int Symp Instrum Sci Technol
– ident: ref7
  doi: 10.1016/S0307-904X(02)00101-4
– ident: ref29
  doi: 10.1109/TNN.2007.905851
– ident: ref28
  doi: 10.1007/BF01893414
– ident: ref15
  doi: 10.1109/IJCNN.2004.1380068
– ident: ref14
  doi: 10.1109/TNN.2006.875974
– ident: ref32
  doi: 10.1109/72.557662
– ident: ref2
  doi: 10.1090/S0025-5718-1994-1240656-2
– ident: ref24
  doi: 10.1109/TCSI.2002.805733
– year: 1994
  ident: ref4
  publication-title: An Introduction to Wavelets
– ident: ref20
  doi: 10.1109/TNN.2006.875977
– ident: ref10
  doi: 10.1109/ICNC.2007.498
– ident: ref21
  doi: 10.1016/j.neucom.2007.02.009
– ident: ref18
  doi: 10.1109/TNN.2004.836241
– ident: ref30
  doi: 10.1162/neco.1991.3.2.246
– ident: ref8
  doi: 10.1109/TNN.2003.811355
– ident: ref22
  doi: 10.1016/j.neucom.2007.10.008
– ident: ref19
  doi: 10.1109/72.655045
– year: 0
  ident: ref33
  publication-title: Extreme learning machine
– volume: 30
  start-page: 189
  year: 2007
  ident: ref35
  article-title: research of fractional linear neural network and its ability for nonlinear approach
  publication-title: Chin J Comput
SSID ssj0014506
Score 2.2091627
Snippet It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1517
SubjectTerms Algorithms
Applied sciences
Approximation
Artificial Intelligence
Artificial neural networks
Computer science; control theory; systems
Computer Simulation - standards
Computers
Connectionism. Neural networks
Construction
Constructive neural networks
Convergence of numerical methods
Data processing. List processing. Character string processing
Decay
decay radial basis function (RBF) neural networks
Exact sciences and technology
Feedforward neural networks
interpolation
Iterative algorithms
Kernel
Logic and foundations
Machine learning
Mathematical analysis
Mathematical Computing
Mathematical logic, foundations, set theory
Mathematical models
Mathematics
Memory organisation. Data processing
Multi-layer neural network
Multivariate Analysis
Networks
Neural networks
Neural Networks (Computer)
Neurons
Proof theory and constructive mathematics
Sciences and techniques of general use
Software
uniformly approximation
Title Constructive Approximation to Multivariate Function by Decay RBF Neural Network
URI https://ieeexplore.ieee.org/document/5540299
https://www.ncbi.nlm.nih.gov/pubmed/20693108
https://www.proquest.com/docview/749017094
https://www.proquest.com/docview/861543848
Volume 21
WOSCitedRecordID wos000283231200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tEw_wsEELrMAqPyAkJEIdx3Hsx7Kt4ikgNKS-RfEvadJIEe0q-t9zttPAJIbEWyQ7iZXPl7vz3X0H8FqbUBqgRVYKqzOOOiNTNke58sL60ti2sDw2m6jqWi6X6vMBvBtqYZxzMfnMvQ-XMZZvV-Y2HJXNUPVR_H0ewmFViVSrNUQMeBn7aKJ3UWaKsWofkqRqdlXXKYeL0bJEjy8QAFOh0LCRd7RRbK8SkiPbNX4fnxpb3G95Rg20OPm_tT-G497SJPO0NZ7AgetGMJ536GV_25E3JOZ-xkP1EZzsmzuQXtZH8OgPpsIxfAqNPRPV7NaReSAi_3mdqh7JZkViGe8W3W60XMkCVWUc0Dty4Uy7I18-LEhgAcHl1Cnt_Cl8XVxenX_M-l4MmeFUbjJPC2etZz4P_O-t45XgQsvSaiO89AXTwmltWp1rnRuJdpRjFKHOtRLKe108g6Nu1blTINSUQinrXaEE12ghtUIypW1rWN5WhZvAbI9JY3qi8tAv46aJDgtVDQLaBECbHtAJvB3u-J5IOv4xdxzAGeb1uExgegf2YRwtzpJJyiZA9vugQQkMYZW2c6vbdVNxFUiIFL9_ikS7kReS49ufpy30-_n9Tnzx93W9hIcpXyFktb2CI0TancEDs91cr39MURCWchoF4RdNcQOc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU1AfPN31Y_048yCCYG_TNEmTx_VjOfGsIivcW2m-4EC74u4t7n_vJO1WDzzBt0LSNvQ36cxkZn4D8MzYWBpgZCakMxlHnZFpl-O-CtIFYV1TOJ6aTZRVpU5P9ac9eDnUwnjvU_KZP4qXKZbvlvY8HpVNUfVR_H1egauCc0a7aq0hZsBF6qSJ_oXINGPlLihJ9XRRVV0WF6NCoM8XKYCp1GjaqAv6KDVYiemRzQq_UOhaW1xueyYdND_4v9Xfhlu9rUlmnXDcgT3fjmA8a9HP_rYlz0nK_kzH6iM42LV3IP1uH8HNP7gKx_AxtvbsyGY3nswiFfnPs67ukayXJBXybtDxRtuVzFFZpgGzJW-8bbbk86s5iTwguJyqSzy_C1_mbxevj7O-G0NmOVXrLNDCOxdYyCMDfON5Kbk0SjhjZVChYEZ6Y2xjcmNyq9CS8owi2LnRUodginuw3y5b_wAItUJq7YIvtOQGbaRGKqaNayzLm7LwE5juMKltT1UeO2Z8rZPLQnWNgNYR0LoHdAIvhju-dzQd_5g7juAM83pcJnB4AfZhHG1OwRRlEyA7OahxD8bAStP65fmqLrmONESaXz5FoeXIC8Xx7fc7Efr9_F4SH_59XU_h-vHiw0l98q56_whudNkLMcftMewj6v4JXLOb9dnqx2HaDr8AztQF-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructive+approximation+to+multivariate+function+by+decay+RBF+neural+network&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Hou%2C+Muzhou&rft.au=Han%2C+Xuli&rft.date=2010-09-01&rft.issn=1941-0093&rft.eissn=1941-0093&rft.volume=21&rft.issue=9&rft.spage=1517&rft_id=info:doi/10.1109%2FTNN.2010.2055888&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon