A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis

This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and therma...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 8; s. 178295 - 178310
Hlavní autoři: Kim, Sunuwe, Jo, Soo-Ho, Kim, Wongon, Park, Jongmin, Jeong, Jingyo, Han, Yeongmin, Kim, Daeil, Youn, Byeng Dong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and thermal/electrical fault types, but also presents the underlying characteristics of DGA. In the proposed approach, by adding an auxiliary task that detects normal and fault states in the loss function of SSAE, the health feature space additionally enables visualization of health degradation properties. The overall procedure of the new approach includes three key steps: 1) preprocessing DGA data, 2) extracting two health features via SAAT, and 3) visualizing the two health features in two-dimensional space. In this paper, we test the proposed approach using massive unlabeled/labeled Korea Electric Power Corporation (KEPCO) databases and IEC TC 10 databases. To demonstrate the effectiveness of the proposed approach, four comparative studies are conducted with these datasets; the studies examined: 1) the effectiveness of an auxiliary detection task, 2) the effectiveness of the visualization method, 3) conventional fault diagnosis methods, and 4) the state-of-the-art, semi-supervised deep learning algorithms. By examining several evaluation metrics, these comparative studies confirm that the proposed approach outperforms SSAE without the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in terms of defining health degradation performance. We expect that the proposed SAAT-based health feature space approach will be widely applicable to intuitively monitor the health state of power transformers in the real world.
AbstractList This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and thermal/electrical fault types, but also presents the underlying characteristics of DGA. In the proposed approach, by adding an auxiliary task that detects normal and fault states in the loss function of SSAE, the health feature space additionally enables visualization of health degradation properties. The overall procedure of the new approach includes three key steps: 1) preprocessing DGA data, 2) extracting two health features via SAAT, and 3) visualizing the two health features in two-dimensional space. In this paper, we test the proposed approach using massive unlabeled/labeled Korea Electric Power Corporation (KEPCO) databases and IEC TC 10 databases. To demonstrate the effectiveness of the proposed approach, four comparative studies are conducted with these datasets; the studies examined: 1) the effectiveness of an auxiliary detection task, 2) the effectiveness of the visualization method, 3) conventional fault diagnosis methods, and 4) the state-of-the-art, semi-supervised deep learning algorithms. By examining several evaluation metrics, these comparative studies confirm that the proposed approach outperforms SSAE without the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in terms of defining health degradation performance. We expect that the proposed SAAT-based health feature space approach will be widely applicable to intuitively monitor the health state of power transformers in the real world.
Author Kim, Wongon
Youn, Byeng Dong
Kim, Daeil
Jo, Soo-Ho
Jeong, Jingyo
Han, Yeongmin
Kim, Sunuwe
Park, Jongmin
Author_xml – sequence: 1
  givenname: Sunuwe
  surname: Kim
  fullname: Kim, Sunuwe
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Soo-Ho
  orcidid: 0000-0002-5124-8300
  surname: Jo
  fullname: Jo, Soo-Ho
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
– sequence: 3
  givenname: Wongon
  surname: Kim
  fullname: Kim, Wongon
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
– sequence: 4
  givenname: Jongmin
  surname: Park
  fullname: Park, Jongmin
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
– sequence: 5
  givenname: Jingyo
  surname: Jeong
  fullname: Jeong, Jingyo
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
– sequence: 6
  givenname: Yeongmin
  surname: Han
  fullname: Han, Yeongmin
  organization: Department of Transmission & Substation Operation, Korea Electric Power Corporation (KEPCO), Naju, South Korea
– sequence: 7
  givenname: Daeil
  surname: Kim
  fullname: Kim, Daeil
  organization: Department of Transmission & Substation Operation, Korea Electric Power Corporation (KEPCO), Naju, South Korea
– sequence: 8
  givenname: Byeng Dong
  orcidid: 0000-0003-0135-3660
  surname: Youn
  fullname: Youn, Byeng Dong
  email: bdyoun@snu.ac.kr
  organization: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
BookMark eNp9UU1v1DAUtFCRKEt_QS-WuMAhiz-zzjFa2lKpEkjZqkfLcZ63XrLxYictvfDbcUmLEIf64vfmzYz9NG_R0RAGQOiUkiWlpPpUr9dnTbNkhJElJ2ylOHmFjhktq4JLXh79U79BJyntSD4qQ3J1jH7VuIG9L5rpAPHOJ-hwPY0BBhs6iPjGj7fYDBn76Xtv4gPemPQdf2jqevMRuxDxt3CfeZtohpTbfa7PzdSP-LM32yEkn_B18sM29ymF_i77X5iE68H0D3n4Dr12pk9w8nQv0PX52Wb9pbj6enG5rq8KK4gaC0eIdZJRsJ10rQEj7MrKkre2q1piK1DOGsuF4WQFrKWgKuKY6fIEiJCSL9Dl7NsFs9OH6Pd5Fx2M13-AELfaxNHbHnS2UMJx29KOCSJES5ySpeREsY6q_MoCvZ-9DjH8mCCNehemmBdKmgkpSpVDqTKrmlk2hpQiOG39aEYfhjEa32tK9GN6ek5PP6ann9LLWv6f9vnHL6tOZ5UHgL-KitGcNuO_ASQDqGU
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en15145005
crossref_primary_10_1109_TIM_2022_3196736
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1016_j_ijepes_2021_107619
crossref_primary_10_1109_TDEI_2023_3253463
crossref_primary_10_3390_e24081135
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_engappai_2023_106606
crossref_primary_10_1016_j_ymssp_2021_108575
crossref_primary_10_3390_en14113029
crossref_primary_10_1016_j_eswa_2022_119377
crossref_primary_10_1016_j_engappai_2025_111991
crossref_primary_10_1016_j_eswa_2023_122910
crossref_primary_10_1109_TIE_2021_3059543
crossref_primary_10_1016_j_epsr_2023_109361
crossref_primary_10_1109_ACCESS_2023_3265469
crossref_primary_10_1016_j_engappai_2023_107142
crossref_primary_10_1016_j_isatra_2023_09_027
crossref_primary_10_1016_j_epsr_2023_109256
crossref_primary_10_1016_j_epsr_2022_108642
crossref_primary_10_1109_ACCESS_2021_3127164
Cites_doi 10.1109/ACCESS.2017.2728010
10.1109/59.867146
10.1109/ACCESS.2017.2713389
10.1109/ACCESS.2015.2510865
10.1109/CIDM.2014.7008673
10.1049/iet-gtd.2017.0028
10.1016/j.rcim.2019.101920
10.1109/TDEI.2015.004999
10.1109/MEI.2002.1014963
10.1049/ip-gtd:20030901
10.1016/j.ymssp.2017.03.034
10.1109/57.917529
10.1145/1390156.1390294
10.1016/j.epsr.2011.09.012
10.1109/ACCESS.2020.2986537
10.1016/j.rser.2017.05.165
10.1109/ICDM.2015.22
10.1109/ACCESS.2017.2740968
10.1109/BDCloud.2018.00107
10.1109/ACCESS.2019.2902299
10.1109/TDEI.2014.004547
10.3390/app10041329
10.1016/j.fiae.2017.12.005
10.1109/94.910437
10.1109/ACCESS.2020.2986726
10.1109/TDEI.2019.008034
10.1109/TSMCC.2008.2007253
10.1109/ACCESS.2019.2906273
10.1109/CICN.2015.275
10.1016/j.ijepes.2012.05.067
10.1016/j.ymssp.2017.11.016
10.1109/TPWRD.2003.817733
10.1109/ACCESS.2019.2926234
10.1016/j.ymssp.2017.09.026
10.1109/TPWRD.2003.813605
10.1109/ACCESS.2019.2897606
10.1109/TPWRD.2005.855423
10.1109/TDEI.2017.006727
10.1109/TDEI.2015.005277
10.1109/MEI.2008.4665347
10.1109/61.714488
10.1109/ACCESS.2020.2972464
10.1109/TPWRD.2008.2002652
10.1109/TDEI.2013.6678885
10.1109/TDEI.2011.5739454
10.1186/s40064-016-2107-7
10.1049/joe.2017.0851
10.1109/IJCNN.2019.8852056
10.2172/1503166
10.1049/iet-gtd.2011.0165
10.3390/en11092437
10.1109/TPWRD.2012.2197868
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2020.3027830
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 178310
ExternalDocumentID oai_doaj_org_article_30784f3cb1d24044b0f85653082d18ac
10_1109_ACCESS_2020_3027830
9210082
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and ICT (MSIT), Korea Government
  grantid: 2020R1A2C3003644
  funderid: 10.13039/501100003725
– fundername: 2017 Open Research and Development Program of Korea Electric Power Corporation (KEPCO)
  grantid: R17tH02
  funderid: 10.13039/501100010193
– fundername: National Research Foundation of Korea (NRF) grant
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f00cf521ecd5fbaea4c7c563bcd9b0c9e8fcac34a307e2b1e890f2adc9ee04553
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576245500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:38 EDT 2025
Sun Jun 29 15:56:00 EDT 2025
Sat Nov 29 04:14:15 EST 2025
Tue Nov 18 21:49:38 EST 2025
Wed Aug 27 02:31:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f00cf521ecd5fbaea4c7c563bcd9b0c9e8fcac34a307e2b1e890f2adc9ee04553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5124-8300
0000-0003-0135-3660
OpenAccessLink https://ieeexplore.ieee.org/document/9210082
PQID 2454681099
PQPubID 4845423
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2020_3027830
ieee_primary_9210082
crossref_primary_10_1109_ACCESS_2020_3027830
proquest_journals_2454681099
doaj_primary_oai_doaj_org_article_30784f3cb1d24044b0f85653082d18ac
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
dornenburg (ref9) 1974; 61
ref56
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
(ref8) 2009
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
(ref7) 2016
ref2
ref1
ref39
ref38
clevert (ref50) 2015
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref38
  doi: 10.1109/ACCESS.2017.2728010
– ident: ref15
  doi: 10.1109/59.867146
– ident: ref49
  doi: 10.1109/ACCESS.2017.2713389
– ident: ref48
  doi: 10.1109/ACCESS.2015.2510865
– ident: ref24
  doi: 10.1109/CIDM.2014.7008673
– ident: ref54
  doi: 10.1049/iet-gtd.2017.0028
– ident: ref47
  doi: 10.1016/j.rcim.2019.101920
– ident: ref11
  doi: 10.1109/TDEI.2015.004999
– ident: ref6
  doi: 10.1109/MEI.2002.1014963
– ident: ref19
  doi: 10.1049/ip-gtd:20030901
– ident: ref37
  doi: 10.1016/j.ymssp.2017.03.034
– ident: ref53
  doi: 10.1109/57.917529
– ident: ref41
  doi: 10.1145/1390156.1390294
– ident: ref16
  doi: 10.1016/j.epsr.2011.09.012
– ident: ref3
  doi: 10.1109/ACCESS.2020.2986537
– ident: ref1
  doi: 10.1016/j.rser.2017.05.165
– ident: ref43
  doi: 10.1109/ICDM.2015.22
– year: 2016
  ident: ref7
  publication-title: Mineral Oil-Filled Electrical Equipment in Service Guidance on the Interpretation of Dissolved and Free Gases Analysis [Electronic Resource]
– ident: ref39
  doi: 10.1109/ACCESS.2017.2740968
– ident: ref42
  doi: 10.1109/BDCloud.2018.00107
– ident: ref5
  doi: 10.1109/ACCESS.2019.2902299
– ident: ref27
  doi: 10.1109/TDEI.2014.004547
– ident: ref46
  doi: 10.3390/app10041329
– ident: ref29
  doi: 10.1016/j.fiae.2017.12.005
– ident: ref14
  doi: 10.1109/94.910437
– ident: ref31
  doi: 10.1109/ACCESS.2020.2986726
– ident: ref26
  doi: 10.1109/TDEI.2019.008034
– ident: ref25
  doi: 10.1109/TSMCC.2008.2007253
– ident: ref2
  doi: 10.1109/ACCESS.2019.2906273
– ident: ref40
  doi: 10.1109/CICN.2015.275
– ident: ref45
  doi: 10.1016/j.ijepes.2012.05.067
– ident: ref56
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 61
  start-page: 238
  year: 1974
  ident: ref9
  article-title: Monitoring oil-cooled transformers by gas-analysis
  publication-title: Brown Boveri Rev
– ident: ref32
  doi: 10.1109/TPWRD.2003.817733
– ident: ref36
  doi: 10.1109/ACCESS.2019.2926234
– ident: ref52
  doi: 10.1016/j.ymssp.2017.09.026
– ident: ref20
  doi: 10.1109/TPWRD.2003.813605
– ident: ref4
  doi: 10.1109/ACCESS.2019.2897606
– ident: ref12
  doi: 10.1109/TPWRD.2005.855423
– ident: ref34
  doi: 10.1109/TDEI.2017.006727
– ident: ref23
  doi: 10.1109/TDEI.2015.005277
– ident: ref10
  doi: 10.1109/MEI.2008.4665347
– ident: ref21
  doi: 10.1109/61.714488
– ident: ref51
  doi: 10.1109/ACCESS.2020.2972464
– ident: ref13
  doi: 10.1109/TPWRD.2008.2002652
– ident: ref44
  doi: 10.1109/TDEI.2013.6678885
– ident: ref18
  doi: 10.1109/TDEI.2011.5739454
– ident: ref33
  doi: 10.1186/s40064-016-2107-7
– year: 2015
  ident: ref50
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: arXiv 1511 07289
– ident: ref30
  doi: 10.1049/joe.2017.0851
– ident: ref35
  doi: 10.1109/IJCNN.2019.8852056
– ident: ref55
  doi: 10.2172/1503166
– year: 2009
  ident: ref8
  publication-title: IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers
– ident: ref17
  doi: 10.1049/iet-gtd.2011.0165
– ident: ref22
  doi: 10.3390/en11092437
– ident: ref28
  doi: 10.1109/TPWRD.2012.2197868
SSID ssj0000816957
Score 2.3332617
Snippet This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178295
SubjectTerms Algorithms
Comparative studies
Decoding
Deep learning
Degradation
dissolved gas analysis
Dissolved gases
Electrical faults
Fault diagnosis
Feature extraction
Gas analysis
health feature space
Machine learning
Performance degradation
power transformer
Power transformers
Semi-supervised autoencoder
Task analysis
Transformers
Two dimensional displays
Visualization
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqqodyQEBBLJTKBw6tRNQkthP7GLZdOFRVpd1Cb5Y_RdRlW22yFVz47Z1JsquVKsGFW-I4duwZe944ozeEfFRgNCJTIrGRgYPibZEo6VjCIrN5zLzpD9y-XZSXl_LmRl1tpfrCmLCeHrifuFPQQckjczbzYHw4t2mUAEKQZcVn0jjcfQH1bDlT3R4ss0KJcqAZylJ1Wo3HMCJwCHPwU_F3G8Y9b5mijrF_SLHyZF_ujM3kBXk-oERa9V_3kuyExSvybIs78ID8qeg0_KyT6eoel3sTPK1W7R3yUvqwpN_r9gc1Cyj7Vc9rs_xNZ6a5pcfTqpqdUECq9Arzo9HZGrjC9cSs5i0964Pv6oZ24QRwj_r5AO1_MQ1dk5i8JteT89n4azIkU0gcT2WbxDR1EWx1cF5Ea4LhrnSiYNZ5ZVOngozOOMYNTHjIbRakSmNuPDwJAPsEe0N2F3eL8JZQCS1Z4dHyg7_DOXh8rhACwFMIZVkUI5Kv51W7gWkcE17MdedxpEr3wtAoDD0IY0Q-bV6674k2_l79MwpsUxVZsrsC0B096I7-l-6MyAGKe9OIypHqKB-Rw7X49bCiG51zwZG7Tal3_6Pr92Qfh9Mf5hyS3Xa5Ch_Innto62Z51CnzIw6o8_g
  priority: 102
  providerName: Directory of Open Access Journals
Title A Semi-Supervised Autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis
URI https://ieeexplore.ieee.org/document/9210082
https://www.proquest.com/docview/2454681099
https://doaj.org/article/30784f3cb1d24044b0f85653082d18ac
Volume 8
WOSCitedRecordID wos000576245500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKxQEOUCiIhbbygQNIDU1iJ7GPYenCAapKu0BvkZ8i6na32iQVXPrbmUm8USUQEpfIcWzL0efHzHj8DSGvJWwansks0p6BgmJ1HklhWMQ806lPrBoMbt8-F2dn4uJCnu-Q4_EujHOudz5z7zDZn-XbtenQVHYiU6SigQX3XlEUw12t0Z6CASRkVgRioSSWJ-V0Cv8AKmAKmikesKGn853Np-foD0FV_liJ--1l9vj_OrZHHgUxkpYD7k_Ijls9JQ_vkAvuk9uSzt1VHc27a1wPGmdp2bVrJK60bkO_1-0PqlaQ97Ne1mrziy5Uc0nfzMty8ZaCKEvPMYAaXWwlW0jPVLds6YfBO69uaO9vAO84gG-g_Y-qoVuWk2fk6-x0Mf0UhWgLkeGxaCMfx8bDZu6MzbxWTnFTmCxn2lipYyOd8EYZxhWsCi7ViRMy9qmy8MWBXJix52R3tV65F4QKaElnFkUDUIg4B5XQ5FkG0pVzRZHnE5JuYahMoCLHiBjLqldJYlkN2FWIXRWwm5DjsdL1wMTx7-LvEd-xKNJo9xkAXBVmJZQtBPfM6MSCZMO5jr0ACRcpfGwilJmQfQR7bCTgPCEH29FShSnfVCnPOJK7Sfny77VekQfYwcF-c0B2203nDsl9c9PWzeaoNwbA88vt6VE_sn8Dxfb0Pw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqggQceJWKhQI-cACpoUlsJ_ExLCxFLKtKG6C3yE8RsexWm6SCC7-dmSQbVQIhcXMS23L02eOZ8fgbQp5L2DQ8kyLQnoGBYnUSyMywgHmmYx9Z1TvcPs_TxSI7P5dne-R4vAvjnOuCz9wrLHZn-XZjWnSVncgYqWhA4F4TnMdRf1tr9KhgCgkp0oFaKArlST6dwl-AERiDbYpHbBjrfGX76Vj6h7Qqf8jiboOZ3fm_od0ltwdFkuY98vfInlvfJ7eu0AsekF85XbrvVbBsL1Ai1M7SvG02SF1p3ZZ-qZqvVK3h3Y9qVantT1qo-ht9sczz4iUFZZaeYQo1Wux0WyjPVLtq6Js-Pq-qaRdxAM84hS-h_3eqpjuekwfk0-xtMT0NhnwLgeFh1gQ-DI2H7dwZK7xWTnGTGpEwbazUoZEu80YZxhXIBRfryGUy9LGy8MWBZijYIdlfb9buIaEZ9KSFReUATCLOwSg0iRCgXzmXpkkyIfEOhtIMZOSYE2NVdkZJKMseuxKxKwfsJuR4bHTRc3H8u_prxHesikTa3QsArhzWJdRNM-6Z0ZEF3YZzHfoMdFwk8bFRpsyEHCDYYycDzhNytJst5bDo6zLmgiO9m5SP_t7qGblxWnycl_P3iw-PyU0cbO_NOSL7zbZ1T8h1c9lU9fZpN7N_Axk79WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Semi-Supervised+Autoencoder+With+an+Auxiliary+Task+%28SAAT%29+for+Power+Transformer+Fault+Diagnosis+Using+Dissolved+Gas+Analysis&rft.jtitle=IEEE+access&rft.au=Kim%2C+Sunuwe&rft.au=Jo%2C+Soo-Ho&rft.au=Kim%2C+Wongon&rft.au=Park%2C+Jongmin&rft.date=2020&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=8&rft.spage=178295&rft.epage=178310&rft_id=info:doi/10.1109%2FACCESS.2020.3027830&rft.externalDocID=9210082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon