A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis
This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and therma...
Uloženo v:
| Vydáno v: | IEEE access Ročník 8; s. 178295 - 178310 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and thermal/electrical fault types, but also presents the underlying characteristics of DGA. In the proposed approach, by adding an auxiliary task that detects normal and fault states in the loss function of SSAE, the health feature space additionally enables visualization of health degradation properties. The overall procedure of the new approach includes three key steps: 1) preprocessing DGA data, 2) extracting two health features via SAAT, and 3) visualizing the two health features in two-dimensional space. In this paper, we test the proposed approach using massive unlabeled/labeled Korea Electric Power Corporation (KEPCO) databases and IEC TC 10 databases. To demonstrate the effectiveness of the proposed approach, four comparative studies are conducted with these datasets; the studies examined: 1) the effectiveness of an auxiliary detection task, 2) the effectiveness of the visualization method, 3) conventional fault diagnosis methods, and 4) the state-of-the-art, semi-supervised deep learning algorithms. By examining several evaluation metrics, these comparative studies confirm that the proposed approach outperforms SSAE without the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in terms of defining health degradation performance. We expect that the proposed SAAT-based health feature space approach will be widely applicable to intuitively monitor the health state of power transformers in the real world. |
|---|---|
| AbstractList | This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and thermal/electrical fault types, but also presents the underlying characteristics of DGA. In the proposed approach, by adding an auxiliary task that detects normal and fault states in the loss function of SSAE, the health feature space additionally enables visualization of health degradation properties. The overall procedure of the new approach includes three key steps: 1) preprocessing DGA data, 2) extracting two health features via SAAT, and 3) visualizing the two health features in two-dimensional space. In this paper, we test the proposed approach using massive unlabeled/labeled Korea Electric Power Corporation (KEPCO) databases and IEC TC 10 databases. To demonstrate the effectiveness of the proposed approach, four comparative studies are conducted with these datasets; the studies examined: 1) the effectiveness of an auxiliary detection task, 2) the effectiveness of the visualization method, 3) conventional fault diagnosis methods, and 4) the state-of-the-art, semi-supervised deep learning algorithms. By examining several evaluation metrics, these comparative studies confirm that the proposed approach outperforms SSAE without the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in terms of defining health degradation performance. We expect that the proposed SAAT-based health feature space approach will be widely applicable to intuitively monitor the health state of power transformers in the real world. |
| Author | Kim, Wongon Youn, Byeng Dong Kim, Daeil Jo, Soo-Ho Jeong, Jingyo Han, Yeongmin Kim, Sunuwe Park, Jongmin |
| Author_xml | – sequence: 1 givenname: Sunuwe surname: Kim fullname: Kim, Sunuwe organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea – sequence: 2 givenname: Soo-Ho orcidid: 0000-0002-5124-8300 surname: Jo fullname: Jo, Soo-Ho organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea – sequence: 3 givenname: Wongon surname: Kim fullname: Kim, Wongon organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea – sequence: 4 givenname: Jongmin surname: Park fullname: Park, Jongmin organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea – sequence: 5 givenname: Jingyo surname: Jeong fullname: Jeong, Jingyo organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea – sequence: 6 givenname: Yeongmin surname: Han fullname: Han, Yeongmin organization: Department of Transmission & Substation Operation, Korea Electric Power Corporation (KEPCO), Naju, South Korea – sequence: 7 givenname: Daeil surname: Kim fullname: Kim, Daeil organization: Department of Transmission & Substation Operation, Korea Electric Power Corporation (KEPCO), Naju, South Korea – sequence: 8 givenname: Byeng Dong orcidid: 0000-0003-0135-3660 surname: Youn fullname: Youn, Byeng Dong email: bdyoun@snu.ac.kr organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea |
| BookMark | eNp9UU1v1DAUtFCRKEt_QS-WuMAhiz-zzjFa2lKpEkjZqkfLcZ63XrLxYictvfDbcUmLEIf64vfmzYz9NG_R0RAGQOiUkiWlpPpUr9dnTbNkhJElJ2ylOHmFjhktq4JLXh79U79BJyntSD4qQ3J1jH7VuIG9L5rpAPHOJ-hwPY0BBhs6iPjGj7fYDBn76Xtv4gPemPQdf2jqevMRuxDxt3CfeZtohpTbfa7PzdSP-LM32yEkn_B18sM29ymF_i77X5iE68H0D3n4Dr12pk9w8nQv0PX52Wb9pbj6enG5rq8KK4gaC0eIdZJRsJ10rQEj7MrKkre2q1piK1DOGsuF4WQFrKWgKuKY6fIEiJCSL9Dl7NsFs9OH6Pd5Fx2M13-AELfaxNHbHnS2UMJx29KOCSJES5ySpeREsY6q_MoCvZ-9DjH8mCCNehemmBdKmgkpSpVDqTKrmlk2hpQiOG39aEYfhjEa32tK9GN6ek5PP6ann9LLWv6f9vnHL6tOZ5UHgL-KitGcNuO_ASQDqGU |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_en15145005 crossref_primary_10_1109_TIM_2022_3196736 crossref_primary_10_1016_j_arcontrol_2022_09_005 crossref_primary_10_1016_j_ijepes_2021_107619 crossref_primary_10_1109_TDEI_2023_3253463 crossref_primary_10_3390_e24081135 crossref_primary_10_1016_j_engappai_2023_105859 crossref_primary_10_1016_j_engappai_2023_106606 crossref_primary_10_1016_j_ymssp_2021_108575 crossref_primary_10_3390_en14113029 crossref_primary_10_1016_j_eswa_2022_119377 crossref_primary_10_1016_j_engappai_2025_111991 crossref_primary_10_1016_j_eswa_2023_122910 crossref_primary_10_1109_TIE_2021_3059543 crossref_primary_10_1016_j_epsr_2023_109361 crossref_primary_10_1109_ACCESS_2023_3265469 crossref_primary_10_1016_j_engappai_2023_107142 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_1016_j_epsr_2023_109256 crossref_primary_10_1016_j_epsr_2022_108642 crossref_primary_10_1109_ACCESS_2021_3127164 |
| Cites_doi | 10.1109/ACCESS.2017.2728010 10.1109/59.867146 10.1109/ACCESS.2017.2713389 10.1109/ACCESS.2015.2510865 10.1109/CIDM.2014.7008673 10.1049/iet-gtd.2017.0028 10.1016/j.rcim.2019.101920 10.1109/TDEI.2015.004999 10.1109/MEI.2002.1014963 10.1049/ip-gtd:20030901 10.1016/j.ymssp.2017.03.034 10.1109/57.917529 10.1145/1390156.1390294 10.1016/j.epsr.2011.09.012 10.1109/ACCESS.2020.2986537 10.1016/j.rser.2017.05.165 10.1109/ICDM.2015.22 10.1109/ACCESS.2017.2740968 10.1109/BDCloud.2018.00107 10.1109/ACCESS.2019.2902299 10.1109/TDEI.2014.004547 10.3390/app10041329 10.1016/j.fiae.2017.12.005 10.1109/94.910437 10.1109/ACCESS.2020.2986726 10.1109/TDEI.2019.008034 10.1109/TSMCC.2008.2007253 10.1109/ACCESS.2019.2906273 10.1109/CICN.2015.275 10.1016/j.ijepes.2012.05.067 10.1016/j.ymssp.2017.11.016 10.1109/TPWRD.2003.817733 10.1109/ACCESS.2019.2926234 10.1016/j.ymssp.2017.09.026 10.1109/TPWRD.2003.813605 10.1109/ACCESS.2019.2897606 10.1109/TPWRD.2005.855423 10.1109/TDEI.2017.006727 10.1109/TDEI.2015.005277 10.1109/MEI.2008.4665347 10.1109/61.714488 10.1109/ACCESS.2020.2972464 10.1109/TPWRD.2008.2002652 10.1109/TDEI.2013.6678885 10.1109/TDEI.2011.5739454 10.1186/s40064-016-2107-7 10.1049/joe.2017.0851 10.1109/IJCNN.2019.8852056 10.2172/1503166 10.1049/iet-gtd.2011.0165 10.3390/en11092437 10.1109/TPWRD.2012.2197868 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2020.3027830 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 178310 |
| ExternalDocumentID | oai_doaj_org_article_30784f3cb1d24044b0f85653082d18ac 10_1109_ACCESS_2020_3027830 9210082 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Ministry of Science and ICT (MSIT), Korea Government grantid: 2020R1A2C3003644 funderid: 10.13039/501100003725 – fundername: 2017 Open Research and Development Program of Korea Electric Power Corporation (KEPCO) grantid: R17tH02 funderid: 10.13039/501100010193 – fundername: National Research Foundation of Korea (NRF) grant funderid: 10.13039/501100003725 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c408t-f00cf521ecd5fbaea4c7c563bcd9b0c9e8fcac34a307e2b1e890f2adc9ee04553 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576245500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:51:38 EDT 2025 Sun Jun 29 15:56:00 EDT 2025 Sat Nov 29 04:14:15 EST 2025 Tue Nov 18 21:49:38 EST 2025 Wed Aug 27 02:31:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-f00cf521ecd5fbaea4c7c563bcd9b0c9e8fcac34a307e2b1e890f2adc9ee04553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5124-8300 0000-0003-0135-3660 |
| OpenAccessLink | https://doaj.org/article/30784f3cb1d24044b0f85653082d18ac |
| PQID | 2454681099 |
| PQPubID | 4845423 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2020_3027830 ieee_primary_9210082 crossref_primary_10_1109_ACCESS_2020_3027830 proquest_journals_2454681099 doaj_primary_oai_doaj_org_article_30784f3cb1d24044b0f85653082d18ac |
| PublicationCentury | 2000 |
| PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 20200000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 dornenburg (ref9) 1974; 61 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 (ref8) 2009 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 (ref7) 2016 ref2 ref1 ref39 ref38 clevert (ref50) 2015 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref38 doi: 10.1109/ACCESS.2017.2728010 – ident: ref15 doi: 10.1109/59.867146 – ident: ref49 doi: 10.1109/ACCESS.2017.2713389 – ident: ref48 doi: 10.1109/ACCESS.2015.2510865 – ident: ref24 doi: 10.1109/CIDM.2014.7008673 – ident: ref54 doi: 10.1049/iet-gtd.2017.0028 – ident: ref47 doi: 10.1016/j.rcim.2019.101920 – ident: ref11 doi: 10.1109/TDEI.2015.004999 – ident: ref6 doi: 10.1109/MEI.2002.1014963 – ident: ref19 doi: 10.1049/ip-gtd:20030901 – ident: ref37 doi: 10.1016/j.ymssp.2017.03.034 – ident: ref53 doi: 10.1109/57.917529 – ident: ref41 doi: 10.1145/1390156.1390294 – ident: ref16 doi: 10.1016/j.epsr.2011.09.012 – ident: ref3 doi: 10.1109/ACCESS.2020.2986537 – ident: ref1 doi: 10.1016/j.rser.2017.05.165 – ident: ref43 doi: 10.1109/ICDM.2015.22 – year: 2016 ident: ref7 publication-title: Mineral Oil-Filled Electrical Equipment in Service Guidance on the Interpretation of Dissolved and Free Gases Analysis [Electronic Resource] – ident: ref39 doi: 10.1109/ACCESS.2017.2740968 – ident: ref42 doi: 10.1109/BDCloud.2018.00107 – ident: ref5 doi: 10.1109/ACCESS.2019.2902299 – ident: ref27 doi: 10.1109/TDEI.2014.004547 – ident: ref46 doi: 10.3390/app10041329 – ident: ref29 doi: 10.1016/j.fiae.2017.12.005 – ident: ref14 doi: 10.1109/94.910437 – ident: ref31 doi: 10.1109/ACCESS.2020.2986726 – ident: ref26 doi: 10.1109/TDEI.2019.008034 – ident: ref25 doi: 10.1109/TSMCC.2008.2007253 – ident: ref2 doi: 10.1109/ACCESS.2019.2906273 – ident: ref40 doi: 10.1109/CICN.2015.275 – ident: ref45 doi: 10.1016/j.ijepes.2012.05.067 – ident: ref56 doi: 10.1016/j.ymssp.2017.11.016 – volume: 61 start-page: 238 year: 1974 ident: ref9 article-title: Monitoring oil-cooled transformers by gas-analysis publication-title: Brown Boveri Rev – ident: ref32 doi: 10.1109/TPWRD.2003.817733 – ident: ref36 doi: 10.1109/ACCESS.2019.2926234 – ident: ref52 doi: 10.1016/j.ymssp.2017.09.026 – ident: ref20 doi: 10.1109/TPWRD.2003.813605 – ident: ref4 doi: 10.1109/ACCESS.2019.2897606 – ident: ref12 doi: 10.1109/TPWRD.2005.855423 – ident: ref34 doi: 10.1109/TDEI.2017.006727 – ident: ref23 doi: 10.1109/TDEI.2015.005277 – ident: ref10 doi: 10.1109/MEI.2008.4665347 – ident: ref21 doi: 10.1109/61.714488 – ident: ref51 doi: 10.1109/ACCESS.2020.2972464 – ident: ref13 doi: 10.1109/TPWRD.2008.2002652 – ident: ref44 doi: 10.1109/TDEI.2013.6678885 – ident: ref18 doi: 10.1109/TDEI.2011.5739454 – ident: ref33 doi: 10.1186/s40064-016-2107-7 – year: 2015 ident: ref50 article-title: Fast and accurate deep network learning by exponential linear units (ELUs) publication-title: arXiv 1511 07289 – ident: ref30 doi: 10.1049/joe.2017.0851 – ident: ref35 doi: 10.1109/IJCNN.2019.8852056 – ident: ref55 doi: 10.2172/1503166 – year: 2009 ident: ref8 publication-title: IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers – ident: ref17 doi: 10.1049/iet-gtd.2011.0165 – ident: ref22 doi: 10.3390/en11092437 – ident: ref28 doi: 10.1109/TPWRD.2012.2197868 |
| SSID | ssj0000816957 |
| Score | 2.3332617 |
| Snippet | This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 178295 |
| SubjectTerms | Algorithms Comparative studies Decoding Deep learning Degradation dissolved gas analysis Dissolved gases Electrical faults Fault diagnosis Feature extraction Gas analysis health feature space Machine learning Performance degradation power transformer Power transformers Semi-supervised autoencoder Task analysis Transformers Two dimensional displays Visualization |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKxQEOfBXEQkE-cACpoU5i1_ExLCycqkq7iN4iZ2yLiGW32iQVXPjtzDjZqBIIiZuT2JajNx7P2OM3jL2SlLrY6jTJ0FdIJKCDUlg4S9B0ULgigsR2MdmEPj8vLi_NxQE7me7CeO9j8Jl_S8V4lu-20NNW2anJiIoGFe4trfVwV2vaT6EEEkbpkVgoFea0nM_xH9AFzNAzpQM2inS-sfhEjv4xqcofmjguL4v7_zewB-zeaEbycsD9ITvwm0fs7g1ywSP2q-RL_71Jlv0V6YPWO1723ZaIK53f8S9N95XbDb770awbu_vJV7b9xl8vy3L1hqMpyy8ogRpf7S1bLC9sv-74-yE6r2l5jDfAZxLga-z_o235nuXkMfu8-LCaf0rGbAsJSFF0SRACAi7mHpwKtfVWggZ1ltfgTC3A-CKAhVxa1Ao-q1NfGBEy6_CLR7tQ5U_Y4Wa78U8ZtzYokwennUX3UwkrRJ0HBWgseAFaz1i2h6GCkYqcMmKsq-iSCFMN2FWEXTViN2MnU6OrgYnj39XfEb5TVaLRji8QuGqclVhXFzLkUKcOLRspaxEKFFKi8HEpyuyMHRHYUycjzjN2vJeWapzybZVJJYnczZhnf2_1nN2hAQ77N8fssNv1_gW7Dddd0-5eRmn-DXK88nU priority: 102 providerName: IEEE |
| Title | A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis |
| URI | https://ieeexplore.ieee.org/document/9210082 https://www.proquest.com/docview/2454681099 https://doaj.org/article/30784f3cb1d24044b0f85653082d18ac |
| Volume | 8 |
| WOSCitedRecordID | wos000576245500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQxAM8IGAgCtvkBx5AIpqT2E38mHUrvDBNahF7s5yzLSK6bmrSib3st-_OSatKk-CFlyhx7HPsO_vukst3jH2UlLrYFmmSoa-QSEAHpbQwTtB0UKgRQWK7mGyiOD8vLy_1xU6qL4oJ6-GB-4k7RhksZcihTh0qHylrEUqkQygrLkWytPui1bPjTMU9uEzHWhUDzFAq9HE1meCI0CHM0E-lz20U97yjiiJi_5Bi5dG-HJXN9CV7MViJvOqf7hV74pev2fMd7MB9dl_xmb9qktn6hpZ76x2v1t014VI6v-I_m-4Xt0ss-9MsGru643Pb_uafZlU1_8zRUuUXlB-NzzeGK55P7XrR8dM--K5peQwnwGuSz1uk_9W2fANi8ob9mJ7NJ9-SIZlCAlKUXRKEgIC62oNTobbeSihAjfManK4FaF8GsJBLixPuszr1pRYhsw7veDT7VP6W7S2vl_4d49YGpfPgCmfRu1TCClHnQQHaAl5AUYxYtplXAwPSOCW8WJjocQhtemYYYoYZmDFiX7aNbnqgjb9XPyGGbasSSnYsQNkxg-yYf8nOiO0Tu7dEdEZQR9mIHWzYb4YV3ZpMKknYbVq__x9df2DPaDj9y5wDttet1v6QPYXbrmlXR1GY8fj9_uwo_pL4AMjr9oY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQ98CqIhQI-cACpoU5iN_ExLCxFlFWlDaI3y_FDRGx3q01SwYXfzoyTjSqBkLg5iW05-sbjGXv8DSEvOaYu1lkcJeArRNyAg5JrcxyB6SBgRTQc2oVkE9l8np-fy7MdcjjehXHOheAz9waL4Szfrk2HW2VHMkEqGlC4NwTnSdzf1hp3VDCFhBTZQC0UM3lUTKfwF-AEJuCb4hEbxjpfW34CS_-QVuUPXRwWmNnd_xvaPXJnMCRp0SN_n-y41QOyd41ecJ_8KujCXdTRortEjdA4S4uuXSN1pXUb-rVuv1G9gnc_6mWtNz9pqZvv9NWiKMrXFIxZeoYp1Gi5tW2hPNPdsqXv-vi8uqEh4gCeUYSvoP8PuqFbnpOH5MvsfTk9iYZ8C5HhLG8jz5jxsJw7Y4WvtNPcZEYcp5WxsmJGutwbbVKuQS-4pIpdLplPtIUvDixDkT4iu6v1yj0mVGsvZOptZjU4oIJpxqrUCwPmgmMmyyYk2cKgzEBGjjkxlio4JUyqHjuF2KkBuwk5HBtd9lwc_67-FvEdqyKRdngBwKlhXkLdLOc-NVVswbbhvGI-BzFFEh8bg9ROyD6CPXYy4DwhB1tpUcOkb1TCBUd6Nymf_L3VC3LrpPx8qk4_zj89JbdxsP1uzgHZbTede0Zumqu2bjbPg2T_Bi619bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semi-Supervised+Autoencoder+With+an+Auxiliary+Task+%28SAAT%29+for+Power+Transformer+Fault+Diagnosis+Using+Dissolved+Gas+Analysis&rft.jtitle=IEEE+access&rft.au=Kim%2C+Sunuwe&rft.au=Jo%2C+Soo-Ho&rft.au=Kim%2C+Wongon&rft.au=Park%2C+Jongmin&rft.date=2020&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=8&rft.spage=178295&rft.epage=178310&rft_id=info:doi/10.1109%2FACCESS.2020.3027830&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2020_3027830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |