Moving Object Detection Method via ResNet-18 With Encoder-Decoder Structure in Complex Scenes

In complex scenes, dynamic background, illumination variation, and shadow are important factors, which make conventional moving object detection algorithms suffer from poor performance. To solve this problem, a moving object detection method via ResNet-18 with encoder-decoder structure is proposed t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 7; s. 108152 - 108160
Hlavní autori: Ou, Xianfeng, Yan, Pengcheng, Zhang, Yiming, Tu, Bing, Zhang, Guoyun, Wu, Jianhui, Li, Wujing
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In complex scenes, dynamic background, illumination variation, and shadow are important factors, which make conventional moving object detection algorithms suffer from poor performance. To solve this problem, a moving object detection method via ResNet-18 with encoder-decoder structure is proposed to segment moving objects from complex scenes. ResNet-18 with encoder-decoder structure possesses pixel-level classification capability to divide pixels into foreground and background, and it performs well in feature extraction because of its layers are so shallow that many more low-scale features will be retained. First, the object frames and their corresponding artificial labels are input to the network. Then, feature vectors will be generated by the encoder, and they are converted into segmentation maps by the decoder through deconvolution processing. Third, a rough matching of the moving object regions will be obtained, and finally, the Euclidean distance is used to match the moving object regions accurately. The proposed method is suitable for the scenes where dynamic background, illumination variation, and shadow exist, and experimental results on the public standard CDnet2014 and I2R datasets, from both qualitative and quantitative comparison aspects, demonstrate that the proposed method outperforms state-of-the-art algorithms significantly, and its mean F-measure increased by 1.99%~29.17%.
AbstractList In complex scenes, dynamic background, illumination variation, and shadow are important factors, which make conventional moving object detection algorithms suffer from poor performance. To solve this problem, a moving object detection method via ResNet-18 with encoder-decoder structure is proposed to segment moving objects from complex scenes. ResNet-18 with encoder-decoder structure possesses pixel-level classification capability to divide pixels into foreground and background, and it performs well in feature extraction because of its layers are so shallow that many more low-scale features will be retained. First, the object frames and their corresponding artificial labels are input to the network. Then, feature vectors will be generated by the encoder, and they are converted into segmentation maps by the decoder through deconvolution processing. Third, a rough matching of the moving object regions will be obtained, and finally, the Euclidean distance is used to match the moving object regions accurately. The proposed method is suitable for the scenes where dynamic background, illumination variation, and shadow exist, and experimental results on the public standard CDnet2014 and I2R datasets, from both qualitative and quantitative comparison aspects, demonstrate that the proposed method outperforms state-of-the-art algorithms significantly, and its mean F-measure increased by 1.99%~29.17%.
Author Yan, Pengcheng
Zhang, Guoyun
Li, Wujing
Tu, Bing
Wu, Jianhui
Zhang, Yiming
Ou, Xianfeng
Author_xml – sequence: 1
  givenname: Xianfeng
  orcidid: 0000-0003-4419-7362
  surname: Ou
  fullname: Ou, Xianfeng
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 2
  givenname: Pengcheng
  surname: Yan
  fullname: Yan, Pengcheng
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 3
  givenname: Yiming
  surname: Zhang
  fullname: Zhang, Yiming
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 4
  givenname: Bing
  surname: Tu
  fullname: Tu, Bing
  email: tu_bing@163.com
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 5
  givenname: Guoyun
  surname: Zhang
  fullname: Zhang, Guoyun
  email: gyzhang@hnist.edu.cn
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 6
  givenname: Jianhui
  surname: Wu
  fullname: Wu, Jianhui
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
– sequence: 7
  givenname: Wujing
  surname: Li
  fullname: Li, Wujing
  organization: School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
BookMark eNqFUU1LJDEQDaKw6voLvAT23LOppD-So7TjB-gKOy57WkI6XdEMY2c2nRncf78ZW0S8WJdXFPXeK-odkf0hDEjIKbAZAFPfz9p2vljMOAM140qA4nyPHHKoVSEqUe-_67-Qk3Fcslwyj6rmkPy5DVs_PNC7bok20XNMGXwY6C2mx9DTrTf0J44_MBUg6W-fHul8sKHHWJzjC9JFihubNhGpH2gbntYrfKYLiwOOX8mBM6sRT17xmPy6mN-3V8XN3eV1e3ZT2JLJVDgGWLq-aUQnu6o3veXCcBCW1cyhUU4KwYVTpoNOAOcSwNRGdXXVl8I5Lo7J9aTbB7PU6-ifTPyng_H6ZRDigzYxebtC3XDmrEXjmJUlmFLZmonaApPYsaydtb5NWusY_m5wTHoZNnHI52teVlWdf16pvCWmLRvDOEZ0b67A9C4WPcWid7Ho11gyS31gWZ_M7t8pGr_6hHs6cT0ivrnJRkLTKPEfzPObrQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_neucom_2022_07_081
crossref_primary_10_1109_TIM_2022_3165276
crossref_primary_10_1109_ACCESS_2022_3140341
crossref_primary_10_1371_journal_pone_0270376
crossref_primary_10_1016_j_yofte_2025_104226
crossref_primary_10_1016_j_procs_2022_09_223
crossref_primary_10_1016_j_energy_2022_123284
crossref_primary_10_1080_10106049_2021_1923825
crossref_primary_10_1016_j_ins_2020_11_006
crossref_primary_10_1016_j_measurement_2021_109864
crossref_primary_10_3390_photonics11010053
crossref_primary_10_1038_s41598_025_12861_3
crossref_primary_10_1049_ipr2_12767
crossref_primary_10_1007_s11042_023_15875_z
crossref_primary_10_1007_s00217_025_04720_2
crossref_primary_10_1109_ACCESS_2022_3141781
crossref_primary_10_1080_21681163_2023_2261554
crossref_primary_10_3389_feart_2023_1288003
crossref_primary_10_17163_ings_n33_2025_08
crossref_primary_10_1007_s11282_024_00739_5
crossref_primary_10_1016_j_bspc_2024_107234
crossref_primary_10_1007_s00521_021_06234_w
crossref_primary_10_1007_s12524_024_01994_z
crossref_primary_10_3390_rs16111854
crossref_primary_10_1109_TITS_2021_3077883
crossref_primary_10_3390_app10186391
crossref_primary_10_1016_j_compgeo_2024_106518
crossref_primary_10_1109_TCSVT_2020_2991191
crossref_primary_10_3390_app10144908
crossref_primary_10_1109_ACCESS_2023_3281558
crossref_primary_10_32604_cmc_2022_022989
crossref_primary_10_3390_rs14236095
crossref_primary_10_5194_asr_20_129_2024
crossref_primary_10_1109_ACCESS_2021_3086811
crossref_primary_10_1007_s00371_023_03168_3
crossref_primary_10_1049_ipr2_12476
crossref_primary_10_1016_j_neucom_2021_08_105
crossref_primary_10_3390_brainsci11111397
crossref_primary_10_3103_S1060992X2104007X
crossref_primary_10_3390_e23111537
crossref_primary_10_1007_s11042_021_11102_9
crossref_primary_10_1109_JIOT_2024_3406202
crossref_primary_10_1007_s10278_022_00629_4
crossref_primary_10_1109_ACCESS_2023_3260403
crossref_primary_10_1109_ACCESS_2020_3028740
crossref_primary_10_1371_journal_pone_0313734
crossref_primary_10_1109_TMM_2020_3006419
crossref_primary_10_3390_bioengineering10060639
crossref_primary_10_1080_10106049_2021_1948110
crossref_primary_10_3390_math13121927
crossref_primary_10_1016_j_patcog_2022_108719
crossref_primary_10_1097_APO_0000000000000576
crossref_primary_10_3390_s24186130
crossref_primary_10_7759_cureus_83548
crossref_primary_10_1049_ipr2_13010
crossref_primary_10_1109_ACCESS_2020_3032164
crossref_primary_10_1145_3596258
crossref_primary_10_1109_TCSVT_2020_3042559
crossref_primary_10_3390_s20123591
crossref_primary_10_1007_s10489_024_05325_0
crossref_primary_10_1007_s10044_023_01157_9
crossref_primary_10_1109_ACCESS_2020_2972562
crossref_primary_10_1007_s00521_025_11354_8
crossref_primary_10_1038_s41598_025_07837_2
crossref_primary_10_1109_ACCESS_2024_3491655
crossref_primary_10_3390_foods12071508
crossref_primary_10_1016_j_heliyon_2024_e31442
crossref_primary_10_1007_s13369_022_07082_z
crossref_primary_10_1016_j_anucene_2024_110340
crossref_primary_10_1016_j_meatsci_2023_109281
Cites_doi 10.1109/TCSVT.2014.2358029
10.1016/j.cosrev.2016.11.001
10.5244/C.26.115
10.1109/TIP.2010.2101613
10.1109/ACCESS.2019.2915630
10.1016/j.cviu.2013.11.006
10.1016/j.cosrev.2018.03.001
10.1109/ACCESS.2018.2817129
10.1109/ICME.2010.5582601
10.1109/CVPRW.2012.6238922
10.1109/CVPRW.2014.126
10.1109/CVPR.2016.90
10.1109/TPAMI.2006.68
10.1109/PERVASIVE.2015.7087138
10.1109/TCSVT.2017.2669362
10.1109/ACCESS.2019.2908685
10.1109/TSMCB.2012.2196432
10.1109/CVPR.2018.00330
10.1109/TIP.2004.836169
10.1109/TPAMI.2012.132
10.1016/j.neuroimage.2017.04.039
10.1016/j.cosrev.2014.04.001
10.1109/ACCESS.2018.2868801
10.1109/CVPR.2012.6247916
10.1109/CVPRW.2012.6238925
10.1109/ICCV.2017.238
10.1109/TIP.2015.2419084
10.1016/j.cviu.2013.12.005
10.1109/LSP.2018.2873892
10.1109/TPAMI.2017.2717828
10.1109/TPAMI.2016.2644615
10.3969/j.issn.1004-4132.2011.04.006
10.1109/WACV.2016.7477595
10.1109/CVPR.2015.7298965
10.1109/ICPR.2004.1333992
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2931922
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 108160
ExternalDocumentID oai_doaj_org_article_720fcceaf0c841a49c6036c108eb0122
10_1109_ACCESS_2019_2931922
8781779
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Program of Hunan Province
  grantid: 2016TP1021
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2019JJ40104
  funderid: 10.13039/501100004735
– fundername: Hunan Provincial Innovation Foundation for Postgraduate
  grantid: CX2018B776; CX2018B779; YCX2019A14
  funderid: 10.13039/501100010083
– fundername: National Natural Science Foundation of China
  grantid: 51704115
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c408t-f01e4fd773b8b5dadc23a213c060fea9f83323f9ab1b3122811a6a9b65d43ff23
IEDL.DBID DOA
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481980800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Tue Oct 14 19:02:21 EDT 2025
Mon Jun 30 04:42:00 EDT 2025
Tue Nov 18 20:49:28 EST 2025
Sat Nov 29 03:57:50 EST 2025
Wed Aug 27 02:54:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f01e4fd773b8b5dadc23a213c060fea9f83323f9ab1b3122811a6a9b65d43ff23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4419-7362
OpenAccessLink https://doaj.org/article/720fcceaf0c841a49c6036c108eb0122
PQID 2455611059
PQPubID 4845423
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2931922
proquest_journals_2455611059
crossref_primary_10_1109_ACCESS_2019_2931922
ieee_primary_8781779
doaj_primary_oai_doaj_org_article_720fcceaf0c841a49c6036c108eb0122
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref39
ref17
ref38
ref16
chen (ref28) 2015
ref19
ref18
joshi (ref1) 2012; 2
xue (ref37) 2011
ref24
ref23
ref20
ref41
ref22
ref21
ioffe (ref27) 2015
garcia-garcia (ref25) 2017
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
nair (ref26) 2010
References_xml – ident: ref6
  doi: 10.1109/TCSVT.2014.2358029
– start-page: 807
  year: 2010
  ident: ref26
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref8
  doi: 10.1016/j.cosrev.2016.11.001
– ident: ref39
  doi: 10.5244/C.26.115
– volume: 2
  start-page: 44
  year: 2012
  ident: ref1
  article-title: A survey on moving object detection and tracking in video surveillance system
  publication-title: Int J Soft Comput Eng
– ident: ref31
  doi: 10.1109/TIP.2010.2101613
– ident: ref20
  doi: 10.1109/ACCESS.2019.2915630
– ident: ref33
  doi: 10.1016/j.cviu.2013.11.006
– ident: ref2
  doi: 10.1016/j.cosrev.2018.03.001
– ident: ref22
  doi: 10.1109/ACCESS.2018.2817129
– year: 2015
  ident: ref28
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
  publication-title: arXiv 1512 01274
– ident: ref36
  doi: 10.1109/ICME.2010.5582601
– ident: ref32
  doi: 10.1109/CVPRW.2012.6238922
– ident: ref41
  doi: 10.1109/CVPRW.2014.126
– ident: ref23
  doi: 10.1109/CVPR.2016.90
– ident: ref35
  doi: 10.1109/TPAMI.2006.68
– ident: ref3
  doi: 10.1109/PERVASIVE.2015.7087138
– ident: ref10
  doi: 10.1109/TCSVT.2017.2669362
– ident: ref12
  doi: 10.1109/ACCESS.2019.2908685
– ident: ref14
  doi: 10.1109/TSMCB.2012.2196432
– ident: ref19
  doi: 10.1109/CVPR.2018.00330
– ident: ref40
  doi: 10.1109/TIP.2004.836169
– ident: ref5
  doi: 10.1109/TPAMI.2012.132
– ident: ref21
  doi: 10.1016/j.neuroimage.2017.04.039
– ident: ref7
  doi: 10.1016/j.cosrev.2014.04.001
– ident: ref13
  doi: 10.1109/ACCESS.2018.2868801
– year: 2017
  ident: ref25
  article-title: A review on deep learning techniques applied to semantic segmentation
  publication-title: arXiv 1704 06857
– ident: ref38
  doi: 10.1109/CVPR.2012.6247916
– ident: ref30
  doi: 10.1109/CVPRW.2012.6238925
– ident: ref18
  doi: 10.1109/ICCV.2017.238
– ident: ref34
  doi: 10.1109/TIP.2015.2419084
– ident: ref9
  doi: 10.1016/j.cviu.2013.12.005
– ident: ref24
  doi: 10.1109/LSP.2018.2873892
– ident: ref11
  doi: 10.1109/TPAMI.2017.2717828
– ident: ref16
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1
  year: 2011
  ident: ref37
  article-title: Hybrid center-symmetric local pattern for dynamic background subtraction
  publication-title: Proc IEEE Int Conf Multimedia Expo
– ident: ref4
  doi: 10.3969/j.issn.1004-4132.2011.04.006
– ident: ref17
  doi: 10.1109/WACV.2016.7477595
– ident: ref15
  doi: 10.1109/CVPR.2015.7298965
– ident: ref29
  doi: 10.1109/ICPR.2004.1333992
– year: 2015
  ident: ref27
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv 1502 03167
SSID ssj0000816957
Score 2.4876647
Snippet In complex scenes, dynamic background, illumination variation, and shadow are important factors, which make conventional moving object detection algorithms...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108152
SubjectTerms Algorithms
background subtraction
Coders
Complex scenes
Convolution
Decoding
encoder-decoder network
Encoders-Decoders
Euclidean geometry
Feature extraction
Heuristic algorithms
Illumination
Image segmentation
Lighting
moving object detection
Moving object recognition
Object detection
Pixels
ResNet-18
Segmentation
Shadows
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FQc4QKEgFkrlA8em9Vdi-1i2rXrpgiiIXpBlT2x1pSpFu2nFzyd23AgEQuopUWRHTp49Y4897wG898ygQMmryLmvpI6-MgJ9hU07WEyHzqtRbEItFvry0nzagP0pFyaEkA-fhYN0m_fy2xu8TaGyQ600U8pswqZSaszVmuIpSUDC1KoQCzFqDo_m8-Eb0uktczA4tWEqw_9wPpmjv4iq_GWJs3s5ffawhm3D0zKNJEcj7s9hI3Qv4Mlv5II78P08BwvIR59CLeQ49PnUVUfOs2g0uVs68jmsF6GvmCbflv0VOelShvuqOg75Si4yueztKpBlR5LluA4_yQUm8_gSvp6efJmfVUVMoUJJdV9FyoKMrVLCa1-3rkUuHGcCaUNjcCZqIbiIxnnmBeNcM-YaZ3xTt1LEyMUr2OpuuvAaSKOYU04NhrGmskXtpNCIkdLIa8-pnwG__8sWC9N4Ery4tnnFQY0dobEJGlugmcH-VOnHSLTx_-IfEnxT0cSSnR8MuNgy6KziNCIGFylqyZw02AwOGxnVwactxRnsJCynlxQYZ7B73xlsGdFry2USEk2z0Tf_rvUWHqcGjuGZXdgaEArv4BHe9cv1ai931l86z-eB
  priority: 102
  providerName: IEEE
Title Moving Object Detection Method via ResNet-18 With Encoder-Decoder Structure in Complex Scenes
URI https://ieeexplore.ieee.org/document/8781779
https://www.proquest.com/docview/2455611059
https://doaj.org/article/720fcceaf0c841a49c6036c108eb0122
Volume 7
WOSCitedRecordID wos000481980800033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EN7QLRQdYEiH3pswF-J7SNdFnHZbVVAcLPsiS1WQgHthhUnxH_gH_aX1HbCahFSe-kliiInsWcmz2PHfg-hr45q4CBYERhzhVDBFZqDK6CqI2JasE52YhNyMlGXl_rnitRXWhPW0QN3hjuQjAQAbwMBJagVGqoIukCJ8i79FkroG7OelcFUxmBFK13KnmaIEn1wOBzGFqW1XHo_dnExsWEvuqLM2N9LrLzC5dzZHG-g9T5LxIdd7T6gN775iN6vcAduIjPOcwH4h0szKfjIt3lRVYPHWRMaL6YW__LziW8LqvDFtL3CoyZtYJ_9fnw68vkMn2b22LuZx9MGJ2i49vf4FBL-baHz49HZ8KTo1RIKEES1RSDUi1BLyZ1yZW1rYNwyyoFUJHirg-Kc8aCto45HwylKbWW1q8pa8BAY_4TWmpvGf0a4ktRKKyPylUTUoKzgCiAQEljpGHEDxJ4NZ6CnEk-KFtcmDymINp21TbK26a09QN-WN912TBp_L_49eWRZNNFg5wsxOEwfHOZfwTFAm8mfy4coqaiUeoB2n_1r-k92bphISqEp3dz-H6_eQe9Sc7rZml20Fv3pv6C3sGin89lejtZ4HD-M9vKewz_2ee4Z
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQ98NWiLhTwgWPT-iuxfSzbVkV0F0SL6AVZ9sQWK1Up2k0rfj6xk0YgEBKnRJEdOXn2jD32vAfwxjODAiUvIue-kDr6wgj0BVZ1ZzEdOq96sQk1n-uLC_NxDXbHXJgQQj58FvbSbd7Lr6_wOoXK9rXSTClzB-6WUnLWZ2uNEZUkIWFKNVALMWr2D6bT7ivS-S2z17m1bjLDf3M_maV_kFX5wxZnB3P86P-a9hgeDhNJctAj_wTWQvMUNn6hF9yEr7McLiAffAq2kMPQ5nNXDZll2Whys3DkU1jNQ1swTb4s2m_kqEk57sviMOQrOcv0stfLQBYNSbbjMvwgZ5gM5BZ8Pj46n54Ug5xCgZLqtoiUBRlrpYTXvqxdjVw4zgTSisbgTNRCcBGN88wLxrlmzFXO-KqspYiRi2ew3lw1YRtIpZhTTnWmsaSyRu2k0IiR0shLz6mfAL_9yxYHrvEkeXFp85qDGttDYxM0doBmArtjpe891ca_i79N8I1FE092ftDhYodhZxWnETG4SFFL5qTBqnPZyKgOPm0qTmAzYTm-ZIBxAju3ncEOY3pluUxSomk--vzvtV7D_ZPz2ak9fTd__wIepMb2wZodWO_QCi_hHt60i9XyVe64PwFpsOrI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+Object+Detection+Method+via+ResNet-18+With+Encoder%E2%80%93Decoder+Structure+in+Complex+Scenes&rft.jtitle=IEEE+access&rft.au=Ou%2C+Xianfeng&rft.au=Yan%2C+Pengcheng&rft.au=Zhang%2C+Yiming&rft.au=Tu%2C+Bing&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=108152&rft.epage=108160&rft_id=info:doi/10.1109%2FACCESS.2019.2931922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2931922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon